
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Selective Scheduling Based on Number of Processor

Cores for Parallel Processing

Ravinder Jeet
1
, Upasna Garg

2

1Guru Kashi University, Punjab 151302, India

 2Assistant Professor), Guru Kashi University, Punjab 151302, India

Abstract: Scheduling is essential for the proper functioning of multi-core processors for parallel processing. Scheduling of tasks onto

multi-core processors is an interesting problem that is well defined and documented in the literature. Multi-core processor systems are

increasingly commonplace, and have found their way into desktop machines, laptops, and even mobile devices. The rise of the multi-core

processor, in which multiple CPU cores are packed onto a single chip, is the source of this proliferation. These chips have become

popular as computer architects have had a difficult time making a single CPU much faster without using too much power.With the

advent of multi core processors, there is a need to schedule multiple tasks on multiple cores. In this paper we are proposing a new

scheduler algorithm which schedules the multiple tasks on multiple cores of a single chip processor. One task is assign to a single core

and the one is on another core processor within a single chip processor for parallel processing. The main goal of this work is to allow

jobs to scale well with the number of cores. The proposed algorithm will allow each processor core to execute at least one task on single

instance of time. This means if the number of processor cores is four then four tasks will be execute simultaneously on all four cores.

Keywords: Selective Scheduling, Multi-Core System, Parallel Processing, Number Of Processors

1. Introduction

Scheduling of tasks is essential for every system. Scheduler

is one of the most important parts of an Operating system.

Without scheduler, tasks may not execute in that order

which a user or operating system itself want. Scheduling of

tasks on single core processor is much easy by choosing

existing scheduler programs like Round-Robin, Priority

based, First Come First Serve bases, Shortest job First etc.

Multi-core processors have two or more processing elements

or cores on a single chip. These cores could be of similar

architecture (Synchronous Multi-core Processors, SMPs) or

of different architecture (Asynchronous Multi-core

Processors, AMPs). All the cores necessarily use shared

memory architecture. Multi-core processors have existed

previously in the form of MPSoC (Multi-Processor System

on Chip) but they were limited to a segment of applications

such as networking [13]. The easy availability of multi-core

has forced software programmers to change the way they

think and write their applications [13]. Unfortunately, the

applications written so far are sequential in nature. Multi-

core processors do not automatically provide performance

improvements to applications the way faster processors did.

Instead applications must be redesigned to increase their

parallelism. Similarly, CPU schedulers must be redesigned

to maximize the performance of this new application

parallelism. CPU scheduling policy (and in a large part

mechanism) is unimportant to a serial application running on

its own machine [2]. An important part of parallel processing

in multi-core reconfigurable systems is to allocate tasks to

processors to achieve the best performance. The objectives

of task scheduling algorithms are to maximize system

throughput by assigning a task to a proper processor,

maximize resource utilization, and minimize execution time.

In a single-processor system, only one process can run at a

time; any others must wait until the CPU is free and can be

rescheduled. The objective of multi-tasking is to have some

process running at all times, to maximize CPU utilization.

Scheduling is a fundamental operating-system function.

Almost all computer resources are scheduled before use. The

CPU is, of course, one of the primary computer resources.

Thus, its scheduling is central to operating-system design.

CPU scheduling determines which processes run when there

are multiple run-able processes

2. Scheduling Parameters

 CPU Utilization: It is the average fraction of time, during

which the processor is busy.

 Throughput: It refers to the amount of work completed in

a unit of time. The number of processes the system can

execute in a period of time. The higher the number, the

more work is done by the system.

 Waiting Time: The average period of time a process

spends waiting. Waiting time may be expressed as

turnaround time less the actual execution time.

 Turnaround time: The interval from the time of

submission of a process to the time of completion is the

turnaround time.

 Response time: Response time is the time from

submission of a request until the first response is

produced.

 Priority: give preferential treatment to processes with

higher priorities.

 Fairness: Avoid the process from starvation. All the

processes must be given equal opportunity to execute.

3. Multi-core Processor Architecture

In Multi-core processor architecture two or more chips are

embedded in to single processor chip that are called cores. A

single core is a single complete microprocessor in itself

which can perform all operations as a full microprocessor.

Memory is shared by all available cores in single chip. Most

of Multi-core processor have single shared cache storage

which leads to mutual accesses in processing.

Paper ID: SUB15747 2036

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Block diagram of Multi-core Processor

The efficiency of a parallel computing system is commonly

measured by completion time, speedup, or throughput,

which in turn reflect the quality of the scheduler. Many

algorithms have already been developed which provide

effective solutions. Most of these methods, however, can

solve only limited classes of the scheduling problem [1].
The scheduling problem is known to be NP-complete for the

general case and even for many restricted cases [15].

4. Related Work

Many researchers have defined various scheduling

algorithms for multi-core processor systems. Vinay G.

Vaidya‘s ―Dynamic Scheduler for Multi-core Systems”

scheduler program runs on each processor core to schedule

tasks on each core individually. But the limitation is that a

main program is needed to control all cores [13]. Some other

multi-core schedulers are uses one scheduling algorithm like

―SUBCONTRARY MEAN DYNAMIC ROUND ROBIN

(SMDRR) SCHEDULING ALGORITHM” on each core [21].

SMDRR scheduler runs on each core but there is no main

scheduler to control all tasks which decides which tasks

execute on which core.

5. Literature Review

1) Joseph t. Meehean(2011) - et al - made two advances in

the area of applying scientific analysis to CPU

schedulers. The first, CPU futures, is a combination of

predictive scheduling models embedded into the CPU

scheduler and user-space controller that steers

applications using feedback from these models.

Developed these predictive models for two different

linux schedulers (cfs and o(1)), based on two different

scheduling paradigms (timesharing and proportional-

share). Using three different case studies, has

demonstrate that applications can use our predictive

models to reduce interference from low-importance

applications by over 70%, reduce web server starvation

by an order of magnitude, and enforce scheduling

policies that contradict the CPU scheduler‘s. The second

contribution is a framework and set of experiments for

extracting multiprocessor scheduling policy from

commodity operating systems. And used this tool to

extract and analyze the policies of three linux schedulers:

o(1), cfs, and bfs. These schedulers often implement

strikingly different policies.[2]

2) Andrew j. Page (2010) - et al - present a multi-heuristic

evolutionary task allocation algorithm to dynamically

map tasks to processors in a heterogeneous distributed

system. It utilizes a genetic algorithm, combined with

eight common heuristics, in an effort to minimize the

total execution time. It operates on batches of unmapped

tasks and can preemptively remap tasks to processors.

The algorithm has been implemented on a java

distributed system and evaluated with a set of six

problems from the areas of bioinformatics, biomedical

engineering, computer science and cryptography.

Experiments using up to 150 heterogeneous processors

show that the algorithm achieves better efficiency than

other state-of-the-art heuristic algorithms.[3]

3) Raj Mohan Singh (2013) - et al - discuss some basic job

scheduling strategies and also propose a new scheduling

strategy which is based on the criticality i.e. How much

important the job is for the user and priority of jobs with

an effort towards improving the response time of the

jobs. The idea is to motivate the users to submit more

jobs and to minimize the chances of the users leaving the

session. Interactive jobs usually require much less

resources and are much more critical to the users than the

batch jobs that execute over nights and weekends. The

jobs are executed by first applying criticality to round

robin scheduling and then applying priority to round

robin scheduling. These scheduling strategies are then

compared and their performance is evaluated on the basis

of the three parameters viz. Average waiting time,

average turnaround time, and average response time. It is

found that by applying criticality and priority on round

robin scheduling there is significant improvement in the

values of the three parameters especially the response

time.[4]

4) Jonathan weinberg (2007) - et al - primarily work about

with job scheduling, a discipline whose purpose is to

decide when and where each job should be executed

from the perspective of the system. This is related to, but

distinct from, the study of application/task scheduling

where the question is how a single parallel application

should schedule each of its threads. Each job is

characterized along two dimensions: its length as

measured by execution time and its width or size as

measured by the number of threads; assuming each of a

job‘s threads executes on a separate processor. For well

over a decade, the field of job scheduling has been the

subject of great scrutiny, producing a sizeable body of

work and increasing returns on hpc investments by

millions of dollars. Despite this progress, one may argue

that the problem of scheduling on parallel systems may

not be closer to being solved today than it was a decade

ago. Scheduling is an inherently reactive discipline,

mirroring trends in hpc architectures, parallel

programming language models, user demographics, and

administrator priorities. No scheduling strategy is

optimal for all of today‘s scenarios.[6]

5) Albert y. Zomaya (1999) - et al - a genetic algorithm

(ga) is a search algorithm which is based on the

principles of evolution and natural genetics. It combines

the exploitation of past results with the exploration of

new areas of the search space. By using survival of the

fittest techniques combined with a structured yet

randomized information exchange, a Ga can mimic some

Paper ID: SUB15747 2037

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of the innovative flair of human search. A generation is a

collection of artificial creatures (strings). In every new

generation a set of strings is created using information

from the previous ones. Occasionally a new part is tried

for good measure. Ga‘s are randomized, but they are not

simple random walks. They efficiently exploit historical

information to speculate on new search points with

expected improvement. The basic type of gas, known as

the simple Ga (SGA), uses a population of binary strings,

single point crossover, and proportional selection. Many

other modifications to the sga have been proposed, some

of these are adopted in this work.[1]

6) Sourav Kumar Bhoi (2014) – et al - Round Robin (RR)

Algorithm is considered as optimal in time shared

environment because the static time is equally shared

among the processes. If the time quantum taken is static

then it undergoes degradation of the CPU performance

and leads to so many context switches. In this paper, we

have proposed a new effective dynamic RR algorithm

SMDRR (Sub contrary Mean Dynamic Round Robin)

based on dynamic time quantum where we use the sub

contrary mean or harmonic mean to find the time

quantum. The idea of this approach is to make the time

quantum repeatedly adjusted according to the burst time

of the currently running processes. Our experimental

analysis shows that SMDRR performs better than RR

algorithm in terms of reducing the number of context

switches, average turnaround time and average waiting

time.

6. Problem Formulation

Various schedulers are available for scheduling jobs on

multi-core processors. Many scheduling algorithms have

been proposed in the past. With the advent of multi core

processors, there is a need to schedule multiple tasks on

multiple cores. The scheduling algorithm needs to utilize all

the available cores efficiently. The multi-core processors

may be SMPs (Symmetric multi-processor) or AMPs

(Asymmetric multiple-processors) with shared memory

architecture [13]. This work propose a dynamic scheduling

algorithm called ‗Selective Scheduling‘ in which the

scheduler resides on all cores of a multi-core processor and

accesses a shared Task Data Structure (TDS) to pick up

ready-to-execute tasks. This method is unique in the sense

that the processor has the capability of picking up tasks

whenever it is idle. In MS windows by default only one

processor core is active if the hardware has multiple cores in

its architecture.

Figure 2: windows 8 default single core setting

When open this setting by default active number of

processor core is one. This can be changed by checking the

option of number of processor. Windows 8 uses Round-

Robin scheduling [22], which is not enough for multi-core

processor system architecture. In this work we proposes a

new strategy which uses existing traditional algorithms like

Priority based, First Come First Serve bases, Shortest job

First etc.

Figure 3: Total number of cores in processor

This setting can be changed by type ‗msconfig‘ in run

command window and setting can be seen to set 1 core by

default. But the limitation is by activating all the cores there

is no difference in the performance of the system, because

the scheduling is Round-Robin in windows 8 [22]. Thus to

solve this problem ‗Selective Scheduling‘ is proposed in this

work. This scheduling algorithm take care of all active cores

available in the hardware of the system and assigns jobs to

all cores for better performance.

Objectives

The objective of this work is to introduce a new approach

algorithm for multi-core processors. The objective of

scheduling is to maximize the utility of system. The

objectives of this work are given below.

1. Maximize Throughput- overall throughput of system is

enhanced than previous scheduling algorithms. At a

single time 4 cores are active and all 4 cores executes

jobs on the same time therefore throughput is maximized.

Paper ID: SUB15747 2038

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Reduce Response Time- response time reduced as much

as possible. Every time a new is created there is always a

processor core available with lowest priority job for first

response to new job.

3. Job assigning function to processor cores.

4. Priority assigning function to jobs according to their

nature.

5. Work stealing function.

6. Cache Affinity- this notion is simple; a process when

run on a particular CPU builds up a fair bit of state in the

caches of the CPU. The next time the process runs it is

often advantageous to run it on the same CPU as it will

run faster if some of its state is already present in the

caches on that CPU. If instead one runs a process on a

different CPU each time, the performance of the process

will be worse, as it will have to reload the state each time

it runs. This work prefers to keep a process on the same

CPU if at all possible.

There are many other factors which are kept in mind while

developing algorithm such as:-

1. Performance - this quality is often measured using

variations on response time [6]. Response time also

known as flow time or turnaround time is the amount of

time elapsed between a job‘s submission and completion.

The intuition behind this metric is that users are happier

with speedier response times.

2. Predictability - predictability is the gap between a job‘s

responses or flow time and the user‘s expectation as

created through previous experience. Predictability can

indirectly increase productivity by enabling users to

anticipate job completion times and plan resource usage

accordingly. Some have proposed that predictability,

under other realistic assumptions, may be even more

central to the user experience than performance.

3. Fairness - most scheduling algorithms make the

minimum fairness guarantee that no job will be starved,

that is, each job will eventually execute. Stronger

fairness guarantees are necessary in the scheduling

scheme.

7. Research Methodology

The scheduling technique explores in this work is based on

number of cores and can be implemented in the operating

system to schedule jobs.

Selective Scheduling

Selective scheduling is based number processor cores.

Various scheduling algorithms are used in this work such as

FCFS, SJF, Round-Robin, Priority and Pre-emptive

scheduling. Priority is assigned to each job according to

nature of job. In this work scheduling is implemented on

four cores processor. In spite multiple core processors are

available in modern systems [13]. But the limitation is that

at a particular time period one job is executed at one core, at

the same time all other cores are in idle state. Therefore CPU

utilization is decreased continuously. So there is a solution

of this problem in this work. Scheduling named selective

scheduling based on number processor core is introduced in

this work.

Assumptions are, at start point CPU is idle and performance

is measured from the time when the jobs are available on the

system for execution. Then priority is assigned to each job

by the nature of the jobs like Run time, Burst time, job is

either system or Application process. After assigning

priorities each job is assigned to a particular processor core

out of four processor core. There are four cores in processor

therefore 4 jobs are executed at single piece of time. Each

core has its cache memory. Main memory is shared by all

four cores and memory is also divided in to four sections

based on four cores so that memory access is made fast by

each core and collision does not occur between all cores at

the time of execution.

Response time is also reduced by this scheduling. When a

new job is occurred it is assigned to one processor core for

first response and running job on that core is primped at that

time. Context switching is used in this condition. At first

response priority of new job is compared with priority of

existing job. If priority of new job is higher than existing job

then new job is assigned to that core and existing job is put

in waiting state.

Algorithm

Scheduler program named selsch.

1. System is idle at the start point.

2. Selsch searches for jobs in the memory.

3. If jobs are found

{

Divide the jobs in categories according to

 Length= measure as total run time.

 Width= measured as size of job.

Burst time

Job is either system or application.

}

4. Priority Function

Assigning priorities to jobs according to categories

 {

Lower the size of job= higher priority

Lower the running time= higher priority

System jobs have higher priority than application

job.

 }

5. Scheduling Function

 First processor core= system jobs

Remaining three processor cores= all application

jobs by priority

6. Response Function

When new job created during execution

 {

• Check for job is either system process or

application.

• Core with lower priority job primps the current job.

• Context switching occurs to save state of current

job.

Call priority function

• Compare priorities of new job and current job.

• Priority with higher value is assigned to processor

core.

 }

7. call response function for every new created job

Paper ID: SUB15747 2039

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8. long term function

 Scans for jobs which are in waiting state for 5 minutes

long.

 Assign new priorities to those jobs.

 Re-schedule them by calling step 5.

9. Repeat steps 2 to 8 for continuing processing.

10. Exit.

8. Results

Results are shown in the table by comparing two other

scheduling algorithms.

Figure 4: Results are shown by different parameters Results

shown in Figure-4 depict that response time, scheduling time

and efficiency are higher than previous algorithms but

communication between cores are less effective than other

algorithms.

9. Conclusion

Results are well obtained as desired but sometimes a few

mistakes were present in the work. Here selective algorithm

is compared with two other algorithms. Four parameters are

compared and three of them which are most important foe

overall efficiency of the system.

But the limitation is that there is less communication

between CPU cores which leads to a little bit efficiency is

reduced. This work is built under the ‗C++‘ programming

language therefore this algorithm can be easily implemented

in windows environment.

10. Future Work

For future work one can implement this technique in

operating system for pc‘s, laptops and in operating system

compatible smart phones because in every device which has

an operating system consist of multi-core hardware

processing chips.

References

[1] Albert Y. Zomaya, Chris Ward, and Ben Macey

―Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues‖, IEEE

Transactions On Parallel And Distributed Systems, Vol.

10, No. 8, August 1999.

[2] Joseph T.Meehean Doctoral Dissertation at University

of Wisconsin–Madison, ―Towards Transparent CPU

Scheduling‖ 2011.

[3] Andrew J. Page, Thomas M. Keane, Thomas J.

Naughton, ―Multi-heuristic dynamic task allocation

using genetic algorithms in a heterogeneous distributed

system‖ Journal of Parallel & Distributed Computing 70

(2010) 758_766, 2010.

[4] Raj Mohan Singh and Harsh K Verma,‖ An Analysis of

Scheduling Strategies Based on Criticality of Jobs‖

International Journal of Computing, Communications

and Networking, ISSN 2319-2720, Volume 2, No.1,

January – March 2013.

[5] Arpaci-dusseau,‖ Multiprocessor Scheduling

(Advanced)‖, 2014.

[6] Jonathan Weinberg,‖ Job Scheduling on Parallel

Systems‖, in Proc. International Conference on Job

Scheduling Strategies for Parallel Processing (IPPS) CA

92093-0505, 2007.

[7] Y. Chow and W.H. Kohler,‖Models for Dynamic Load

Balancing in a Heterogeneous Multiple Processor

System‖, IEEE Trans. Computers, vol. 28, pp. 354-361,

1979.

[8] Sangsuree Vasupongayya, Su-Hui Chiang ―On Job

Fairness in Non-Preemptive Job Scheduling‖, in

Proc.International Conference on Parallel and

Distributed Computing, Phoenix, AZ, USA, Nov 14-16,

2005.

[9] Jonathan Weinberg, ―Job Scheduling on Parallel

Systems”, in Proc. International Conference on Job

Scheduling Strategies for Parallel Processing (IPPS),

2002.

[10] Edi Shmueli, Dror G. Feitelson. On ―Simulation and

Design of Parallel-Systems Schedulers: Are We Doing

the Right Thing?‖ IEEE transaction on Parallel and

Distributed System, Vol. 20, No. 7, pp 983-996, July

2009.

[11] Mahima Shrivastava, ―Analysis and Review of CPU

Scheduling Algorithms‖, International Journal of

Scientific Engineering and Research (IJSER) ISSN

(Online): 2347‐3878 Volume 2 Issue 3, March 2014.

[12] Debashee Tarai, ―Enhancing Cpu Performance Using

Subcontrary Mean Dynamic Round Robin (Smdrr)

Scheduling Algorithm‖, International Journal of

Scientific Engineering and Research (IJSER) Volume 2

Issue 3, March 2011.

[13] Vinay G. Vaidya,‖ Dynamic Scheduler for Multi-core

Systems‖,2010 2nd International Conference on

Software Technology and Engineering(ICSTE) 2010.

[14] Imran Qureshi, ―CPU Scheduling Algorithms: A

Survey‖, Int. J. Advanced Networking and Applications

Volume: 05, Issue: 04, Pages: 1968-1973 (2014) ISSN :

0975-0290.

[15] Rakesh Mohanty, H. S. Behera, Khusbu Patwari,

Monisha Dash, Design and Performance Evaluation of a

New Proposed Shortest Remaining Burst Round Robin

(SRBRR) Scheduling Algorithm, In Proceedings of

International Symposium on Computer Engineering &

Technology (ISCET), Vol 17, 2010.

Paper ID: SUB15747 2040

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[16] Yu-Kwong Kwok,‖ Amalysis, Evaluation, and

Comparison of Algorithms for Scheduling Task Graphs

on Parallel Processors‖, 1087-4089/96 $5.00 0 1996

IEEE.

[17] Thu D. Nguyen, ―Using Runtime Measured Workload

Characteristics in Parallel Processor Scheduling‖,

National Science Foundation (Grants CCR-9123308 and

CCR-9200832) 1999.

[18] Thu D. Nguyen, ―Parallel Application Characterization

for Multiprocessor Scheduling Policy Design‖, National

Science Foundation (Grants CCR-9123308 and CCR-

9200832) 2001.

[19] Sujatha R. Upadhyaya.‖ Parallel approaches to machine

learning—A comprehensive survey‖, J. Parallel Distrib.

Comput. 73 (2013) 284–292. 2012.

[20] Krste Asanovic. ―A View of the Parallel Computing

Landscape‖ communications of the acm vol. 52, no. 10,

october 2009.

[21] Sourav Kumar Bhoi “Enhancing Cpu Performance

Using Subcontrary Mean Dynamic Round Robin

(Smdrr) Scheduling Algorithm‖ 2014.

[22] Kalpana Gupta “A Comparative Study Of Two

Operating Systems:

[23] Windows 7 And Windows 8‖ International Refereed

Multidisciplinary Journal Of Contemporary Research

Eissn 2320-3145, Issn 2319-5789, 2013.

Paper ID: SUB15747 2041

