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Abstract

Spiking Neural P (SN P) system characterizes the movement of spikes among
neurons. Extended Spiking Neural P systems with Astrocytes (ESNPA sys-
tems) incorporates the functioning of astrocytes (star-shaped glial cells span-
ning around neurons), which play an important role on the functioning and
interaction of neurons. In this paper we propose a methodology for translating
ESNPA systems to Petri nets and analyze its properties using Petri nets.
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1 Introduction

Spiking Neural P systems (in short SN P systems) were introduced in 2006 [3], as a class of P
systems which characterize the signal transmission of neurons. SN P systems have a pictorial
representation of a directed graph whose nodes represents the neurons and arcs represents the
synapses. A symbol ’a’ denotes the spike (electrical impulse) in the neuron.

An extended variant of SN P systems with astrocytes was considered in [1], where an astrocyte
can sense at the same time, the traffic of spikes along several neighboring synapses. Astrocytes
have two kinds of roles; one excitatory and the other inhibitory. The use of astrocytes defined
adds a new degree of non–determinism to the functioning of the system, by the branching to the
non–deterministic choice of the surviving spike.

Petri net is a powerful mathematical tool which incorporates graphical representation of
a dynamic behaviour of systems. They were invented by Carl Adam Petri in 1962. A Petri
net consists of four elements: places, transitions, directed arcs and tokens. The directed arcs
are connected from places to transitions and from transitions to places. Petri nets are widely
used as a model of concurrency which allows to represent the occurrence of independent events
and parallelism, occurrence of simultaneous events. These have been used to model computer
networks, communication systems, logistic networks, work flows, command and control systems.
Petri nets have a number of properties which allows them for precise modelling and analysis of
system behaviour and visualization of system state changes.

Due to the similarity of the graphical structure, the translation of Spiking Neural P systems
into models of Petri nets was first mentioned in [4]. In [4] a variant of SN P system with anti-
spikes are studied which contains two types of objects spikes and anti-spikes, corresponding to
the inhibitory impulses from neurobiology and describe a methodology to model and simulate
SN P systems with anti-spikes using Petri nets was proposed.

In this work, we are motivated with the idea of modelling and analysis of Extended Spiking
Neural P systems with Astrocytes using a class of Petri nets, having guards for transitions and
coloured tokens.
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2 Prerequisites

For basic results of formal language theory we can refer [6] and the results in membrane computing
we refer [2]. Here we recall the definition of Extended Spiking Neural P systems with Astrocytes
in [5].

Definition 2.1. An Extended Spiking Neural P systems with Astrocytes (ESNPA system), of
degree m ≥ 1, l ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, ast1, . . . , astl, out),where

• O = {a} is the singleton alphabet (a is called spike);

• σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m where:

a) ni ≥ 0 is the initial number of spikes contained in σi;

b) Ri is a finite set of extended rules of the form:

E/ac → ap

where E is a regular expression over a, and c ≥ 1, p ≥ 1 with c ≥ p.

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses between
neurons);

• ast1, . . . , astl are astrocytes, of the form asti = (synasti , ti), where
1 ≤ i ≤ l, synasti ⊆ syn is the set of synapses controlled by the astrocyte asti, ti ∈ N is the
threshold of the astrocyte asti.

• out ∈ {1, 2, . . . ,m} indicate the out put neuron.

The rules E/ac → ap with p ≥ 1 are called (extended) spiking rules, and they are applied as
follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then rule E/ac → ap ∈ Ri

can be applied. This means consuming (removing) c spikes (leaving k − c spikes in neuron σi),
the neuron is fired, sending p spikes out along all outgoing synapses. These spikes then reach the
neighboring neurons, unless they are intercepted by one of the astrocytes. If L(E) = {ac}, then
the rule is written in the simplified form ac → ap.

An astrocyte can sense the spike traffic along the neighboring synapses. For an astrocyte
asti, suppose that there are k spikes passing along the neighboring synapses synasti . If k > ti,
then the astrocyte asti has an inhibitory influence on the neighboring synapses, and the k spikes
are suppressed (that is the spikes are removed from the system). If k < ti, then the astrocyte
asti has an excitatory influence on the neighboring synapses, all spikes survive and pass to the
destination neurons. If k = ti, then the astrocyte asti non-deterministically chooses an inhibitory
or excitatory influence on the neighboring synapses.

There is a possibility that two or more astrocytes control the same synapse. In this case, if all
these astrocytes have excitatory influence on the synapses, then the spikes along this synapse can
survive and pass to the destination neurons. If one of these astrocytes has inhibitory influence
on the synapse, then the spikes along the synapse are suppressed and removed from the system.

A configuration of the system is described by the number of spikes present in each neuron.
Then the initial configuration is defined by the number of initial spikes n1, . . . , nm. Using the
rules, one can define transitions among configurations. Any sequence of transitions starting
from the initial configuration is called a computation. A computation halts when it reaches a
configuration where no rule can be used.

Petri nets are graphical and mathematical modeling tools for representing of a system in
which multiple independent activities in progress at the same time. The extensions of Petri nets
with weighted arcs, coloured tokens, time, add features to model probabilistic behaviour. Time
can be associated with places, transitions or arcs.In coloured Petri nets, by adding colours to
tokens, Petri nets are enhanced with the new feature such as reducing the size of the models
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when modelling large systems with Petri nets. A transition can fire with respect to each of its
colours.In [4], Petri net with guard was introduced, which is an extension of the coloured timed
Petri net to accommodate the features of spiking neurons of SN P system. In that Petri net the
tokens are of single colour representing spike in an SN P system. The definition in [4] is given
below.

Definition 2.2 (Petri net with guard). A Petri net with guard is represented by

NL = (P, T, F,W,G,M0)

where

• P = {p0, p1, . . . , pm} is a finite, non–empty set of places.

• T = {t1, t2, . . . , tn} is a finite, non–empty set of transitions.

• F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs which connects places with transitions and
transitions with places.

• W : F → N is a weight function.

• G is guard function that maps each transition ti to boolean expression, which specifies an
additional constraint which must be fulfilled before the transition is enabled.

• M0: P → N is the initial marking.

A marking M of NL is a function from the set of places of NL into the set of non-negative
integers. The initial marking M0 = {n1, n2, . . . , nm}, each ni is the number of tokens initially
associated with each place pi and m is the number of places. Submarking of a Petri net NL is
the marking of some of the places of NL. Motivated from [4], we investigate that the traffic of
spikes in ESNPA system can be translated to the passing of tokens in Petri net with guard. We
use coloured Petri net with guard and it is used as a computational model for ESNPA system.

2.1 ESNPA system to labelled Petri net

Let Π = (O, σ1, . . . , σm, syn, ast1, . . . , astl, out), be an ESNPA system. Then the corresponding
labelled Petri net is a construct

K = (V,NLΠ, ζ), NLΠ = (P, T, F,W,G,Mo)

where

1. V = {0, 1} is an alphabet.

2. The components of NLΠ are defined as

a) The set of places P is defined as
P = {p1, p2, . . . , pm, q1, . . . , ql, p0}∪
{pis/Ri has more than one rule 1 ≤ i ≤ m}∪

{p
′

qx, q
′

x, qxs/ the passing of spikes from σi is influenced by the astx, 1 ≤ i ≤ m, 1 ≤
x ≤ l}

b) The set of transitions T is defined as T = T1 ∪ T2 ∪ . . . ∪ Tm ∪ Tqx where Ti is
the set of transitions corresponding to each neuron σi, 1 ≤ i ≤ m and Tqx =

{t
′′

qx
1

, t
′′

qx
2

, t
′′

qx
3

, t
′

qxd, tc1, tc2/passing of spikes to σd is influenced by astx for 1 ≤ x ≤ l}.

c) The set of directed arcs F is defined as F ⊆ (P × T ) ∪ (T × P ) whose elements are
from places to transitions and transitions to places.
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d) The initial marking of each place is defined as

M(pi) = ni where ni ≥ 0,

M(pis) = 1 for 1 ≤ i ≤ m.

M(qx) = kx where kx > 0,

M(qxs) = 1 for 1 ≤ x ≤ l.

where all other places are initially kept empty. Also ni’s and kx’s are one coloured
tokens.

e) (i) If ij : E/ar → as is a spiking rule of σi and the passing of spikes is not influenced
by astx, then Ti contains a distinct transition tij = ti with following connectivity:
W (pi, ti) = r,W (ti, pj) = s, W (pis, ti) = W (ti, pis) = 1

G(tij): if (M(pi) ∈ Ψ(L(E)) and M(p
′

qx) = 0) then return true else return false.

(ii) If ij : E/ar → as is a spiking rule of σi and passing of spikes to σd is influenced

by astrocyte of threshold k and s 6= k, then add new places p
′

qx, q
′

x and transitions

tij , t
′

qxd, t
′′

qx
1

and a sink transition tc1 to T for 1 ≤ i ≤ m, 1 ≤ x ≤ l with following
connectivity
W (pi, tij) = r, W (tij , p

′

qx) = (i, s), W (tij , qx) = (i, s),
W (pis, tij) = W (tij , pis) = 1

G(tij): if (M(pi) ∈ Ψ(L(E)) and M(p
′

qx) = 0) then return true else return false.

If ( G(t
′′

qx
1

) : (M(p
′

qx) > 0, s < k )

W (qx, t
′′

qx
1

) = (i, s),W (t
′′

qx
1

, q
′

x) = (i, s)

If ( G(t
′

qxd) : ( M(p
′

qx) > 0,M(q
′

x) > 0 )

W (p
′

qxd, t
′

qxd) = M(p
′

qx),W (q
′

x, t
′

qxd) = M(q
′

x),

W (t
′

qxd, pd) = s.

else return false.

else

the place q
′

x remains empty. Therefore this inhibits the firing of transition

t
′

qxd and inhibits the passing of tokens. Then tokens are accumulated in p
′

qx

and there are excess tokens in qx, which should be removed for the next firing
of any transition tij . Then for removing accumulated tokens from p

′

qx and
restoring the actual threshold k of astrocyte place qx, we add a sink transition
tc1 with following connectivity:

W (p
′

qx, tc1) = M(p
′

qx),W (qx, tc1) = (i, s) with guard function

G(tc1) : if (M(p
′

qx) > 0,M(qx) > k) then return true else return false.

(iii) If ij : E/ar → as is a spiking rule of σi and passing of spikes to σd is influenced

by astrocyte of threshold k and s = k, then add new places p
′

qx, q
′

x and transitions

tij and t
′

qxd, t
′′

qx
2

, t
′′

qx
3

and a sink transition tc2 to T for 1 ≤ i ≤ m, 1 ≤ x ≤ l with
following connectivity
W (pi, tij) = r,W (tij , p

′

qx) = (i, s),W (tij , qx) = (i, s),
W (pis, tij) = W (tij , pis) = 1 with guard function

G(tij) : if (M(pi) ∈ Ψ(L(E)) and M(p
′

qx) = 0) then return true
else return false.
qx non–deterministically chooses either of the transitions t

′′

qx
2

or t
′′

qx
3

. Then add

synchronizing place qxs with M(qxs) = 1 and with

a)If ( G(t
′′

qx
2

) : (M(p
′

qx) > 0,M(qx) = 2k )
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W (qx, t
′′

qx
2

) = (i, s),W (t
′′

qx
2

, q
′

x) = (i, s),

W (qxs, t
′′

qx
2

) = W (t
′′

qx
2

, qxs) = 1

If ( G(t
′

qxd) : ( M(p
′

qx) > 0,M(q
′

x) > 0 )

W (p
′

qx, t
′

qxd) = M(p
′

qx),W (q
′

x, t
′

qxd) = M(q
′

x),

W (t
′

qxd, pd) = s.

else return false
b)If (G(t

′′

qx
3

) : (M(p
′

qx) > 0,M(qx) = 2k)

W (qx, t
′′

qx
3

) = s,W (t
′′

qx
3

, p
′

qx) = (i, s),

W (qxs, t
′′

qx
3

) = W (t
′′

qx
3

, qxs) = 1

the place q
′

x remains empty. Therefore this inhibits the firing of transition

t
′

qxd and inhibits the passing of tokens. Then tokens are accumulated in p
′

qx,
which should be removed for the next firing of any transition tij . Then for

removing accumulated tokens from p
′

qx, we add a sink transition tc2 with

W (p
′

qx, tc2) = M(p
′

qx), with guard function

G(tc2): if (M(p
′

qx) > 0,M(q
′

x) = 0) then return true else return false.

3. ζ : 2T /{φ} → V where ζ(u) = 1 if t ∈ U such that W (t, p0) = 1
otherwise ζ(u) = 0.

To prove the equivalence of ESNPA system and the corresponding Petri net we show that
the languages generated by both the systems is same. To capture a very tight correspondence
between the ESNPA system Π and the corresponding Petri net NLΠ, we introduce a straight
forward bijection between the configurations of Π and the sub markings of NLΠ based on the
correspondence between places and neurons.

Let C =< α1, α2, . . . , αm > be a configuration of ESNPA system Π. The corresponding
configuration mapped sub marking φ(C) of NLΠ is defined as
φ(C) =< β1, β2, . . . , βm > where for 1 ≤ i ≤ m.

φ(C)βi =

{
M(pi) if M(p

′

qx) = 0

M(p
′

qx) otherwise

Similarly for any vector rule v =< 1j1, 2j2, . . . ,mjm > of Π enabled at configuration C, we define
an enabled maximal step ξ(v) of transitions of NLΠ such that

ξ(v) = {tij/v(i) = ij with j ≥ 1, 1 ≤ i ≤ m}

It is clear that φ is a bijection from the configurations of Π to the configuration mapped sub
markings of NLΠ, and ξ is a bijection from vector rules of Π to enabled maximal steps of NLΠ.
As there is a mapping between configuration and markings, φ(C) is the marking of net NLΠ

corresponding to the configuration C of Π. There is a one-to one mapping between the rules
in the ESNPA system and transitions in net. So there exists a maximal step [ξ(v)〉 enabled at
the marking φ(C). The relationship between the dynamics of ESNPA system Π and that of the
corresponding Petri net

C
v
⇒ C′ if and only if [ξ(v)〉mM1[H〉mφ(C′)

where M1 is the intermediate configuration mapped sub marking of the Petri net between φ(C)
and φ(C′) and H is an intermediate step of transitions. In order to implement excitatory or
inhibitory influence of astrocyte places qx’s on the transitions of tij ’s, we introduce a maximal
step
H1 = {t

′′

qx
1

/M(p
′

qx) > 0,M(qx) > 0, s < k} ∪ {t
′

qxd/M(p
′

qx) > 0,M(q
′

x) > 0}

H2 = {tc1/s > k,M(p
′

qx) > 0,M(qx) > k}
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H3 = {t
′′

qx
2

/M(p
′

qx) > 0, ,M(qx) = 2k} ∪ {t
′

qxd/M(p
′

qx) > 0,M(q
′

x) > 0}

H4 = {t
′′

qx
3

/M(p
′

qx) > 0,M(qx) = 2k} ∪ {tc2/M(p
′

qx) > 0,M(q
′

x) = 0}
enabled at M1.

After the execution of the step [ξ(v)〉, the Petri net reaches the marking M1 where M(p
′

qx)

is non-empty and the tokens in M(p
′

qx) gives the number of spikes transmitted through the
synapse of neuron σi, which are influenced by inhibitory or excitatory role of astrocytes. After
the execution of the step Hj ; j = 1, 2, 3, 4, the system reaches the configuration φ(C ′). So
here we map each vector rule of the ESNPA system with atmost two consecutive maximal
steps. So the evolution of the Petri net is same as the evolution of the ESNPA system Π.

r = C0

v1⇒ C1

v2⇒ . . .
vk⇒ Ck is an halting computation of Π if and only if ℑ(r) = φ(C0)[ξ(v1)〉mM1

[H1
j 〉mφ(C1)[ξ(v2)〉mM2[H

2
j 〉m . . . [ξ(vk)〉mMk[H

k
j 〉mφ(Ck) is the halting maximal step sequence

of NLΠ. So the evolution of the Petri net NLΠ is same as the evolution of the ESNPA system.
Hence evolution of ESNPA system is equivalent to that of the corresponding Petri net.

Let Ci−1

vi⇒ Ci is the ith step of γ and if bin(vi) = 1. By the definition of the bin, bin(vi) = 1 if
and only if vi(i0) is a spiking rule with rhs(vi(i0)) = 1. From the construction of Petri net and the
definition of ξ(vi) and Hi

j we observe that the step ξ(vi) contains a transitions t with W (t, p0) = 1

which implies that ζ(ξ(vi)) = 1 otherwise ζ(ξ(vi)) = 0. Since Hi
j contains transitions with no

outgoing arcs to p0, by the definition of ζ, ζ(Hi
j) = λ. The output generated the Petri net after

firing of step ξ(vi) and Hi is 1. bin(vi) = 1 if and only if ζ(ξ(vi))ζ(H
i
j) = 1λ = 1 and bin(vi) = 0

if and only if ζ(ξ(vi))ζ(H
i
j) = 0λ = 0. Therefore w = bin(γ) ∈ {0, 1}∗ if and only if w = ζ(ℑ(γ)).

Therefore L(Π) = Lm(NLΠ).

2.2 The Properties of ESNPA system derived from Petri nets

The behavioural properties of Petri nets depends on the initial state or marking of the Petri nets
while structural properties do not depend on the initial marking of a Petri net, but depend on
the net structure of the Petri nets. Petri nets have behavioral properties such as reachability,
boundedness, liveness etc. We can introduce these properties for ESNPA system. It may provide
insights to the system.

1. Reachability: Reachability property helps to find out whether the modelled system can
reach a specific state as a result of a functional behaviour. In a Petri net, a marking
Mn is said to be reachable from a marking M0 if there exists a sequence of firings that
transformM0 to Mn. This type of analysis in given ESNPA system can be used to determine
whether certain outcomes are possible from initial configuration or certain configurations
are reachable when specific rules are excited or inhibited.

2. T–Invariants: T–invariants indicate the presence of cycles that are in a state of continuous
operation. In ESNPA system, we can identify the sequence of vector rules that have to fire
from a configuration and return to that configuration.

3. Boundedness and Safeness: This property helps to identify the existence of overflows in a
modelled system. A place p is said to be k–bounded if the number of tokens in p is always
less than or equal to k. It is safe if it is 1-bounded. ESNPA system is k–bounded or simply
bounded as the number of spikes in each neuron for a reachable configuration does not
exceed a finite number k.

4. Terminating: The sequence of transitions between configurations of a given ESNPA system
is finite. That is the computation of the ESNPA system always halts.

5. Deadlock–free: As Petri net, each configuration enables next rule in ESNPA system.

6. Liveness: It is dead lock free and there is a sequence of vector rules.

Simulation is one of techniques for the analysis of Petri nets. For complex Petri nets, simulation
using the execution algorithm to run net, is another way to check the properties. This allows the
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temporal performance of a system. Some of the Petri net simulation tools are PnetLab, CPN
tools, PIPE etc. Another Petri net analysis known as reachability analysis can be conducted
through the construction of a reachability tree. Given a Petri net, from its initial marking,
we can obtain as many new markings as the number of enabled transitions. Repeating these
procedure over the results constitute a reachability graph of markings.

3 Example

In this section, an example is given to illustrate the simulation of a ESNPA system Π by a Petri
net with guard. Consider the ESNPA system

b

b

11 : a3/a → a

12 : a3 → a 21 : a → a

31 : a → a

a3 a

a

k = 2

1 2

3
ast1

< 3, 1, 1 >

< 1, 0, 0 > < 3, 0, 0 >

< 0, 0, 0 > < 2, 1, 0 >

< 3, 0, 1 >

< 0, 0, 0 >

exc
︷ ︸︸ ︷

11, 21, 31

inh
︷ ︸︸ ︷

11, 21, 31
12, 21, 31

21
11, 31

12, 31

1112

Figure 1: Extended SN P system with astrocyte Π (a) and its evolution (b)

The structure of Π is shown in figure, which consists of three neurons and one astrocyte.
Neurons are denoted by rectangles with number of initial spikes and spiking rules inside. Ar-
rows between these rectangles represent synapses and an arrow exits from the output neuron 3,
pointing to the environment. The rule 11 : a3/a → a fires only if σ1 has three spikes; one is
consumed. the other remains available for the next step. The rule 12 : a3 → a also fires only
if σ1 has three spikes; all are consumed. So in σ1, there is a non–determinism between its two
rules. Each neuron σ2 and σ3 has only one rule. An astrocyte is denoted by a rhombic box with
’arms’ touching the synapses; each arm indicates that the astrocyte controls the spike traffic of
the corresponding touched synapse in excitatory or inhibitory way. The equation k = 2 inside
the rhombic box denotes the astrocyte has the threshold 2.

The initial configuration of the system is <3,1,1>. It works as follows. All neurons can fire
in the first step, with neuron σ1 choosing non–deterministically between its two rules. The spike
from σ2 reaches σ1. Output neuron σ3 sends its spike to the environment. If σ1 uses its first
rule, then the two spikes on the synapses (1, 2), (2, 3), which are influenced by the astrocyte ast1
of threshold 2. So ast1 chooses inhibitory or excitatory influence non–deterministically. If ast1
chooses excitatory role, it allows to pass the spikes from σ1 and σ2 and reaches the same initial
configuration <3,1,1>. If ast1 chooses inhibitory role, it inhibits the passing of spikes from σ1

and σ2 and reaches the configuration <3,0,0>. If σ1 chooses the second rule, then 4 spikes on
the synapses (1, 2)(2, 3), which are inhibited by the astrocyte ast1 of threshold 2 and reaches the
configuration <1,0,0> at which computation halts.

At the configuration <3,0,0>, σ1 enables for second step. If σ1 choose 11 : a3/a → a rule,
the one spike on synapse (1, 2) is excited by ast1 and reaches the configuration <2,1,0>. If σ1

choose 12 : a3 → a rule, the three spikes on synapse (1, 2) is inhibited by ast1 and reaches halting
configuration <0,0,0>. Proceeding like this we get its evolution as in figure 1.

Paper ID: SUB15673 Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

7

Paper ID: SUB15673 2265



International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

b b

bb b b b

b

p1

p
′

q

p2 p3 p0

q

qs

q
′

b

M(p
′

q)M(p
′

q)

M(p
′

q)

t11

t12p1s

t
′′

q1

t21
t31

t
′′

q2

t
′′

q3 t
′

q2

tc2tc1

t
′

q3

Figure 2: Corresponding Petri net of Π

Consider the number 0 if the output neuron does not send a spike and the number 1 if the
output neuron sends a spike to the environment. In this way we can identify that the language
generated by the system Π is, L3(Π) = L(1+ + 1+0(01)∗).

We translate the given example to Petri net NLΠ = (P, T, F,W,G,M0) as in figure 2.
p1, p2, p3, q and p0 are places corresponding to neurons σ1, σ2, σ3, ast1 and environment of Π
respectively. Only the place p1 requires the synchronizing place p1s since σ1 has two rules. The
places are initially marked with 3,1 and 1 tokens respectively which is same as the initial numbers
of spikes in their corresponding neurons in Π. The place q is marked with 2 two element tokens
which is same as the threshold of ast1. For each rule ij in Π, a transition tij is introduced with
an incoming arc from place pi and outgoing arcs to all places pk such that (i, k) ∈ syn. Here
the passing of spikes on synapses (1,2) and (2,3) influenced by the ast1. So we add new places

p
′

q, q
′

, qs and transitions t
′′

q1
, t

′′

q2
, t

′′

q3
, t

′

q2, t
′

q3and two sink transitions tc1 and tc2 .
In the step 1, the transitions t11, t21, t31 fire non–deterministically (corresponding to the

rules 11,21,31 of Π). The place p0 receives a token since spiking translation t31 fired in the
step. A one element token, from p2 directly reaches p1. Each token from p1 and p2 are
reached q and p

′

q as two coloured tokens (1, 1) and (2, 1) respectively. Then the present sub-

marking causes the non-deterministic choice of the firing of the transition t
′′

q2
or t

′′

q3
at the next

step. If t
′′

q2
fires, the system reaches the submarking with tokens (1, 1) and (2, 1) in p

′

q, and q
′

,

which enables the transitions t
′

q2 and t
′

q3. The firing of the transitions t
′

q2 and t
′

q3 causes the
passing of token (1, 1) as a one colour token to p2 and token (2, 1) as a one colour token to p3
respectively and the systems reaches the same submarking as initial submarking. Similarly we
can observe the remaining steps of the execution as in the figure 3.

We can observe from figure 2 that t31 is the only transition having an arc to place p0, which
corresponds to the environment of the system Π. By using the labeling function ζ defined in
the previous section, if we label the steps having t31 as 1 and other steps as 0, we get the step
languages generated by the Petri net as L3(NLΠ) = L(1+ + 1+0(01)∗) = L3(Π).

Extended Spiking Neural P systems with Astrocytes can be simulated using any Petri net
tool that supports parallel execution of transitions with guard functions and coloured tokens.
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< 3, 1, 1 >

< 1, 0, 0 > < 3, 0, 0 >

< 0, 0, 0 > < 2, 1, 0 >

< 3, 0, 1 >

< 0, 0, 0 >

t11, t21, t31 t
′′

q2
t
′

q2, t
′

q3

t11, t21, t31 t
′′

q3
tc2t12, t21, t31 tc1

t21 t
′′

q1
t
′

q3 t11, t31 t
′′

q1
t
′

q2

t12, t31 tc1

t11 t
′′

q1
t
′

q2t12 tc1

Figure 3: Reachability graph of NLΠ with submarkings of first three places

Throughout our study, a tool called PnetLab is used to simulate and check certain properties
of these systems, for which synchronizing place is not required.

For the purpose of analysis of ESNPA systems we can also investigate the reachability graph of
its Petri net as this is isomorphic to the evolution of ESNPA systems. Since the reachability graph
combine step sequences and reachable states, they are useful for the analysis and verification of
behavioural properties.

4 Conclusion

This paper provides a systematic procedure to translate Extended Spiking Neural P systems
with Astrocytes into Petri nets that can be simulated using parallel execution of transitions and
guard functions. This enables us to verify and analyze ESNPA systems, by using properties of
Petri nets.
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