Phytochemical and Pharmacological Activities of Andrographis Paniculata Nees. : A Review

Dr. P. Sreevani
Lecturer, Department of Botany, HOD of Biotechnology, Dr.V.S.Krishna Govt. College (A), Visakhapatnam-13, India

Abstract: Andrographis paniculata is well known as king of bitters and has wide range of medicinal pharmacological application, which has been use either single or in combination with other drugs in various Indian traditional systems of medicine like Unani, Ayurveda and Siddha. It exhibits anti-inflammatory, anti-HIV, anti-bacterial , anti-oxidant, nematocolial etc. Apart from having several active chemical constituents, andrographolide, neoandrographolide and dehydro-andrographolide are most important bioprotectants with wide range of therapeutic applications. The extract of Andrographis paniculata its wide range of applications in various fields, an attempt has been made in this review paper to explore various phytochemical and pharmacological studies carriedout on this drug.

Keywords: Andrographis paniculata, Kalmegh, anti-inflammatory activity, andrographolides, biological activities, Toxicity.

1. Introduction

Andrographis paniculata belongs to the family Acanthaceae . It is distributed in tropical Asian countries, often in isolated patches. This species can be found in a variety of habitats, like plains , hill slopes, wastelands, farms, dry or wet lands, sea shores and even road sides. South India and Sri Lanka which are considered as centre of origin and diversity of the species for native populations. The herb is also available in northern parts of India, Java, Malaysia, Indonesia, West Indies and whereas in America where it is probably an introduced species for native populations. The herb is also available in various countries like Hong Kong, Thailand, Brunei, and Singapore, etc. However, precise data are lacking on the introduction and naturalization of the species in these countries (Chopra et.al.1956; Prajapati et.al.2003)

The genus Andrographis Wall. Consists of 28 species among which Andrographis paniculata is the most popular as medicinal plant. It has been used as medicinal herb for centuries in several traditional systems of medicine all over the world. It is extensively used in Ayurveda, Unani and Siddha medicines as home remedy for various diseases in Indian traditional system as well as in tribal medicine in India and some other countries for multiple clinical applications. The therapeutic value of Kalmegh is due to its mechanism of action by enzyme induction. It is an important cold property herb, used fervers and to dispel toxins from the body. It is used to treat gastrointestinal tract and upper respiratory infections, fever, herpes, sore throat, hepatitis and a variety of other chronic and infectious diseases (Chopra et.al.1956) It exhibits antibacterial, antimalarial, filaricidal, antidiarrhoeal, cardiovascular activities, fertility effects and protection of liver and gallbladder. The herb and its isolates like andrographolide, neoandrographolide, dehydroandrographolide, isoandrographolide, etc. (Abhishek et.al.2010) are reported to possess anti-inflammatory, hepatoprotective, astringent, anodyne, tonic, alexipharmic and anti-pyretic properties and helps in arresting dysentery, cholera, diabetes, influenza, bronchitis, swellings and itchies, piles and gonorrhoea (Prajapati, et.al.2003) Flavonoids, a diterpenoid demonstrated moderate vasorelaxing effect in isolated rat thoracic aorta (Wuts et.al.2008) The plant is used as an important ingredient in different medicinal formulations in national and international market.

2. Vernacular names:

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>Quasabhava</td>
</tr>
<tr>
<td>Bengali</td>
<td>Kalmegh</td>
</tr>
<tr>
<td>English</td>
<td>The creat</td>
</tr>
<tr>
<td>Gujarathi</td>
<td>Kariyatu</td>
</tr>
<tr>
<td>Hindi</td>
<td>Kirayat, Kalpanath</td>
</tr>
<tr>
<td>Kannada</td>
<td>Nelaberu</td>
</tr>
<tr>
<td>Malayalam</td>
<td>Nelavepu, Kariyattu</td>
</tr>
<tr>
<td>Marathi</td>
<td>Oli-Kiryata</td>
</tr>
<tr>
<td>Oriya</td>
<td>Bhuinimba</td>
</tr>
<tr>
<td>Persian</td>
<td>Naine-havandi</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Kalmegh, Bhuinimba</td>
</tr>
<tr>
<td>Tamil</td>
<td>Nilavembu</td>
</tr>
<tr>
<td>Telugu</td>
<td>Nilavembu</td>
</tr>
</tbody>
</table>

Important Formulations

Important Ayurvedic formulations present in Kalmegh are as follows :

- **Gunna** (properties/ laghu (light and ruksh (dry))
- **Rasa** (taste) - tickta (bitter)
- **Virya** (potency) – Ushan (hot)

Therapeutic Actions: The therapeutic value of kalmegh is due to its mechanism of action by enzyme induction. Kalmegh possess a number of therapeutic actions which mainly include anti-inflammatory, anti-pyretic hepatoprotective, astringent, anodyne, tonic, alexipharmic and helps in arresting dysentery, cholera, diabetes, influenza, bronchitis, swellings and itchies, piles and gonorrhoea (Prajapati, et.al.2003) of the aqueous extract was clinically proved.

Therapeutic Uses: Andrographis paniculata recommended for prominent 26 Ayurvedic formulations of treatment of various ailments include immunostimulant (Puri et.al. 1993) asthma, gonorrhea, piles (Rao 1914) dysentery and dyspepsia (Bhalla et.al.1982) blood purification (Vohora, 1985) influenza (Dey, 1986) gastric complaints, diarrhea (Gupta et.al. 1990) pharyngitaonsillitis (Thamlikitkal, et.al...

3. Morphology

Macroscopic
Andrographis paniculata is an annual, branched, erect, grows up to 1m height. It is distributed in tropical Asian countries, often in isolated patches. It can be found in a variety of habitats, e.g. plains, hill slopes. Wastelands, farms, dry or wet lands, sea shores and even road sides. The aerial parts of leaves, and stems are used to extract the active phytochemicals. Stem sharply quadrangular in shape, leaves simple, opposite lanceolate acute at both ends glabrous, 5-8 cm long, 1-2 cm wide, entire, upper surface is dark green, pale beneath, main nerves 4-6 pairs, Inflorescence terminal or axillary panicle flowers small, white with purplish or violet markings, calyx 5, partite, pubescent, corolla bilabiata, hairy upper lip oblong, lower lip 3 lobed calyx lobes glandular, stamens 2, declinate, inserted in the throat, filaments epipetalous, ovary 2 celled, fruit capsules, linear oblong, two celled, compressed, longitudinally furrowed on broad faces, acute at both ends, glandular-hairy. Seeds small, seeds numerous, yellowish brown, subquadrate, round or ovoid, yellowish brown. Root is cylindrical, curved, tapers, 5-20 cm long and 1.5 - 5cm in diameter. Externally it is grayish brown, when fractured the inside is starchy white.

Microscopic
Stem single layered epidermis, just beneath 2-3 layered collenchyma with secretary cavities and with white coloured deposition. Cortex 5-6 layers contain chloroplast. Solitary and group of sclereids of 4-6 are present in cortex. Thick walled endoderms. Solitary sclereids are present in secondary phloem tissues. Xylem very prominent and occupies major portion. Tyloses are occasionally found in cells of xylem vessels and pith cells contains prismatic crystals of calcium oxalate.

Phytochemical Studies
A review of the literature reveals that the presence of various chemical constituents in the aerial parts of Andrographis paniculata are andrographolide, which is diterpene lactone, colourless, crystalline, bitter in taste (Abhishek et al.2010). Other compounds include 14-deoxy-11-o xoandrographide, dihydroxy andrographolide andrographide D, 14-deoxyandrographolide, non-bitter component is neo andrographolide, neoandrographolide, andrographosterin, andrographanin, a-sitosterol, stigmasterol. Apigenin-7, 4-di-o-methyl ether, 5-hydroxy 7,8,2, 3-tetramethoxy flavones, monohydroxy trimethyl flavones, andrographin, dihydroxy-di-methoxy flavoue, panicolin, andrographoneo, andrographoside, andropani-culoside A (3, 7, 8) andrographanin, Isandrographolide and skollcaflavone (9-12). Six entlabdane diterpenoids i.e. 3-o-beta-D-glucopyranosyl-14, 19-dideoxyandrographide, 14-deox, 17-hydroxyandrographide, 19-o-[beta-D-apiofuranosy 1-2-beta-D-glucopyranosyl]-3, 14-dideoxyandrographide, 3-o-beta-D-glucopyranosyl-andro-graphide, 12S-hydroxy andrographolide and andrographoside. These compounds showed inhibitor activity against several fungal and bacterial strains.

Dua et al. (2004) reported four xanthones 1,8-dihydroxy-3,7-dimethoxy xanthone, 4,8-di-hydroxy-2, 7-dimethoxyxanthones, 1,2-dihydroxy-6, 8-dimethoxyxanthone and 3,7,8-trimethoxy-1-hydroxyxanthone from the roots.

Pharmacological studies
Pharmacological activity of the Kalmegh is mainly attributed to the presence of andrographolide, neoandrographolide, etc. It is further reported that these species shows presence of flavonoids, diterpenoids, etc.

Antidiabetic activity:
Antidiabetic property of A. paniculata was confirmed by Borhanuddin et al. (1994) and Husen et al. (2004) in aqueous extract and by Zhang et al . (2000) in ethanolic extract. Along with antihyperglycaemic property, the ethanolic extract may also reduce oxidative stress in diabetic rats as studied by Zhang et al. (2000). Further, it was concluded by Yu BC et al. in 2003 that the andrographolide was responsible for the antihyperglycemic activity. Finally in 2006, the antidiabetic potential of A. paniculata was found to restore impaired estrous cycle in alloxan-induced diabetic rats (Reyes et al. 2006).

Anti-inflammatory activity:
A. paniculata can also inhibit the production of inflammatory mediators and alleviate acute hazards at its optimal dosages (Chao et al. 2011). Shen et al. in 2002 observed that the andrographolide, an active component of A. paniculata, inhibits inflammatory responses by rat neutrophils. It was also found to inhibit the tumor-specific angiogenesis by regulating the production of various pro and antiangiogenic factors by in vivo and in vitro studies (Sheeja et al. 2007). In a study by Wang et al. (1994) A. paniculata was found to alleviate atherosclerotic artery stenosis induced by both deendothelialization and high cholesterol diet as well as lower restenosis rate after experimental angioplasty. Further in a research by Coon et al. in 2004 it was also found to be safe and efficacious for the relief of symptoms of uncomplicated upper respiratory tract infection. Poolsup et al. and Gabrielian et al. in their double-blind clinical study also proved that A. paniculata extract alone or in combination may be more effective than placebo and may be an appropriate alternative treatment of uncomplicated acute upper respiratory tract infection (Coon et al. 2004). Immunological and biochemical studies were carried out in 2006 by Sheeja et al. to investigate protective effects of ethanolic extract of A. paniculata against cyclophosphamide
Andrographolide, neoandrographolide, and 14-deoxy-didehydroandrographolide, ent-labdene diterpenes (42.8%) in rats. Antioxidant activity: The activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation compared to Benzenehexa Chloride (BHC). Hepatoprotective activity: The production of interleukin-2 and delayed type hypersensitivity (DTH) response to sheep red blood cells (SRBC) in mice. Kapil et al. (1993) proved effects of A. paniculata on hepatotoxicity induced in mice by carbon tetrachloride. Immuno-modulatory activity: In 1993, Cheung et al. reported that the ethanolic extract and purified diterpene andrographolides of A. paniculata (Acanthaceae) induced significant stimulation of antibody and delayed type hypersensitivity (DTH) response to sheep red blood cells (SRBC) in mice. Rajagopal et al. in 2003 suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities. Further, in 2004, a positive anticancer and immunomodulatory activity of the methanolic extract were screened Kumar et al. for human cancer and immune cells. In 2005 Cheung et al. carried out the in vitro cytotoxicities of the ethanolic extract of A. paniculata (APE) and its main diterpenoid components evaluated in various cancer cells. APE was found to be significantly growth inhibitory to human acute myeloid leukemia HL-60 cells with an IC (50) value of 14.01 ug/ml after 24 hours of treatment. Wiart et al. found that some isolated compounds, i.e. Andrographolide, neoandrographolide, and 14-deoxy-11,12- didehydroandrographolide, ent-labdene diterpenes showed viricidal activity against herpes simplex virus 1 (HSV-1). Further, aqueous extracts of A. paniculata are expected to be scorpion venom antidotes with low toxicity. The production of interleukin-2 and interferon-gamma in normal and Ehrlich ascites carcinoma-bearing animals was elevated. Latest by 2006 in an experimental study by Zhou et al., it was shown that the key mediators in relaying the cell death signaling initiated by Andrographolide.

The facts that andrographolide is a nontoxic substance is evident from a recently reported toxicological study, 32 and is reconfirmed by the observations made in the pilot experiment described in this communication. By contrast, even the lowest andrographolide dose tested (3 mg/kg/d) completely prevented the daily handling- and intermittent foot-shock-triggered body weight losses, and the slight elevation of core body temperatures within physiological ranges observed in control animals. Moreover, dose- and treatment regimen-dependent partial protection against transient foot-shock-triggered hyperthermia, with ED50 values around 10 mg/kg/d, was observed in the pilot as well as in both the confirmatory experiments. Because the dose and duration of treatment dependence of these observed effects of andrographolide were not identical, it seems reasonable to assume that different physiological thernoregulatory mechanisms and biological process are involved in its diazepam-like beneficial effects observed only after their fairly low daily oral doses.

References

[12] Dua VK, Ojha VP, Roy R, Joshi BC, Valecha N, Devi CU, Bhatnagar MC, Sharma VP and Subbarao SK. Anti-malarial activity of some xanthones isolated from...
the roots of Andrographis paniculata, J. Ethnopharmacol. 2004, 95, 247-251.

[34] Vohora, SB. What is purification of blood ? Hamdard 1985; 28:72-84

