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Abstract: The two stream instability arises when there is a relative velocity between the electrons and protons. Such situations are 

common in stellar atmospheres, often at the reconnection sites. We have derived a general dispersion relation for the two stream 

instability in hot collisional plasmas. The dispersion relation has been studied for photosphere plasma parameters. The growth rate is 

analyzed for various electron thermal velocities and found that it is maximum for finite range of frequencies and then become stable 

after a cut off wave vector. The maximum growth rate region shift toward the low frequency for higher thermal velocity of electrons. 

Also the angular frequency of maximum growth rate increases with increase in thermal velocity. The real plot shows that the wave 

propagation increases with increasing thermal velocity and become insensitive to low frequency region. As this a general dispersion 

relation and this could be for studying various plasmas such as magnetosphere and industrial purposes. 
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1. Introduction 
 

Streaming instabilities arise when there is relative velocity 

between ions and electrons in a plasma. The simplest type of 

streaming instability is the two stream instability. This arises 

in an electron – proton plasma with electrons in relative 

motion with ions. This type of streaming instability can arise 

in stellar atmospheres since stellar plasmas are 

predominantly electron- proton type. A specific example for 

this is electron- precipitation related phenomenon in solar 

chromosphere [1]. The streaming instability can be ignited 

when a high energy beam of electrons created during the 

process of reconnection taking place at the site of a solar are, 

comes down toward chromosphere. But since the density of 

chromosphere plasma is high, these energetic electrons 

suffer collisions and transfer their energy to electrons and 

protons and to the small population of heavier ions also. 

These secondary electrons and ions are accelerated with 

different speeds [2],[3]. This creates plasma in which 

electrons and protons are at different velocity and always 

electrons drive fast to ions. The theory of two stream 

instability for hot plasmas is applicable here. Chromosphere 

foot point heating by energetic streams from magnetic 

reconnection is discussed in [4] and [5]. Similar streams can 

happen in earth magneto sphere, stellar atmospheres, helmet 

streamers, solar fares, cometary atmospheres etc. The 

electromagnetic wave propagation and instabilities in 

counter streaming astrophysical situations is discussed in [6, 

7, 8]. The dispersion relation is a fourth power equation in 

the angular frequency [9], Nicholson [10], and Treumann & 

Baumjohann [11]. This can become imaginary depending 

upon the values of / p   and 0 / pkv   where p  is the 

plasma frequency and 0v  the drift velocity of electrons 

relative to ions. For large value of 0 / pkv  , no roots are 

imaginary and the system is stable. For sufficiently small 

values of 0 / pkv  , it can be possible that two of the roots 

are imaginary and the one corresponding wave growth. The 

growth rate for sufficiently small 0kv  being proportional 

to
1/3( / )m M , where m is the mass of electron and M is the 

mass of proton. For studying more realistic astrophysical 

situations, we have to extend the cold plasma theory to the 

hot plasma case. We have derived a dispersion relation for 

two stream instability of hot collisional electron-proton 

plasma. As this dispersion relation is dimensionless in wave 

vector and angular frequency the result can be applied to any 

hot electron- proton plasma. It is found that the possibility 

for instability occurs even at sufficiently high 0 / pkv   , 

compared to the cold plasma case. The growth rate is found 

to be sensitive to electron thermal velocities. 

 

2. Theory 
 

 For the theoretical study of streaming instability in a hot 

plasma, we consider an electron- proton plasma, with ions 

assumed stationary and electrons moving with a velocity 0v  

relative to ions. This is same as we assume the observer 

moving with a stream of ions. We consider hot plasma 

0KT   . For simple analysis we consider the case of zero 

ambient magnetic field ( 0 0B ) . It can easily shown that 

the same results can be applied for electrostatic waves along 

magnetic field. The linearized equation of motion for 

protons and electrons are respectively: 

1
0 0 1 1 0 1 0 1[ ( )]i

i i i ie i eMn en KT n M n
t

 


     


v
E v v v  

(1) 

1
0 0 1 1 0 0 1 1[( ) ]e

e e e ei e imn en KT n mn
t

 


     


v
E v v v  

(2) 

where the last terms in the equations represents the 

collisional terms ie  and ei , the proton and electron 

collisional frequencies respectively. We consider 

electrostatic waves of the form, 

1
ˆexp[ ( )]E E i kx t x                     (3) 
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Where x̂  is in the direction of 
0v  and k . 

Under these conditions Eq.1 give 

 

0 1 0 1 0 1 0 1
ˆ ˆ ˆ ˆ[ ( )]i i i i ie i ei Mn v x en E x KT ikn x Mn x       v v v  

i.e., 

1
1 1 0 1

0

ˆ ˆ ˆ[ ( )]i i i ie
i i e

KT n iie
E x k x x

M M n

 

  

 
     

 
v v v v  

(4) 

Similarly Eq.2 gives 

1
1 0 1 1

0 0 0 0

ˆ ˆ ˆ[( ) ]
( ) ( )

e e e ei
e e i

KT n iie E
x k x x

m k v m k v n k v

 

  

 
     

   
v v v v  

(5) 

The same results hold good for parallel electrostatic plasma 

oscillations (i.e., wave propagation parallel to 0B ). These 

can be simplified into a form 

 

 1 1i ev A Bv                                     (6) 

And 

1 1e iv C Dv                                    (7) 

 

 where, 
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Thus we obtain, 

1
1

i

A BC
v

B D





                                   (8) 

and 

 

1
1

e

C AD
v

B D





                                   (9) 

The ion continuity equation for our case is 

 
1

0 1( . ) 0i
i

n
n

t


  


v                         (10) 

Linearizing this and noting that 0. v  and 0n  vanishes, 

and using the value of 1iv , we get for protons 

1 0 1i i

k
n n v


                               (11) 

Simplifying this with substitutions 1 ie
i

i




 
  
 

, 

ie
i

i



 , 

0

1 ei
e

i

k v






 
  

 
, 

0

ei
e

i

k v








 we get 

 

1 1 2 0 3 1 4( )i eA n A ien E A n A      (12) 

 

 where 
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Similarly the electron continuity equation is, 

1
0 1 1( . ) ( . ) 0e

e o e

n
n n

t


    


v v                 (13) 

Linearizing this we get 

0
1 1

0

e e

k n
n v

k v



                                 (14) 

Simplifying this we get, 

 

1 1 2 0 3 1 4( )e iB n B ien E B n B                  (15) 
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4 0 0
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Therefore the proton and electron perturbed number 

densities become 

 

1 1 0 2 1 3( )i en P ien E P n P                         (16) 

 and 

1 1 0 2 1 3( )e in Q ien E Q n Q                      (17) 

 where 2
1

1

A
P

A
 , 

3
2

1

A
P

A
 , 4

3

1

A
P

A
 , 2

1

1

B
Q

B
 , 

3
2

1

B
Q

B
 , 4

3

1

B
Q

B
  respectively. 

From the above equations we obtain, 

2 3 31 2 1
1 0

2 2 2 21 1
i

P Q PP P Q
n ien E

P Q P Q


 

 
                (18) 

 and 

2 3 31 1 2
1 0

2 2 2 21 1
e

Q P QQ P Q
n ien E

P Q P Q


 

 
               (19) 

The plasma waves leading to two stream instability are high 

frequency plasma oscillations. To deal with these types of 

waves it is well known that we should use Poisson’s 

equations 

0 .  E                                   (20) 

i.e., 

0 1 1 1. ( )i ee n n   E                       (21) 

Since we assume that the electric field in plasma is due to 

the wave. 

Substituting the value of 1in  and 1en  in Eq.21 and 

simplifying we obtain the following dispersion relation 

 

2 2 3 2 3 3 31 2 1 2
0 0

2 2 2 2

(1 ) (1 )

1 1

P Q Q P P QP Q Q P
ik E i e n E e

P Q P Q


       
    

    
                           (22) 

This reduces to the dispersion relation of the two stream 

instability if 
2 3 2 3 3 3

2 2

0
1

P Q Q P P Q

P Q

   
 

 
. 

Thus we obtain the condition of two stream instability as, 

21 2 1 2

2 2

(1 ) (1 )
1

1
p

P Q Q Pm

k P Q


   
  

 
 (23) 

 where p  being the electron plasma frequency. The 

condition 
2 3 2 3 3 3

2 2

0
1

P Q Q P P Q

P Q

   
 

 
 leads to the 

equation 
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Two cases can arise: Either 0i e

i e

 

 

 
  

 
 or 0H  . 

The first case leads to three modes: 

1 iei                                         (25) 

2 0
ie

ie ei

k v



 




                         (26) 

3 0eii k v                              (27) 

Case II (H=0) lead to a dispersion relation 

 

2 2 2 2

0 0 0 0 0( ) 0i i e e i i
ie ei ie

KT KT KT
v v k k v i v v k

M m M

  
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           

 
                      (28) 

 which results in a growth / damping rate given by 
2
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0 0
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Re( )
2

ie ei ie

e e i i
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   


 
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

  
 
  

     

 (29)  

 

3. Results and Discussions 
 

It would be convenient to make the following 

normalizations: 
ie

p

z



 , 

ei

p

s



 , 

p

x



 , 

0

p

kv
y


 , 

0

/i iKT M
a

v


 , 

0

/e eKT m
b

v


 . Then (Case I) 

Eqs.25, 26, 27 become respectively, 

1

p

i z



                                     (30) 

2

p

z y

z s







                               (31) 
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3

p

y i s



                              (32) 

Eq.27 and 28 (Case II) become: 

 
2 2 2 2 2 2( 1) 0yx y b a x y a              (33) 

With growth/damping rate 

2

2 2 2

[ ( ) ]

2 ( 1)p

y z s z y

yx y b a





  

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                (34) 

We can obtain the dispersion relation for the two stream 

instability from Eq.23 by the above procedure as:  

   xMmayyxMmbayxyx /2)/1()1(2 22222234   

    0)/(1 22222222  ybyMmybyay  (35) 

with growth/damping rate  

))/((2))]/(1()1([264

])/()(2[)()()(
2222222

222223

MmayyxMmabyxyx

syMmzsayxzbsazyxzsyxzs

p 







 (36) 

 

Waves corresponding to Eqs.30, 31, 32, 33 and 34 can 

trigger two stream instability of the form given by Eq.36. 

Eq.30 contains purely imaginary term only and hence cannot 

represent propagating wave. Since for most cases zs  , 

which result in negative frequencies for Eq.31 can also be 

discarded. But Eq.32 represents a wave with growth equal to 

electron collision frequency which would be important 

especially in high density regions. It is seen in conditions, 

corresponding to solar atmosphere, especially photosphere, 

Eq.33 can show only damping. 

The Coulomb collisional frequency for electrons is given by 




ln
108.2

2/3

51

e

e

ei
n

T
                   (37) 

and for protons, 




ln
107.1

2/3

71

e

i

ie
n

T
                   (38) 

ln is the Coulomb Logarithm [12] which has a value  20 

in solar atmosphere. Coulomb collisions are very rare in 

upper solar corona, but as we go inward towards 

photosphere, the density increases and due to this the 

collisional frequencies increase. Typical photosphere 

temperature K3106 , gives a value of normalized electron 

collision frequency )(s  as0.86 and normalized proton 

collision frequency )(z  as 0.014. The wave propagation 

and growth are analyzed for these values varying the value 

of normalized thermal velocity )(b . 

 
Figure 1: Plot of normalized angular frequency versus 

normalized wave vector. The graphs are drawn for 

photosphere temperatures K3106 . Normalized proton 

collision frequency 014.0z  and electron collision 

frequency 86.0s . The graphs for normalized thermal 

velocities 10,5,1,1.0b  are drawn here. The above 

graphs show that the angular frequency increases with 

increase in thermal velocity. As 0y , they converge to a 

single frequency. 

 
Figure 2: Plot of normalized growth rate versus normalized 

wave vector. The graphs are drawn for photosphere 

temperatures K3106 . Normalized proton collision 

frequency 014.0z  and electron collision 

frequency 86.0s . 

 

The graphs for normalized thermal velocities 

10,5,1,1.0b are drawn here. The growth rate is clearly 

sensitive to electron thermal speeds. It decreases with 

increase in the value of b  and maximum growth being 

shifted to short wave vectors for higher values of b . 

 

4. Conclusions 
 

We have derived a general dispersion relation for two stream 

instability in hot collisional electron- proton plasma. The 

dispersion relation has been studied for photosphere 

parameters. The growth rate is analyzed for solar 

photosphere plasma, for various electron thermal velocities. 

It is found that the growth rate is maximum for finite range 

of frequencies and then become stable after a cut off wave 

vector. The maximum growth rate region shift towards the 
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low frequency region for higher thermal velocity of electron. 

Also the angular frequency of maximum growth rate 

increases with increase in thermal velocity. The real plot 

shows that the wave propagation increases with increasing 

thermal velocity and become insensitive to low frequency 

region. Since this a general dispersion relation and this study 

could be extended for various plasmas such as 

magnetosphere, ionosphere and laboratory plasmas. 
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