International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

A New Model of Permutation the Pieces of
Nucleotides in DNA Sequences Using the Action of
Dihedral Group and Graph Theory

Husein Hadi Abbass®, Hussein Salman Mohammed Hussein?

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq

Abstract: In this paper, we givea new model of genetic algorithm using the action of largest subgroup Hof dihedral GroupDy, 1 = 3™,

ni-

m E M, m = 2, bipartite graph, and a markov basisfor

that Bis H-invariant.

7 %3 x% - contingency tables with fixed two dimensional marginals such

Keywords: Computational algebraic statistics, sufficient statistics, linear transformation, connectedgraph, bipartite graph, dihedralgroup,

algebra statistic, Markov basis.
1. Introduction

Let I be a finite set n =1l elements, we call an element
of I acell and denoted by i €1. i is often multi-index
im. A non-negative integer x; € M denotes the
frequency of a cell i. The set of frequencies is called a
contingency table and denoted as x = {x;}iz;, with an
appropriate ordering of the cell, we treat a contingency
tablex = {x;1;;; € ™ as a n-dimensional column vector of
non-negative integers. Not that a contingency table can also
be considered as a function from I to M defined as
i — x;The L,;-norm of x € H" is called the samplesize and
denoted asl®l = X;-; x;We will denote Z be the set of
integer numbers, also we denote to the a; € Z".j =1, ... v,
as fixed column vectors consisting of integers. A -
dimensional column vector t= (tj,...t;) € Z" as
t,=ajx.j=1....v. Here ' denotes the transpose of a
vector or matrix.We also define a ¥ * p matrix 4, with its j-

izfl LR

o'y

row beinga’;given by A= : ] and if t=Ax is a v-
ey

dimensional column vector, we define the set

T={tt=Ax.x e N"} = AN" c I In typical situations
of a statistical theory,t is sufficient statistic for the nuisance
parameter. The set of x's for a given t,
ATH[t] =[x € N": Ax = #} (t-fibers),is  considered  for
performing similar tests, for the case of the independence
model of two—way contingency tables, for example,tis the
row sums and column sums of x , and A=*[#]is the set of x's
with the same row sums and column sums to £. The set of &-
fibers gives a decomposition of H". An important
observation is that t-fiber depends on given only through its
kernel, ker (A). For different A's with the same kernel, the
set of t-fibersare the same. In fact, if we define
x,~x; & x, — x, € ker(A) this relation is an equivalence
relation and M™ is partitioned into disjoint equivalence
classes. The set of t-fibers is simply the set of these

equivalence classes. Furthermore, & may be considered as
labels of these equivalence classes.A n-dimensional column
vector of integers z = {z;};; € Z"is called a move if it is in
the kernel of 4, i.e. Az = 0[10].

For a movez, the positive part z* = {z*;};-;and the negative

part 2" =127 )iy are defined by
z¥; = max(z;,0),z7; = max (—z;. 0), respectively, Then
z=z"—z and z*.z- e W"z*.z” € N" . Moreover, z*
and - are in the same t-fiber, ie.,

zt,z” € A [t] fort = Az* = Az~ We define the degree
of =z as the sample size of z*or (z7) and denote it
by deglz) = lz*| = Iz~ |. In the following we denote the set
of moves (for a given A) by M = M, = Z" n ker {(AJ[1].

Let & be a group and W be a set. A left action of & in W is
a function from G =W in to W, usually denote by
(g.w) = w e W such that glhw) = (ghlw and ew =w
for all g.h € Gand w € Wwhere # is the identity element of
. We also say that & acts on W on the left.

Let a group G act on a set W, andU S W,
Gip ={gigu=wvuel} is called the pointwise
stabilizer of LU.Let a group & acts on a set W, I/ © W, and
GU ={gu:u € U, g € &}. We call U invariant under & ( or
G-invariant ) if GU7 = U7 [9].

Let A:EZ™ — E'be a linear transformation, t € Z¥, and
A~1[#] be the set of t-fibers, and let B = kerz(4), then we
define 4~*[#]g be the graph with vertex set A~*[¢] and
u— —v an edge if and only if
u—ve +B[12].LetA~ [t] ={x e W™ Ax = t}. A set of
finite moves B is called Markov basis if for all £, 4=*[]
constitutes one E equivalence class,If B E kerz(A) is a set
such that A~[t]gis connected for allt, then B is a
Markovbasis for A[1].
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If a group G act on A=*[¢] on the left, B is a Markov basis,
and G(E) = {gz:z € B.g € GL B is called invariant under
G (or G- invariant) if G(B) = B. We will denote to the
polynomials in the # indeterminates (polynomial variables)
Py.Pr.ea By Over the complex field T by either
Clpy.poewupp]  or  C[P], P=(p.p ;). Let
A:Z" — Z% pe a linear transformation, the toric ideal I,is the
ideal = P* — P":u,v € N" Alu) = A(v) =S C[R, ... B]
where P* = B, "B, "2 . B "P[11].

In [4] H. H. Abbass and H. S. Mohammed Hussein found a

n®-2n

Markov basis B and toric ideals for x3xT -
contingency tables with fixed two dimensional marginals, n
is a multiple of 3 greater than or equal 6, also they [5] found
the largest subgroup Hof dihedral GroupD'ym, m € M, such

thatBis H-invariant.

In this paper, we use the Markov basis B and action of the
subgroup Hof dihedral GroupD}, on these contingency tables

to give a new model of permutation the pieces of nucleotides
in DNA sequences.

2. Preliminaries

In this section, we review some basic definitions and
notations of dihedralgroup,connected graph, bipartite
graph,moves, Markov basis, and toric ideals that we need in
our work.

Definition 1(see[12]).Let n be a positive integer greater than
or equal 3. The group of all symmetries of the regular
polygon with n sides, including both rotations and
reflections, is called dihedral group and denoted byD, . If
we center the regular polygon at origin then the elements of
the dihedral group acts as linear transformation of the plane.
Lets us represent the elements of I}, as matrix, with
composition multiplication. Dihedral groups are among
simplest examples of finite groups and they play an
important role in group theory, geometry, and chemistry.
The set of rotations is generated by r- counterclockwise
rotation with angle 2x/ n of order n, and the set of
reflections is of order 2 and every element sri'generates {e,
sri'} , Where & is the identity element in Dn . The 2n
elements in D, can be written as:{e .7, ¥*, ...
s, ..., sr™hIn general, we can write D, as:
Dn={sir®:0<k<n —1,0 <j <1} which has the following
properties: ®

n—-1
, 1515?“1

rPt=1srfs= rF
(s¥r)*=1, forall0 = k = n—1.The composition of
two elements of the Dy, is given by r'r/ = ¢ ' s
vl = sri=t, srlrl = st sris el =91,

Remark 2(see [12]).If we label the vertices (of the regular
n-gon) 1 to = in a counterclockwise direction around ri-gon

then the elements of I}, can be written as permutations of

vertices, let » be a counterclockwise rotation, and let Sbe
the reflection of the n-gon about an axis through the center
and wvertex 1 , as indicated in below . The
element rgenerates the cyclic group of order n Cn which is a
normal cyclic subgroup of I,. In all cases, addition and
subtraction should be performed using modular arithmetic
with modulus n.

“n

el Wl
Elementz of Cn Elements of In

Any symmetry will fix the origin and is determined by the
image of two adjacent vertices , say 1 and 2 .The vertex 1
can be taken to any of n vertices and then the vertex 2 must
be taken to one of the two vertices adjacent to the image of
1. Hence, I, is a non abelian group of order Zn generated
by r and =.

Now, we give some concepts about the action of a group on
a set that we use later.

Definition 3 (see[3]). A graph & is connected if for every
pair of distinct vertices u, v € V(G), where V{G)be the set
of vertices of the graph &. the graph & has a . w-path.
Otherwise, we say the graph is disconnected.

Definition 4(see[3]).A graph G is a bipartite graph if there
are X, ¥ & V(&) meeting the following conditions:

1. vi{G) =xuy,

2.Xn¥V =4,

3. G[X] and G[¥] are both null graphs, where GLX] and G[¥]
are subgraphs of the graph & induced by the set of vertices
X. ¥ 2 V() respectively.

Theorem 5(see[3]).

For a graph & the following statements are equivalent:

1. & is bipartite.

2. Every cycle in & has an even length.

Definition 6 (see [3]).Let E = M 4 be the set of moves and
letx,, x; € A~*[#]. We say that x; accessible from x;by B
if there exists a sequance of moves zj....z; €5 and
g € {—1,1} k=1,...K, such that

B
Xy=x, + E E I
k=1
K

IL+ZE:¢ZR eA Ml forl= k=K.

=1
Remark 7 (see [4]). Let n be a multiple of 3 such that
nz=6, and let xEATNEL j=1,...k be the

representative elements of the set of 3 = ; —contingency

and B ={z;.%;....%} such that each z;

tables |
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J =1.2,..k, is a matrix of dimension 3 = E either has two
columns (1. —-1.0).{(-1,1.0)" ((1L0.-1). (—-1L0.1) or
either (0.1, 13", (0.—1,13" ) and the other columns are
zero denoted by +z;, or it two columns
(1,—-1,0),(-1,1.0)" ( (10,—1), (—1.0,1) or either
(0,1, —-1)", {0,—1,1)" ) and the other columns are zero
denoted by +z;, or it has two columns
(—1.0,1)", (1.0, —1)( (-10,1)", (1.0,— 1)’ or
{0,—-1.1), (0.1, —1)" ) and the other columns are zero
denoted by —z;,like

1 -1 0 1 -1 0
-1 1 0f . [ 0 0 U]
L 0 o o -1 1 0
[ 0 00 -1 1 0

1 -1 0f . [ 1 -1 U]
-1 1 0 0 o0
—1 1 0] 0 0 0

0 o o . [—1 1 U].
L1 -1 0O 1 -1 0

Also, we can write all elements of Bas one-dimensional
column vectoras follows:
z = (zy,0.2,).j=1....kand z; = 1 or — 1 or 0 such
that
ft=12,..°
) 3

?
1 ffzt+§+zr+% =-1 andzzl. =_1
i=1

i=t
n

3
-1 :'fzr+§+zt+% = land Zz[ =1

i=1
e 4
E

3

0 ffzr+§+zr+%:[|ﬂm Zz[:[ﬁl
L =1
I=t

Iy =4

r in
z 3 no_
E[:lxi’zi=2+ixi’zi=‘?n+1
=

respectively. The entry in the column indexed by x;j in the

matrix A will be equal to one, if x;a pears in the index of its
row, and otherwise it will be zero. Then

A

11 11 0 0 00 0 0 0 0]
0 0 000 1 1 110 0 0 0
0 0 0 0 0 0 0011 11
=[1 0 0 0 10 0010 0 0
0 1 0 0 01 00 0 1 0 0
b0 - 0 10 0« 0100 0 1,

Theorem 10 (see [4]).The set B = [=z,. ..., 2,2z, 1is a set of
3
moves.

Corollary 11 (see [4]).Theset B of moves in theorem10 is a
Markov basis.

(=]

il

ft=>+17+2,..,
r

g

n
3
l:fzr_g-l—zH?:—laﬂd E 5 =-1
. T
l—3+1
[=t
n
E
z, = -1 :_fzr_?-l—zr%: 1 and E =1
. T
l=.;+1
=t

in

3
0 :'_fzr_§+zr+§:[]aﬂd Z z; =0

. T
l=7+1
2
. i=t
n n
Ift=—+1L_—-+2...n
r-- B n
1 :fzr_%+zr_;_= =—1 and Z =-1
. 2Zm
l=?+i
[=t
!
z =1 -1 :fzr-?"'zr-? = 1land Z =1
l—3+
[=t
Tl
0 :fzr_%+zr_§=ﬂaﬂd Z z; =0
f=m41
L 2
=t

Theorem 8 (see [4]).The number of elements in B equal to
n—an

Remark 9(see [4]).Given a contingency
table= (x; .x;.... .x,) , the entry of the matrix A in the
column indexed byxj .xz.... .x, respectively and its rows
indexed by

xi,x1+x§+l+x%+l,x: +x§+: +x%+: ,...,x;_:+ x% +x,

n-—an

Corollary 12 (see [4]).The toric ideal I for

contingency tables are

Iy == P[+[Pj'+ic - jff.,.[P[_'_;l.: Lj=12, ...,;:and Lk =02 In

,suchthat i < jand [ <=k = = C[R. P, ... Bl
Remark 13 (see [4]). Now, we will construct a connected
graph by using the elements of B. Let ;. be an element of

X3 x=-
2

‘3

2

Z_mu
Bsuch thatzy, =%, —%n_; ,m=12..,° u'”ls an
edgeconnected Xy and  xg_g, ..., and
Tl gn = Xp —Xpl_zn is an edge connect xp and
z =
-1 . n®-2n
xp2 s Wherex; € A ], i=02,...—/——1Then

E]
n?-3n

we canconnected all

X3 X< - contingency tables with
2

n®-2n

2

fixed two dimensional marginals by edges by

applying moves from B one by one and _go from x; to
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Xpiosn without causing negative cell frequencies on the
3

way, and also from Hniosm to &y, of this type, by forming
3

undirected graph G =(R,W,B) = A'[t]g, where the
contingency tables interpreted as vertices and connecting
moves are interpreted as edges of a graph,
R={xpx3 .. Xnizsm } and W = {x; x5 ... %02 sn 1}

= =
as shown in figure 1

Figurel. The graph G = (R.W.B) = A™*[#]g.

XXy Xg-eoXplogn Xplogn
—2
*
L]
R B R L O
—5 % —3 -1

In [5] H. H. Abbass and H. S. Mohammed Hussein assumed
n=3"meHN, and m=2, and H is the subgroup

ot in

T
- = it
fe.v2,r: 5pr 5p2

.73 ) of dihedral group Dy, where
F=(123..n)ands=(2 03 n—1) .. 222
Theorem 14 (see [4]).The graph G = (R W,Blis a

connected bipartite graph (up to graph isomorphism).

Theorem 15 (see [5]). The Markov basisBis H-invariant.

Corollaryl6 (see [5]).The subgroup His the Largest
Subgroup ofthe group D= such that the Markov basisBis
H-invariant.

r

Remark 17 (see [5]). Let t=(t1,t:,t3,...,t3+gjl,

3
x; € A t[tlandg € H.
Thengx; € A~t[gtlwhere

gt = (gtl,gt:,gt!, ...,gtEH] AT gt] = [x e W™ Ax = gt}
3

types A,

ATt [’r?—t] AT 'rf t] AT s,

So, we have six of gt-fibers

At [srgﬂt]andﬂ'l [sr%ﬂ't].

Theorem 18 (see [5]).If g € H, then Bis a Markov basis for

n°-an

contingency tablesgaxg. gax,. ... gx.2 s, . in

3

At gtl.
Corollary 19 (see [5]).The toric ideal for === x 3 x = -
contingency table in A gtlis

Iy =< ByianPaijein — Bagjen Pagisig? 65 =12, 2and Lk = 0,77 suchthat i < jand I <k > € CIR, Py, B,

forall g e H.

3. The Main Results

Let n=3"meMNandm = 2,
i’!:

gx; e Atgtl, j=0, B2 and

2

gEH be

. N n .
representative elements of the set of 3 x ~—contingency

tables. Then we write g as m xn permutation matrix
T, = {B;} =16, 9()}, where & is the Kronecker's delta

r

such that Ty o, = Ty, Ty, for g9 €H, and Ty-+ =T, .

The identity matrix of the order n denoted by E,, fur the unit
element &.
Now, we

action of dihedral
il!"_

group D, .n =11, on A7[¢] the set of == x 3 xZ -

consider a left

ni-in ni-3n

contingency tables, and the action of dihedral group I}, on
the set of Markov basis B.

Theorem 20. Let x;x;€ A™*[#], if g H. Then x;
accessible from x;by B if and only if T,x; accessible from

n®-2n

2

T,x;by B, foralli,j=1,2,..,
Proof: If x; accessible from x;byB then there exists a

sequence of moves Z,,...2; EB and

goel-1,1} k=1,.., 222, such that

x; =x + E;.-::. e Ex X + Ei.-::. gz e A forl = k= % (Definition 6)

Letg € H

nt*—3n nt—3in

Ifg=e = Ex; =E,x; + £ ° & Bz Eox; + 1 5 & Bz e HA i)

n* —3n

forl = k& =

n n n
Ifg = rsthen we write r=asan X n permutation matrix, i.e. r= =T, Ze1 Fat)(z Zez Ter)(EE n) then

3
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In % fmIm X
El... — n)"t
3 -+ Ir3 3 HJ

= Tri

Tfi —+1 1) ) IE:

"IN ! N
= r!)l't_l

no_2m
—+1 +1.IIr T+2 3+.’,I...I:33

n* —37‘
+ E e Tiym , m mootm oy mim AZp Tyom  2m i om oo Im oy fmin oA
¥ |:1 3+1. +1|f +‘ 2 +‘)|...|i3 3 i’!)l . |::L 3+]. 3 +1}||:. 3+‘ 3 +“_,|...__33 i’!)l i
'I" —31"
+ E T in o fmIn W
—. | —+3 el — n|™ K
z (1 2+t Ttz o2 Fe2)u(55F n)

—3n
€ H(A™ i[t]j forl = k -=:T

= 3 = z - - m
Ifg =r then rs Tﬁ. 1"+1. —+1.|Ir EL IR e T
3 4A3 R
Tfl Tt —+1|Ir —'+:)|...|:E n ‘?":l'ti
= Tfl Tt —+1|Ir —+‘ 241, f ‘“‘l'tj'
n:-zr

+ Z B Tl.r_l Te1 Ze)lz Toz Tea) (T )%k Tfi FerTet)lz FoaZaa)Tn TN

3 43 ]

ni-zn

+ z Eel(y 28 B )z 2ig Bag)u (2 n 222k
=1 . 3 E] A E] 3 4

R )

e H(A™

Ifg = sr, thensr =T,

(1 milz n-1) LB,

nt—3in

Ty mitz nesiug mint gwxl =T iz no1), (BoiEEE X+ z Ty mi 1) (o2 BEE T

T' —37'
) n® —3n
Ty mits nog, Boimes, X+ Z 2k Ty miiz meg) s noina 2 € H(A[t]) forl =k ::—3

-y —351’:—’-“"
 ———

Ifg = 5'-'"3 " then F‘” = Tlri Tz For)lFe)(Fre n)[Frz na)
T[l my, I

b
o ~1)m +1.|Ir +1 rlf—+. n—t]

Sm—35n+g - =
i *.'tl

E B -

Ty, ""uf T ) Zee lf— 1)
| ey n +I n-1]
T' _37'

. er 351-Ea.1:L-|- Z Ex Tlrl ..'r'-Il' ?—L:I
E=1
—+1|—+1 er_h =1 Jum 5: 35: ned Eg
TI::. 2z ——1.| +1.|Ir 1n:ﬂ:?+: n—1}
Em—2EmEE X -|-
S 7
ri-zn
3
Z Ej T'Ir mmlr n Irm-: e "
L Tz Fou) )T e )
—_ 23 ANE ¥

n® — 3n
| (Amm3smen L E H{H_i[t]:] forl =< k =< T
LB -

in
[:?+‘ n—=1}.|
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i1

Ifg = 5:'"?+L,ther1 srs = Tfi =)

n % - et Vv f2mIn
2 2ot (Ze1 n)(T+2 noo) (T4
1) [:+1 a2[3+ n—1)-(F5+1)

Tfi—lf =1} r‘"+1 r-lf 2z n-t)- fﬂﬂ 1)%i

ne —37‘

= Tﬁ. Sz Eoa) (T4t n)(Fez nog)e ‘r‘r+1.l'tJ+Z &k Tﬁ. Bz Z-1)-[5+1 n)(Zez n-1)

Inin W2
. 1<k
[3 1

T . my. mn  m T oEmam v
(1 ;}l[‘ ;—1}1---[_§+1. n}l[;h n-1)- f3 )%
n:—zn
Z LT
Er mi, m Y T 5
ioy K (1 ;JII:‘ 3—1.)1---I_r_g+1 i’!._ll[::+.. n-1)

n? —3n

min vz € H{AT[E]) forl =k =<
ML ( )

Therefore T,x; accessible from Tyx;by H (B).

Conversely,
if T,x; accessible from T,x;by H(B), then there exists a sequence of moves gz;....gz. € H(B),g € H, and

sel-1,1} k=1,..=7,

n-in
3
Lx; = Tgx; + Z £y T2y
k=1
n* -37"
x+ X T,z € H(A™'[d]

By multlplylng the previous equations byT ;. g € H, we have

nt-3n

T, (Tpx) = T'g(Tyx)) + Z £ T o (Tyzi).
k=1

ni-zn
r . 1 n? —3n
Tg{%xj-:l + Z ERTQ{I;IZR:] e H(A [t]] forl = k& =
k=1
ni-in
This implies, {?”grg]x[ =(T'Tox;+ X5 &l(T gz,
nt—-3n
n?—3n

(T Tpx; + Z (T’ Tz e H(ATHE]) forl < k <
=1

ni-3n
HenceE, x; = Enx; + 3.0 exEyzp
n-3Iin
n? —3n
Enx; + Z £y Enzy € H(A™ME]) forl = k =
k=1
ni-zn
Therefore, x; =x; + %, ° &2y
ni-in -
x+X 3 szye A forl =k 5% [sinceE,x; = xjandE,z; = 2]

Thenx; accessible from x;by B.O

Remark 21.Now, we will construct a connected graph by L=172 . 2= an edge connected gay = T,x; and
using the elements of H(B). Let gz; = T, z; be an element ' T s e

of H(B) for all g € Hsuch
thatg z; = gx; —gxp_y = Tpxp — Ty

gxy_y = Toxp and, , and

§Zpl-sn = g¥Q ~ §¥p-sn = Taxg — Ty Xn2-zn i be an
2 3 3
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edge connected Txg and TgXpioan

3

=" _ 1. Then

=% 3 >< - - contlngency tables with

:'ri[gt] geH i=012.. 2

wheregx; €

we canconnect all =

fixed two dimensional margmals by =

—an

edges by
one by one and go
. without causing negative cell

applying moves from H(B) to T, x,

from T; xy to T xpig
E

frequencies on the way, and also from T, Xplozn

E]
This forms undirected graph as shown in figure 2

. toT .

Traxpa gn T0Xp3 g
r3 ——4

i —-
5 5

T x T x

2_l |z_|
g .'1:'1 3 8 '155'11

Figure2. The
graphT & = (T, R.T, W.H(B)) = A™*[gt] im) = A" [gt]p
, Where the contlngency tables interpreted as vertices and
connecting moves are interpreted as edges of a graph,
TR = {Tx, Toxs, .. T;,;t:,,:_g,,_:} and
3
-'I;Pt'r' ;31- 1}-
Theorem 22. The graphs T,G = (T, R, T, W.H(BJ})are

connected bipartite graphs (up to graph |somorph|sm).
Proof :

T, x,T x,...

T, x,T, x5..

LW = (T, T,xs ..

Let T,x;. T,x; € A™*[gt], if
0=i< j= "::!“ —1,i %= J. by remark 21there exists a
path < Toap Tz y Tpxiey. TpZipgown T Xt

Trz; Trx;>=,andif 0= j=i= @—1,:‘;‘;} by
rerrgnark ” 21there exists - a path
ST Tz T TpZp g T2y,

Tyz; . Tyx; =, and that implies there exists a path between
every pair of distinct vertices T,x;. T x; € A*[t]of the
graph, by (definition 3), & is a connected graph .

Now, we prove the graph G = (T,R.T,W,H(B))

bipartite graph.
Let Toxp Toxig. o Tgxp_ 1 Toxn Tox; = Toxibe a cycle

in . SupposeTyx; € T,R. ThenTyx;,, € T, W, since the
edgeTyzi.y = Tyxi, —Tyx; € H(BJ,

thenTy x;.; € TR, sincetheedge

T,2;.2 = Tyx;, — Ty x;,, € H(B). Continuing in this way,

we see that if k& is an odd, thenTyxy; € T, W, and if k is
even, thenTgx; e T,R. SinceTpx;,, = Tx; e A, it
implies thatj + 1 is even and thus the cycle is of even
length. By theorem 5, then the graph & = (TR, T, W, H(B))

is a bipartite graph. O

4. Genomics and Phylogenetic

In this section, we describe some of the basic biological
facts needed to understand phylogenetic models and then
delve into the practical side of the algebraic statistics of
these models. The basic genetic information of an organism
is (almost always) carried in the form of DNA, a double
helix consisting of two complementary B polymers bound
together. The DNA molecules in a genome are typically
represented as a number of frequencies of letters from the
four letters alphabet= {A, C, G, T}. These letters correspond
to the bases in the double helix that is the nucleotides
Adenine, Cytosine, guanine and Thymine. The four
nucleotides that form DNA come in two types: the purines
(A and G) and the pyrimidine's (C and T). The two strands
of the double helix are joined together via the base pairings
Ato T (via 2 hydrogen bonds) and C to G (via 3 hydrogen
bonds). Since each cell typically contains a copy of the DNA
of the organism, DNA copying occurs frequently. Several
types of errors are possible during the replication of DNA.
Single bases can mutate, or large pieces of DNA can
separate and become reattached, possibly at another
position, possibly in the opposite direction, these are just
some of the events that occur over the course of evolution
(C. Semple, M [2] and J. Felsenstein[6]).

5. A New Model of Genetic Algorithm Using

the Action of Largest Subgroup of Pnfor
Invariance Markov Basis

In this section, we construct a new model of genetic
algorithm that permutes the pieces of nucleotides in aligned
DNA sequences using the actions of largest subgroup H of
D, for invariance Markov basis and toric ideals. Now, we
describe our model in the following steps.

Step (1):Suppose we have I-taxons of DNA sequences each
taxion of length L such as

Taxonl: AGCTAACGGTAT

Taxon2: CGATCTGACCT T~

Taxon{ ACGTCACGTAGC-

Now, we define a pattern i = i;.i;.....i,;t0 be the sequence
of characters. We look at a single site (column) of our
sequence data. In the sequences above, we can look at the
first site in the sequences and see the pattern "AC . . .A". A
pattern frequency x;is that i appears in our set of sequence
data , and we denote to the number of frequencies by
nwhere n=3" mel mz=2

Step (2):We can input pattern frequency x; of above

. n .
sequences in3 x — -contingency table as follows :
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n
Xy xa xn F
B xX;
i=1
n
Xlyy Xlyo — 3
-4 g B _-xi
.
i=—+1
1
n
XMy | X242 *n x.
= = 2n 1
i=—s1
g
xy x, xn ||
B
xn xn, . = E
+ ;+1 + ;+; —|— xﬂ = xi
iel
+ xen + xam = e
—+1 —+2 +x,

Where |xl =%;.;x; =L is the length of sequences ( the
sample size), and
x4 is the frequency of the first pattern .

Step(4): From remark 9,4 is FTH * m matrix and

11 11 0 0 00 0 0 0
0 0 0 0 1 1 —~ 110 0 0
0 0 0 0 0 0 - 00 1 1 1
A=[1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 00 0 1 0
o o 0 10 0 01 0 0 0
Ax =t e
11 11 0 0 00 0 0 0 07
0 0 0 0 1 1 110 0 0 0
0 0 0 0 0 0 00 1 1 11
10 0 0 1 0 00 1 0 0 0
0 1 0 0 0 1 00 0 1 0 0
0 0 0 10 0 0010 0 0 14
tl
t:
=
tn
;+E

Where the columns of the matrix A index by the elements of
the column vector .

Step (5):We can find the Markov basis from remark 7.

Ste 6): A:z¥H L z#D s a linear
transformation, t € Z2*("/2, and A~[¢] be the set of -
fibers, and B = kery (A). Use remark 13 to find the bipartite
graphG = (R, W.B) = A [#]g.

Step (7): We can find the toric ideals by using corollary 12

for each contingency tables.
Step (8):FindTy;B = {Tyz,. Tyz;. ... TyZn2-zn} = B for all

3
g € H. where T} is a permutation matrix of g.
Step (9):Find the set

(Tyxo Tyxson pXntan c A *[gt] (gt-fibers) for all
Ll

I

T+
— KRN

x4 is the frequency of the second pattern.

x= is the frequency of the ; pattern.
: 3

x=_, is the frequency of the ; + 1 pattern.
: 2

x=_, is the frequency of the E + 2 pattern.
3 = =

x, Iis the frequency of the n pattern.

Step (3):Represent the contingency table
x = {x;};;; € H"as a n- dimensional column vector of non-

negative integers & = {xy .x5... . X}, Where' denotes the
transpose of a vector or matrix , as in remark (1.4.2) then
xisa t-fiber
(i.e) x € A7 [t]whereA™*[t] = {x & N": Ax = ¢},

P e R e ) SR s

n
E
g € H.where

r

" in
rit= (t!,tl,t:,ti,...,h_e“) rE b= (t:,t!,tl, ty ...,tv-_.+,,)
= 7 = 7

'“’t4)1

! i‘E+!’ il"E+:
3 E

srt = (rg,r:,rl,

"
prtlp = (t:,tla ty, tn, . tn, ...,t_.J and
£E+L 3 3
sr: o t= (t,_,t!,t:, Er g BB g t‘*)'
37 37"

Step (10):Use remark 21 and theorem 22 to find the graphs
T,GC = A *[gt]gfor all g € H.
Step (11):Use corollary 19 to find the toric

k

,suchthati = jand [ =k =forallg e H.

ideal
- n n in
ekt b= L2 cand Lk = 0.0,

Iy =< ByienByiisin — Byeisn

n®-2n

Step (12):Use the —

n"—3n

x3 %= -contingency tables (t-

fibers) in step (6), and —;

(gt-fibers) in step (9) for all g € H to find the permutation
of nucleotides in aligned DNA sequences.

Example (23):Suppose we have the following three aligned
DNA sequences

n .
®3 xR n -contingency tables
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Taxon: AGCTGATTGGCCCGTTT
TTG

Taxon22 AGATCTATCGAAACAAA
TTC

Taxon3: ATTCAGATCTTTT AAAA
TTC

Step (1):There are three taxons of above DNA sequences
with |zl = X;.;x; = L = 20and nine patterns A A A, G G
T,CAT, TTC,GCA ATG TAA TTT,GCC with
frequencies 1.2.4.1,2.1.4.3 and 2 respectively where
n =209,

Step (2):Now, we input the patterns frequency x; of above
sequences in3 x 3-contingency table as follows :

1 2 4 7
1 2 1 4
4 3 2 9
6 7 7 20

Then the table of marginal and conditional probability is:
0.05 010 | 0.20 0.35
0.05 010 | 0.03 0.20

0.20 015 | 0.10 0.45

Step (3): Represent the contingency table x = {x;};,  W°
as a 9- dimensional column vector of non- negative integers
x= (1241214327 as in remark (1.5.2) then xisa t-
fiber
(i.e. x € A™*[t], where
X7
Xy
Xz
Xz
At = fx e WP:A|x, | =
g
Tg
x7
.J.'B_

Step(4): Ais & » 9 matrix and

=] =] O D HEe =]
il
p—

11100000 O
000111000
0 00O0O0O0T1T1:1
A=l oo 10010 g -2
01 0010010
00100100 1.
Ax =t e
1
1110000003
000111000 [j
00O0O0O0TD0T1T11
100100100%
01 0010010
UUlUUlUUlEx;g
251
7 ty
4 ts
1?1 |t
=le| =
7 t
?E'Xitﬁsxl

Where the columns of the matrix A index by the
elements of the column vector X, and
R R D L T L e
ty=x,+x,+x.=6,tg =x,+ x4+ x, =7, and

tg =xg+x;+x=7.

Step (5):We can find the Markov basis from remark 7. Then

. mi-3n  ef-3mm
the number of moves is —— = —

the set

= 18 elements in

]
L5
"

I, — -1 1 0 1 Eg
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0] 0] 0 0 1] 1 o 1T =
oy -t 0 101 o[ o o
Z
— N ’z = r Ei
24 1 o 1 5 o 0 0 o 1 1
0] 00 I 1] 0 I 0] 1
z, = a1 11 \Zg 0 0| 0| +Zg= 0| 0| O
0 11 1 I 0 T 0] 1
I 1] 0 o] 0] 0 2R
I 1] 0 I 1| 0 ) T | 0] -1
z.. = 1 Eyp =
Z = L s
e 0] 0] 0 |1 0 0 |0 O
0] 0] 0 1)1 0T
A o)1 o1l -1 - ol 0 0
Z13 T 0] 1|-Z1a™ Tl o] o] 1 o1
1 0 I70 1
ol L T 0 0| 2= 0|0
P I S B M T3] 0 Ifof-1
T [ 1

Step (6):The connected graph A™*[tlg = G = (R.W,B) with % = 18 (&- fibres) 3 % 3- contingency tables as vertices of
it.

Xp Hg Ha Xg Xg 10 X2 Hya He
|
il Zy9
. 7 I, , 1 Z1.
1 11
Z3 Z, Zg Z13 =
Zg
z
Zs & Zg Z13 z {7
L]
x x. et x. g . * . .
1 3 ) . ?. g X1q X3 X5 Xy7
Figure 3: The graph G = (R, W,B} = A~*[#]g, where the contingency tables interpreted as vertices and connecting Markov
basis are interpreted as the edges of a graph, B = {xp. x5, %, %, %o, X0, Xyq. Xy, Xy} and
W= {220, 25,27, 20,219, X193, X95.X47 }

Where
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T3 2 T[T (3] 7 ol I Il
I T[2 IERE o I I
Xp IT 3 3 o]- ™= 4]3 ]2 [ _ Bl N I
61 71 7 70 | Xz [ 6] T 7] 20
5| 71 7| 20
3 I S
N B EN {122
ol 2 i 4 1] 2 1 4 X _ _
Xg[ 32 [2 [ @ "% [ 2[2 |53 [°¢ ol I R ¢
& T 71 20 [ 7 7 0 [ 1 7] 20
I I TT I T3] 1] 3
o B B T3 I[2] 1] 2
23] 4| @ _ Xg[ 1|3 |5 ] @
Xr= 1 Ko = L 3 ['] i
6 s 71 217 Fsr ot 6] 7] 7] 0
Ao I3 (07 IT3[ 0] 7
I 2] 1] 2 7 (1 |1 |2 12| 1| 4
Xg = 0] 3] 6] 9 I,xy0=[0 [3 [ [0 e T O
6 1 7|20 [ T 7 |20 61 7 71 20
313 (1 |7 303 (1 |7 312 [ 2] 7
‘11' 5 f,D ; IERERE IENERE
Kiz = - %13 712 |3 0 112 5 | @
L 51 7 7 0| Xwa| 6| T| T[ 20
3] 1] 3] STIT3T T3
E - ol T2 1| 2 < I 21| 2
Xig= ; :: :} 23 X6 = 33 T 0 S I R B
' 6| 1| 7| 20 6 7 7[ 20

Step (7):We can find the toric ideals by using corollary 12 for each contingency tables. Then the toric ideals that correspond
the Markov basis that shown in the a previous figure is:
I,=<PF —FF FF —PFF FF -FF FP, —FF FF —FP FF -FF FPE —FF PP
— PP PP, —PFP, =
I, == 0,005 — 0.005,0.0075 — 0.02,0.0025 — 0.01 ,0.005 — 0.01,
0.005 - 0.02.,0.01 —0.03,0.01 — 0.0075 ,0.0075 — 0.02 ,0.005 — 0.04 =

= [, == 0.0025 =

Step (8):we find the setT,.:B = {T\22,.T,22;. T, 325, T,32y, T3 2, T2 T2 25,
Tyazg, Ty32g, T3y, Ty3 2y, Ty3 200, T3 2400, T3 By, T3 245, T3 2405, To3 207, T3y |
Such that

Volume 4 Issue 1, January 2015

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Paper ID: SUB15546 2235




International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

0 A1 ]0 0 |0
Tazy KN 0| Trzg = e Toazg = RIS
[[1] 0 [|1]0 TTo
1|01 0 0 0l -
Tr Zy = 0 Teze= [0 141 Tz = 0 N
[[0]1 01 a0
0f-1] 1 -1 0 110
Ti’ Z7 0 Ti’ ZB = 1 1 K Ti’ Ty = 011
o] 1| -1 0 0 0 (0
0[]0 110 B 5
Twzip= [ 1] 0} ir@Zu= [0[0]0 Tezp= 1[0 1
110 -1 110 0l-1
1({0]-1 0 ] 0 -1
Tyeziz  [0]0]0|Tw2e= [0]1[1 |-Tr2s= [0]-1
1[0]1 o[ 11 3 5
0 [ 1] T]1]0 TTol 1
Ti’: g = 0 0 0 rr-! Zy7 = -1 110 _.Tr: Eyp = 100
0 ]-1]1 ofofo 0 (0] 0

Step (9): We find the set{T .z x;. T\2x,. T 2x,, Tooxg, T2, To2x Tox,, Toox, T2z, Toaxg, Tz To2xy, Tk,
Tyaxy. Traxyy Toaxys, Tz Toax, .} © A7) (w3 t-fibers) wherer®t = (9,7, 4,6, 7, 7)". We have.

I3[ 2[%® I3 [2 ] 9 ST 2] 9
T 2] 217 ITI[2] 7 1 2] 7
Taxg=| 1[ 2[ 1[4 |, Tex,=[ 0|3 [T 3|, Tex,=[ 1]2]1] 4
5] 7] 7] 20 3 I I 5770
5[ (2 [ ¢ 2]4 ]3| ¢ = 4 J 2
311 |3 7 311 3 i ; 15 1
T?"'EXS =l oJ2]2 4 J'Tr5x4 =[1]2]1 4 ’Trs'xE = 6|7 7 20
5 7] 7 0 61 77| 20 L
e TTI(5 [0 NER R
i i N ERE T | Tex.=[2[2[1] 7
L1122 Vrex,=[T 2T [ 2] ° [I[2]i[=
Toxe=[6[T1T 10 """ 13171 s 7720
Step (10): Use remark 21 and theorem 22 to find the graph
013 E 2 HENERE 126 [0
B e e T3 (07 T3 07
= - ¥ X - 2 £ T =R = p) :
T 1%a= r* %10 21 174 A Xy =12 1 [ 2
70~ [ 5§17 7 | 517 [ 720
T 1269 T2 [5[% T[2[3[ ¢
R RN 121217
ToeXyp= [T (20 [ & | Te%Xq3= [T [ 2 [ 12 | Tex. = L1202
5717 [0 7 (T[22 " * [6[T[7T[20
N ERERE S EENERE NE R
ST (37 NN I
Tr%is =510 T a | Toexye= T2 [T [ 2 |- T X07 T 313
57720 57720 AEEERED
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3Xg
Tax T,3x T,3%,
T 3%y " T 3% r2 310 X2 Toawng, T,axe

Tz,
T az/s

Tax Tax T3xg T axy T ax
r o3 ¥ AT TY.EI Xy T.i,.il X13 T.3xg TY.H X7

Figure 4: The graph T,2G = (T,2R.T,2 W, H(B)) = A~*[r*#],rm = A~*[r*#]g, where the contingency tables interpreted as
vertices and connecting moves are interpreted as edges of a graph,
TR ={rixprie,rix,rieg rieerieg vl rie L ring ) and
T=W ={rfx, rie, rix i, rixg rie, rix . rin o rin L
Step (11):

n n

Use corollary 19 to find the toric ideal Iy =< F.F.x— B Pyt Lj=1L2 ...Eand Lk=0.-.— , such that

i<jandl <k >=<P,P, — B,F, ,P,P, — P,P,, P,P, — P,F,, P,P, — B,P,, P,P, — P,P, , PP, — P,P, , P,P, —
PEPEJPiPE_P:PFJPLPQ_PEPF}

If g = sv,thenTB = {Tev2y. Tov 2, Tor 22 Ter 24 T 25 Top 26 T 27, T 2o,

TorZo Tor 2y Ter Zas o T Zaa Ter 2y Ter Zaa 0 Tar 250 Tor 2060 Tor 2070 Top Zaa

ofof 0 0]1]-1 0 |0
Tozs= [0l 111l TerZz= [0]1]1 | 2= [1 [0
0]-1 1 of0]0 -1 (0] 1
1| 0]-1 01010 1 |-1(0
Tozs= 110l 11 %2=[1-1]0]'T=+2= [0 0]0
0|00 -1 |1 [0 -1 1(0
1| -1(0 0]1]-1 1 |01
Torzy = -1 1|0 Twze= 0] 0] 0]" T2y = 0 1010
ol olo 0l-11 1 -1 |0 ]-1
ol 00 0f-1]1 _ 010
Tozio= [0 1] 1t lerZs = [0 11 |'T%R2= [1]0]1
ol 1]-1 o100 1]10]-1
1101 00 |0 -1 |1 |0
Terzy3: 110]-1 T2, = 111 10 TZys = 0 01ln0
01010 1 |-1 (0 1 |-1]0
-1 1] 0 0j-1] 1 -1 01
Tozie= [1 1] 0t TerZ-=[0] 0] 0 TTie= [0]0]0
ofof0 0l 1]-1 110]-1
Also, we find the set {Tzy 2. Toy %4, Tor 23, Ty 23, Toy 24, Ty X5, Ty 25Ty 27, Ty x5,

Tor 25, Top 240 Top 233, Ty 20, Ty 243, Ty 244, Ty 245, Ty %46, Ty 247} € A~ [srt] (srt-fibers) where, srt = (9,4,7.7,7.6),
such that
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2 |48 2134 9 21413 (¢9
121 ] 4 ]3] o] 4 1 [2] 1[4
TerXo= N S T I B Y A Rl S B AX =T 11317
7 7 6 | 20 T 76 [ 20 T 17620
TTE 30 S EN A HEN
= - 21 [1] 4
22 |0 4 P21 ] 4 ], Tepxg = -
Tj,r.xa 3 I ] 7 ’ TS?"x4 =3 1 3 7 S 202 2 7
T T 6™ TIT 6] IENEIE
I[5]2] ¢ 51229 ? ] i 3
11| 2 [T [2]1 ][4 - :
s T T T a3 7] Ter%e = % % 2 ;0
ToXe= [ 7 716 | 20 T [7 6 | 20
T 513 [0 [0 2] 1] @
il = T 1 1 2 4 1] 2 1 4
T.Xe_ = JT.X,0=10 |3 |4 | 1|, Tox,,=[0] 3] 2] 1
i T 7T 6] 0] =™ =171 (30| ~ T 7[5 ™
AENE 512 [2 [ 9 S[2[2[09
Fa s —_ =] K — ] 2
ToXiz=[ T35 [ 7 ' TerXaa =12 1 1 - T %y, R
N AT T 7] 6] 20 T 7 6] 20
I = TT 0 3[4 2] @ ENERER
T x TS IPEENE I
srR15=— ] 517 | T Xyg = SIT {37 |oTxyy =32 [2]7
7 7 & 0 r 7 7 & | 20 T1716] 20
Now, use remark 21 and theorem 22 to find the graph T, G = A~ ![srt]g.
TS‘?"XE T..x T_..x T .=
sreg sr10 M2 Toxge To¥e
.
P ¢ . ) »
7
= T,z T2 Tz
Ts'f' &
z
T |z T 213
sr{~11 Bl Tgrzlﬁ TwZJ_?
=rig
. “e
T _x
T Terko Ty ToXiz Toxs Doy
Figure The raph RN R EAERI R s
g X . grap (Z)02)004E=)
1,6 = (T,R.T, W, H, {EJ} = A7 [srt]mm = A [sri]g, _| Taxon1:AGCTGA TTG GCCCG TTTTT G
where the contingency tables interpreted as vertices and ® | Taxon2: AGA TC TATC GA AACAAA TT C
connecting moves are interpreted as edges of a graph, where Taxon3: AT TCA GATCTTTTAAAATTC
Tl = {Torip Ty Top Xy Top X Tor o, Tep Xy Top Xy Top Xy T 2y e e e
} and L) @;&@}31@; _____
T W = [T %4, Top 20, Top X5, Top X7, Top 2o, Top g, Top X4, Tor 45, Do e Taxonl: AGLCA TTG - C D:': G TTIT G
Taxon2: A GAC T AT C Aa4 .—.IC C.—. .—h—:T
Step(12):Use the 18 x 3 x 3 -contingency tables (¢-fibers) Taxon3:A T TA G-"-': AT TT AAA AATTC
in step (6), 18 x 3 x 3 -contingency tables (gt-fibers) in AT T3 2]
SS?\?A(Q) to find the permutation of nucleotides in aligned o h"ﬂ;;i“iﬁ:\“‘“&“—‘“{ CEEL‘ TTTTTG
sequences. 2| Tavon? :ACA TC TAT C A& A4 —C——' TTTC
Then the change in the type of DNA sequences under the Hons s et - A
. Taxon3: AT TCA G .—._C ATTTAAA TTTC
Markov basis.
Be as Figure 3 where
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0E000000 000000
WEASAES WENEASNAZNAS) WEASAENASAES LVEAEAES
. —| Taxonl:AGCGATT G AACCG ATTTTT G +.. —|Taxon1: AGCTGTTG 4 ACC G G TTTG G G
: Taxon2: AGAC T AT C AAA ACTA ATTT C 5 | Taxon2: AGA TC AT CAAA AC CATTC C C
Taxon3: AT TA GATC AATTA GA ATTTC Taxon3:A T TCAATCA ATTAAA TTC C C
GLERLELE®E ELELELE®RE®
4. — | Taxonl:AGCTGA TTG AACCGTTTT G G +. —| Taxonl:AGCTGA TTG AA CCGTTTT G G
4~ | Taxon2:AGA TC TATC AA AACATTT C C 6 ™| Taxon2: AGA TC TATC AA AACATTT C C
Taxon3:AT TCA GATC AATT AATTTC C Taxon3:AT TCA GATC AATT AATTTC C
2@200E®E @EEL@OEEE
+. = | Taxon1:AGCTGA TTGA A GCATTTT G G r..—| Taxoml:AGCTGA TTG AGCCGTTTT G G
57| Taxon2: AGA TC T AT CAA GATATTT C C 7 | Taxon2: AGA TC T AT C AG AACA ATT C C
Taxon3:A T TCA GATCA A TTGATTTC C Taxon3: AT TCA GATC ATTT AAATTC C
AELLLEEEE And the change in the type of DNA sequences under the
. = |Taxon1: AGCTGA TTGA AGG ATTTG G G action of »2* on the set of Markov basis. Be as Figure 4
| Taxon2: AGA TC T AT CAAGGTA TTC C C where
Taxon3: AT TCA GATCA WTTGATTC C C
@EEOEEOLED
GGG G G GG T _ | Taxonl: AGCTGA TTG A AAGGCG A A AT
e e %0 | Taxon2: AGA TC TATC A AAGG A CTTTT
+. — |Taxon1: AGCTGA TTGAAGG G TTGG G G FAGA TC TATC A AAGE A
77| Taxon2: AGA TC T AT CAAGGCA TCC C C Taxon3: AT TCA GATC A AATTTAGGGT
Taxon3: AT TCA GATCA ATTAATCC C C o P e T e e i T 1
2000
T o T = _ | Taxonl:AGCTGA TG A AA GGCTA AATT
WEHZNLNL NN N3RS Teaxy= o o .
_ |Taxon1: AGCTGA TTGA AAG G TTGG G G TaxonZ: ACA TCTTC ARA GG ATTITIT
*2 7| Taxon2:AGA TC T AT CAAA GCTTCC C C Taxon3:A T TCA GIC 4 AATTTCGGGTT
Taxon3: AT TCA GATCA AATATTCC C C coee000e0
T 3 e Ty, = Taxonl: AGCTGA TTG AA GGG CTA A AT
"k_,-’"k_,-’"k_,-’ "k_.-"'k_,-—’ ¥ F A . . . - .
_ Taxnnl:.—'a'fTC'.—a TGA AAAG G TTGG G G G Taxon2: AGATC TAT C AA GGGATTTTT
¥ | Taxon2: AG TC TT CAAA AGCTTCC C C C Taxon3: AT TCA G ATC AATTTTCGGGT
Taxon3:AT CA GTCA AA ATATTCC C C C eToeaae el
WVEAZRASNAEASASS \aihes
TN Toix, = Taxonl : AGCTGAT G AAGGG CTTAAT G
\\_,-'\\_,-'\\_,-' \\_,-'\\_,-' ¥ = . . - .
_ Taxn:unl:.—ilf"l'lf'_-i TGA AAGG TTTGG G G G TaxonZ:AGATC TT L AAGGLATTITT C
¥ 7| poxon2: AG TC T T CAAA GGTTTCC C C C Taxon3:AT TCA GIC AATTTTC CGGIC
Taxon3:AT CA GTCA AATTCTTCC C CC A AR
WEANTANEANEA SN NSNS
Yy | "Taxon1:AGCTGA TTG AGGGCCTTA AT
@E00EODEE Tpx,= oG G acoete
_ | Taxon1: AGTGATTG 4 AAGG G TGG G G G Taxon2:AGA TC TATC AGGCGAATTTTT
1T Taxon2: AG TC TAT CAAA GGCTCC C C C Taxon3: AT TCA GATC ATTTTTC CGGT
Taxon3: AT CAGATCA AATTATCC C C C Plolololelelo0e)
0Tz T _| Taxonl: AGCTGA TTGAGGGCCTTGA G
i %5 = | Taxon2:AGA TC T AT CAGGGAA TTCT C
_ | Taxon1: AGCTGTTG A AGGT G TGG G G G PAGA TC T AT CAGGEL ,
T2 7 Tovon2: AG ATC AT CAAGGTCTCC C C C Taxon3: AT TCA GATCATTTTTC CAG C
Taxond: 4 TTCA ATCA ATTCATCC C CC @?T??TTT@
WVENEAZASAENSNASAAES
GG oG a0 T _| Taxonl:AGCTGA TTGAGGCCCTTGG G
e %6 7| Toxon2:AGA TC T AT CAGGAAA TTCC C
_ | Taxon1: AGCTGA TTGA AGG G TTGG G G FAGA TC T AT CAGG c
*12 7| Taxon2: AGA TC T AT CAAGGCA TCC C C Taxon3: AT TCA GATCATTTTTC CAA C
Taxon3: AT TCA GATCA ATTAATCC C C A A AR
REAENENEAENZZESDS
o o o o P o o _| Taxonl:AGCTGA TTGAGCCCCTTGG T
ERENEREEN O ey Teax,= S . A
_ | Taxon1: AGCTGTTG A AGC G G TTGG G G TaxonZ: AGA TC TAT CAGAAAATICC T
X4 = Taxon?: AGA TC AT CAAGAC CATCC C C Taxon3: AT TCA GATCATTTTTC CAAT
Taxon3: AT TCAATCA ATTAAA TCC C C
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MEE@EDOE ENEIONE « ION8
Toix. = Taxonl: AGCTGA TTG GGCCCCTTTG T T x. = Taxonl: AGCTGTTG AGGC CCGGTTTG
e Taxon2: AGA TC TAT CGGAAAATTT C T et Taxon: AGA TCAT C AGGAAACCA AAC
Taxon3:AT TCA GATCTTTTTTC C CAT Taxon3:A T TCAATC ATTTTT AAA AAC
e BICl0l0Gl00[006)
Toix. = Taxonl: GCTGTTG GGCCC CCTTTTG T Tox. = Taxonl1: AGCTGA TTG AGGGCCGTTTG
TE Taxond:GA TCAT CGGAAAAATTITCT el Taxon2: AGA TC TAT C AGGGA ACAAAC
Taxon3:T TCAATCTTTTTTTCC C CAT Taxon3:AT TCA G ATC ATTTTTA AAAC
PR 200000000
T axen = Taxonl: GCTGTTG GGCCC CCTTTGG T T 3. = Taxonl: AGCTGTT ¢ AGGGCCTGTTG G
o Taxon2:GA TCAT CGGAAAAATTTCC A e Taxon2: AGATC ATC AGGGAATCA AC C
Taxon3: T TCAATCTTTTTTTCC C A AA Taxon3: AT TCA ATC ATTTTTCAA ACC
@:@:@:@:@: @:@:@: @’@’@:@:@:@:@:@:@:
T ax, = Taxonl: AGCTGTTG GCCC CCTTTGG T T ox. = Taxonl: AGCTGA TTG AA GGGCGTT G G
o TaxonZ: AGA TCAT CGAAAAATTTCCT 747 | Taxon2: AGA TC TATC AA GGGACAA C C
Taxon3: AT TCAATCTTTTTTCC C AAT Taxon3: AT TCA GATC AATTTTAAAC C
DEEEEDEE 0100600666
T oax.. = Taxonl : AGCTGA TTGCCC CCTTGG TT T x. = Taxonl: AGCTGA TTGA A GGG CTTT G G
T | Taxon2: AGA TC T ATGAAAAATTC C AT 7% 7| Taxon2: AGA TC T AT CAA GGGATAT C C
Taxon3:AT TCA GATTTTTTIC C 4 AAT Taxon3: AT TCA GATCA A TTTTCATC C
aaaaaninan nDaaanininae
R S e S e S S e R el e S S e e
Tosx.n = Taxonl: AGCTGA TTGAGCCCCTTG G T T ox. = Taxonl: AGCTGA TTGA A AGGCTTT G G
o Taxon2:AGA TC TAT CAGAAAATTC CT T T Tawan2: AGA TC T AT CAA AGGATTT CC
Taxon3: AT TCA GATCATTTTTCCAAT Taxon3:AT TCA GATCA A ATTTCTIT CC
@EEE@EOLE 000060066
Toax,. = Taxonl: AGCTGA TTAGCC CCTTGATT T x. = Taxonl: AGCTGA TTGA A AAGC GIT G G
U T Taxon2: AGA TC T ATAGAAAA TTC TTT Sl Taxon2: AGA TC T AT CAA AAGACTT C C
Taxon3: AT TCA GATATTTTTC C AGTT Taxon3: AT TCA GATCA A A ATTATT C C
@:@:@:@:@:@:@:@: @’@’@’@’@’E’E:@:@:
T oax.. = Taxonl: AGCTGA TTAGGC CCTTA ATT T xo = Taxonl: AGCT GA TTGA AAAGG GTG G G
s Taxon2: AGA TC T ATAGGAAA TTTTTT e Taxon2: AGA TC T AT CAAA AGGCTC CC
Taxon3: AT TCA GATATTTTTC C GGTT Taxon3: AT TCA GATCA AAATTATC CC
@EOEELELEW L200@E
Toax.. = Taxonl: AGCTGA TTG AGGGCCTTA AT T oy = Taxu:unl:.—'aCTC_-a TC_J; AAAAGGGTGGGG
e Taxon2: AGA TC T AT CAGGGAA TTTTT e Taxon2:AG TCTTCAAAAAG GCTC CCC
Taxon3: AT TCA GATCATTTTTC CGGT Taxon3:AT CA GTCAA AAATTATC CCC
SO0/ elel- 160
Tosx.n = Taxonl: AGCTGA TTG AAGGCCTGA AT T oy = Taxu:unl:.—alf'Tlf'_-a TGA AAAAGGAIT GGG
i Taxon2: AGA TC T AT CAAGGAA TCTTT e Taxon2: AG TCTTCAAAAAG GTTT CCC
Taxon3: AT TCA GATCAATTTTC AGGT Taxon3:AT Ca GTCAA AAATTGTT CCC
Anq the change in the type of DNA seguences un.der the E200ELOEE
action of sr on the set of Markov basis. Be as Figure 5 Tow.. = Taxonl: AGCTGATG A AA AAGGIT GGG
where LT Taxon2: AGATC TT CAAA AAGCTT CCC
e TH.KIIIHS::'& TTC:'E GTC:'EL :'L-'i :'i:'i T:'ELTT C C C
ENERCHR RN RNy
_ Taxonl1: AGCTGA TTG AGGC CCGTTTT T o A o o T e
TorXo=| Ivon2:AGA TC T AT C AGGAAACA AAT LS
T 3_". 1: oy L"-'TC '-TTT-TT - AT Tox.. = Taxonl: AGCGA TTGA AAAAG GATT G G
aHon3: 2 S L Soan o TaxonZ: AGAC T AT CAAA A AGCTTT CC
Taxon3: AT TA GATCA AAAATAGTIT C C
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T x..= Taxonl: AGCTGA TTGAAAAG CGTT G G
13 T . . — S — e e . S
TaxonZ: AGA TCTATCAAAAGACTT C C
Taxon3: AT TCA GATCAAAATTATT C C
T x.. = Taxonl: AGCGA TTGAAAAG CG G TTGG
e i4 — . . e s s . R
Taxon2: AGAC TATCAAAAGAC CATCC
Taxon3: AT TA GATCAAAATTAAA TCC
T x.c= Taxonl: AGCGA TTGAAAGG CG G TTGG
Br=i5 — . . I — P . -
Taxond: AGAC TATCAA AGGAC CAACC
Tamon3: A A GATCAAATTTAAA ACC
Cgl0l00e10/0
T x..= Taxonl : AGCTGA TTG AA GGG CGTT G G
X1 = . . o
Taxon2: AGA TC TATC AA GGGA CAA C C
Taxond: AT TCA GATC AATTTTAAAC C
T x.. = Taxonl: AGCTGA TTG AA GGCCGTTT G
17 = R - PR —
TaxonZ: AGA TC TAT C AA GG AACA AT C
Taxon3: AT TCA GATC AATTTT AA AT C
Remark 24:

i. We refer to D), @, @, @, &®and(®) inexample 23to

the frequencies of thepatterns in DNA sequences.
ii. We refer@to the hidden in the pattern frequency of
DNA sequences.
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