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Abstract: In this paper, we present a finite element modeling of A0 and S0 Lamb modes in a plate with an internal defect. The complex 

mother wavelet Shan 1-1.5 and the 2D fast Fourier transform are used for the post processing of the FE modeling predicted 

displacement field in order to compute the power coefficients of the reflected and the transmitted Lamb modes by the defect. The 

comparison between coefficients found by the two processing methods shows a good agreement. 
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1. Introduction 
 

Ultrasonic waves are widely used in industry for detecting 

and characterising defects in materials. Lamb waves are 

preconized for large structures like plates and sheets because 

they can propagate over long distances without significant 

attenuation, while interrogating the whole structure. The 

propagation modelling is generally performed by the finite 

element method leading the displacement signals in the 

structure and the processing of those displacement signals is 

made generally by the Fourier transform or since a few years 

by the wavelet transform. In our last paper [1], we 

determined dispersion curves of symmetric S0 and 

antisymmetric A0 Lamb modes of a safe plane steel plate. 

These curves were obtained by the WT processing of 

displacement field and were compared to analytic curves. 

Several mother wavelets are tested showing that the complex 

mother wavelet Shan 1-1.5 gives the better agreement. In this 

paper, we try to test the effectiveness of the complex mother 

wavelet Shan 1-1.5 processing of Lamb modes 

displacements in a plate with an internal defect. We present a 

finite element (FE) modelling of A0 and S0 Lamb modes in 

a plate with an internal defect. The complex mother wavelet 

Shan 1-1.5 is used for the post processing of predicted 

displacement field in order to compute the power coefficients 

of reflected and transmitted Lamb modes by the defect. The 

2D fast Fourier transform is first used in order to make a 

comparison between coefficients found by the two 

processing methods. 

 

2. Lamb Waves Theory 
 

2.1. Lamb Equation 

 

We consider a Lamb wave propagating in thin isotropic plate 

of thickness e=2d along the x direction of a Cartesian 

coordinate axis. (Figure 1) 

 

 
Figure 1: Schematic of the considered isotropic plate 

 

The boundary conditions applied to the stress-free faces of 

the plate lead to the characteristic equations (Rayleigh-Lamb 

equations) [2-3]: 

 𝑘2 + 𝑠2 2 sinh 𝑞𝑑 cosh 𝑠𝑑 
− 4𝑘2𝑞𝑠 cosh 𝑞𝑑 sinh 𝑠𝑑 = 0 

(1) 
 𝑘2 + 𝑠2 2 cosh 𝑞𝑑 sinh 𝑠𝑑 

+ 4𝑘2𝑞𝑠 sinh 𝑞𝑑 cosh 𝑠𝑑 = 0 
 

Where: 𝑠2 = 𝑘2 − 𝑘𝑇
2  and 𝑞2 = 𝑘2 − 𝑘𝐿 

2  and 𝑘is the wave 

number, 𝑘𝐿 𝑘𝑇 is the longitudinal (shear) wave number. 

 

2.2. Dispersion curves 

 

The numerical resolution of equation (1) permits to obtain 

dispersion curves for symmetric and anti symmetric Lamb 

modes: Figure 2 present these curves for an isotropic steel 

plate: the product frequency-thickness f.e versus the wave 

number k (a) or versus the phase velocity v (b) or versus the 

group velocity vg(c). 
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Figure 2: Exact dispersion curves plottedin(f.e,k) plane (a), 

in(f.e,v) plane (b) and in(f.e, vg) plane (c). For a steel plate 

 

2.3. The displacement field 

 

The expressions of displacements𝑢𝑠𝑥and 𝑢𝑠𝑦 of symmetric 

modes are given by: 

 

𝑢𝑠𝑥 = 𝐴𝑘  
𝑐𝑜𝑠ℎ 𝑞𝑦 

𝑠𝑖𝑛ℎ 𝑞𝑑 
−

2𝑞𝑠

𝑘2 + 𝑠2

𝑐𝑜𝑠ℎ 𝑠𝑦 

𝑠𝑖𝑛ℎ 𝑠𝑑 
 𝑖𝑒𝑖 𝑘𝑥−𝜔𝑡   

(2) 

𝑢𝑠𝑦 = 𝐴𝑞  
𝑠𝑖𝑛ℎ 𝑞𝑦 

𝑠𝑖𝑛ℎ 𝑞𝑑 
−

2𝑘2

𝑘2 + 𝑠2

𝑠𝑖𝑛ℎ 𝑠𝑦 

𝑠𝑖𝑛ℎ 𝑠𝑑 
 𝑒𝑖 𝑘𝑥−𝜔𝑡   

 

The expressions of displacements 𝑢𝑎𝑥  and 𝑢𝑎𝑦 of anti 

symmetric modes are obtained by changing in the 

expressions (2), the subscripts (s) by (a) and (sinh) by (cosh) 

and vice versa. 

 

2.4. Power coefficients 

 

After interaction of the incident Lamb mode with a defect, 

there is apparition of a finite number of m Lamb modes in 

the plate, before and after the defect. The reflected 𝑅𝑚and 

transmitted 𝑇𝑚power coefficients of an m Lamb mode are 

defined by: 

 

𝑅𝑚 =
∅𝑚

𝑅

∅𝐼
 , 𝑇𝑚 =

∅𝑚
𝑇

∅𝐼
 (3) 

𝑤ℎ𝑒𝑟𝑒: ∅𝐼 =  
𝐴𝐼

𝑢𝑦
𝐼
 

2

, ∅𝑚
𝑅 =   

𝐴𝑚
𝑅

𝑢𝑦
𝑚
 

2

, ∅𝑚
𝑇 =  

𝐴𝑚
𝑇

𝑢𝑦
𝑚
 

2

 (4) 

 

∅𝐼 , ∅𝑚
𝑅 and∅𝑚

𝑇  are powers respectively of the incident, 

reflected and transmitted m Lamb modes. 𝑢𝑦
𝐼 and𝑢𝑦

𝑚are 

normalized displacements respectively of the incident and of 

m modes. 𝐴𝐼 , 𝐴𝑚
𝑅 and𝐴𝑚

𝑇  are amplitudes respectively of the 

incident, reflected and transmitted m Lamb modes. Those 

amplitudes are determined after processing applied at 

displacements of Lamb signals in the studied structure. 

 

3. Modelling of Lamb Waves Propagation: the 

Finite Element Method 
 

The spatial discretization of a plate and the application of the 

virtual works theorem allow writing the motion equation in 

the following matrix form: 

 𝑀  𝑈  +  𝐾  𝑈 =  𝐹  (5) 

 

Where:  𝑀  is the global mass matrix,  𝐾  is the global 

stiffness matrix,  𝑈  is the displacement vector,  𝑈   is the 

acceleration vector and  𝐹  is the vector of applied forces. 

The damping is not considered in this study. 

To solve the equation (5) and find the displacement field 

 U , we use the Newmark method. The construction of the 

solution at time 𝑡 + ∆𝑡 is done from vectors at time t : 𝑈𝑡 , 

 𝑈 𝑡  and  𝑈 𝑡 according to the following algorithm [4]: 

 𝑈 𝑡+∆𝑡 =  𝑈 𝑡 + ∆𝑡   1 − 𝑎  𝑈 𝑡 + 𝑎 𝑈 𝑡+∆𝑡   

(6) 
 𝑈𝑡+∆𝑡 =  𝑈𝑡 + ∆𝑡 𝑈 𝑡 

+ ∆𝑡2   
1

2
− 𝑏  𝑈 𝑡 + 𝑏 𝑈 𝑡+∆𝑡   

Wherea and b are Newmark integration parameters, ∆𝑡 is the 

time step. 

 

4. Post processing of Displacements Field 
 

4.1. Bi-dimensional Fourier transform (2DFFT) 

 

The bi-dimensional Fourier transform of the space-time  

evolution of displacements u(x,t) is defined by the formula: 

 

𝐹 𝜔, 𝑘 =  𝑓 𝑡, 𝑥 𝑒− 𝑗𝜔𝑡 −𝑘𝑥 
+∞

−∞

𝑑𝑡𝑑𝑥 (7) 

 

Where: 𝜔 is the angular frequency and j is the complex 

number such as j
2
=-1. 

Applying the bi-dimensional fast Fourier transform (2DFFT) 

to displacements u(x,t) picketed up on equally spaced points 

of the upper face of the plate, the propagating Lamb modes 

can be isolated and identified in the frequency–wavenumber 

dual space, permitting an explicit analysis of multi-mode 

Lamb waves [5].  

 

4.2. Wavelet transform (WT) 

 

In WT, a varying window function is used, which can be 

dilated and compressed and is called the mother wavelet. A 

wavelet is defined using two parameters: a scaling parameter 

a, which is the inverse of the frequency, corresponds to a 

dilatation or compression in time of the window function and 

a translation parameter b, which translates the window 

function along the time axis. 

 

The continuous WT of a signal f(t) is defined by [6]: 

 

𝑊𝑓 𝑎, 𝑏 =
1

 𝑎
 𝑓 𝑡 𝜓  

𝑡 − 𝑏

𝑎
 

+∞

−∞

𝑑𝑡 (8) 

 

Where: 𝜓 𝑡 is the wavelet function, 𝜓 𝑡  is the 𝜓 𝑡  

complex conjugate. 𝑊𝑓 𝑎, 𝑏 are the continuous WT 

coefficients. The representation of  𝑊𝑓 𝑎, 𝑏  2in the plane 

(a,b) is called scalogram. 

In the case of Lamb waves, the localization of the peak on 

the scalogram indicates the arrival time of the group velocity 

corresponding to the parameter b at the frequency 

corresponding to the scale parameter a [7]. 

 

5. Numerical Simulation 
 

5.1. The Studied Applications 

 

We compute reflected and transmitted power coefficients for 

a plate which contains an internal, rectangular and 
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symmetrical defect (figure 3). A steel plate is considered 

with thickness e=2d=6 mm, Young’s modulus E = 2e11 Pa, 

Poisson’s ratio = 0.33, density =7850 kg/m
3
, longitudinal 

velocity vL=6144 m/s and shear velocity vT=3095 m/s. The 

defect is with height (h) and width (1mm). 

 
Figure 3: The considered steel plates. 

 

The simulation uses a finite element model, implanted in the 

ComsolMuliphysics code. The mesh must be able to 

represent the physical characteristics of the wave 

propagation. We choose a quadrilateral mesh and the 

smallest wavelength 𝜆𝑚𝑖𝑛  must contain at least 10 spatial 

steps. So spatial steps ∆𝑥 and ∆𝑦 must verify the condition 

(9) while around the defect, we choose a triangular mesh for 

a thin step (figure 4). For the time step, ∆𝑡 must verify the 

condition (10) which depends on the longitudinal wave 

velocity 𝑣𝐿. 

 

𝑚𝑎𝑥 ∆𝑥, ∆𝑦 <
𝜆𝑚𝑖𝑛

10
 (9) 

Δ𝑡 < 0.7
𝑚𝑖𝑛 ∆𝑥, ∆𝑦 

𝑣𝐿

 (10) 

 
Figure 4: Schematic of the steel plate mesh 

 

5.2. Generation of Lamb Modes 

 

To generate the S0 or A0 Lamb modes, we apply on the left 

edge of the plate (x=0, y) the analytical displacements 

(equation 2) normalized by the power flow through the plate 

thickness (figure 5a, 5b). The spatial distribution of the 

displacements is applied during 10 cycles tone burst 

weighted by a Hanning window centred on the excitation 

frequency (figure 5c). The adopted product frequency-

thickness f.e is equal to 1.35 MHz.mm (figure 5d).  

 

 

 
Figure 5: Normalized displacements applied to the left edge 

of the 6 mm thick steel plate to generate S0 mode (a) and A0 

modes (b). Time profile of the excitation (c) and the adopted 

frequency-thickness product excitation: 1.35 MHz.mm (d). 

 

5.3 Displacements of S0 and A0 Lamb modes 

 

For the S0 and A0 Lamb modes and for itch value of the h/e 

ratio: 1/6, 2/6, 3/6, 4/6 and 5/6, we pick up on the upper face 

of the plate, displacements of monitoring zones before and 

after the defect we show in figures 6 and 7 those 

displacements for the value of the h/e=3/6. 
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Figure 6: Time evolution of displacementsof monitoring 

zones before (a) and after (c) the defect and at two points 

before (x=108 mm) (b) and after (x=250 mm) (d) the defect 

when S0 is the incident Lamb mode and h/e=3/6. 

 

 

 
Figure 7: Time evolution of displacements: of monitoring 

zones before (a) and after (c) the defect and at two points 

before (x=73 mm) (b) and after (x=200 mm) (d) the defect 

when A0 is the incident Lamb mode and h/e=3/6. 

 

5.4 2DFFT post-processing 

 

For a default h/e and for incident S0 and A0 Lamb modes we 

apply the 2DFFT to displacements of monitoring zones 

(figure 6a, 6c, 7a and 7c) in order to determine the energy 

repartition in the dual space (k,f.e). Figures 8 and 9 present 

the superimposition of these curves to analytic dispersion 

curves. The figures 8a (9a) presents the incident S0 (A0) 

mode (k>0) and the reflected modes (k <0) and the figures 8c 

(9c) presents the transmitted modes. They show also that 

there is no mode conversion at the reflection and the 

transmission of the incident S0 or A0 Lamb mode by the 

defect. This is due to the symmetrical nature of the 

considered defect.  

 

At 1.35MHz.mm : figures 8b (9b) show amplitudes 𝐴𝑆0 
𝐼  and 

𝐴𝑆0
𝑅  (𝐴𝐴0

𝐼  𝑎𝑛𝑑 𝐴𝐴0
𝑅 ) of incident and reflected modes and 

figures 8d (9d) show the amplitude 𝐴𝑆0
𝑇  (𝐴𝐴0

𝑇 ) of the 

transmitted mode when S0 (A0) is the incident mode. 

 

 
Figure 8: Superimposition of analytical dispersion curves to 

the energy repartition in the dual space (k,f.e) obtained by 

the 2D-FFT processing of displacements. Incident S0 mode 

and h/e=3/6. 

 

 
Figure 9:Superimposition of analytical dispersion curves to 

the energy repartition in the dual space (k,f.e) obtained by 

the 2D-FFT processing of displacements. Incident A0 mode 

and h/e=3/6. 
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computed. Then reflected 𝑅𝑆0 (𝑅𝐴0) and transmitted 𝑇𝑆0 (𝑇𝐴0) 

power coefficients of S0 (A0) Lamb mode are deduced using 

the equations 3 and 4. Figures 10 shows power coefficients 

versus h/e ratio.  
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Figure 10: Power coefficients of reflected (R) and 

transmitted (T) Lamb modes by using the 2D-FFT when the 

incident Lamb mode is S0 (a) and A0 (b). 

 

5.5 WT post processing 

 

For a default h/e and for incident S0 and A0 Lamb modes, 

we apply the Shan 1-1.5 WT to displacements collected at 

two points located before and after the defect (figure 6b, 6d, 

7b and 7d) in order to determine the 3D plots of wavelet 

coefficients (figure 11a, 11b, 12a and 12b). For incident S0 

(A0) we plot the “coefficient lines” at figures 11c and 11d 

(12c and 12d) for the scale a=65 (a=68) corresponding to the 

peak value of wavelet coefficients. The figure 11c (12c) 

shows amplitudes 𝐴𝑆0 
𝐼 𝑎𝑛𝑑 𝐴𝑆0

𝑅  (𝐴𝐴0
𝐼  𝑎𝑛𝑑 𝐴𝐴0

𝑅 ) of incident 

and reflected modes when S0 (A0) is the incident mode and 

the figure 11d (12d) shows the amplitude 𝐴𝑆0
𝑇  (𝐴𝐴0

𝑇 ) of the 

transmitted mode when S0 (A0) is the incident mode. 

 

 

 
Figure 11:3D plots of Shan1-1.5 wavelet coefficients for 

displacements before defect (x=100 mm) (a) and after defect 

(x=260 mm) (b). Coefficient lines for the scale a=65 before 

defect (c) and after defect (d). Incident S0, h/e=3/6. 
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Figure 12:3D plots of Shan1-1.5 wavelet coefficients for 

displacements before defect (x=73 mm) (a) and after defect 

(x=200 mm) (b). Coefficient lines for the scale a=68 before 

defect (c) and after defect (d). Incident A0, h/e=3/6. 

 

Powers ∅𝑆0
𝐼 , ∅𝑆0

𝑅  𝑎𝑛𝑑 ∅𝑆0
𝑇  (∅𝐴0

𝐼 , ∅𝐴0
𝑅  𝑎𝑛𝑑 ∅𝐴0

𝑇 ) of incident, 

reflected and transmitted propagating modes are then 

computed. Then reflected 𝑅𝑆0 (𝑅𝐴0) and transmitted 𝑇𝑆0 (𝑇𝐴0) 

power coefficients of S0 (A0) Lamb mode are deduced using 

the equations 4 and 5. Figures 13 shows power coefficients 

versus h/e ratio. 

 

 

 
Figure 13: Power coefficients of reflected (R) and 

transmitted (T) Lamb modes by using the Shan1-1.5 WT 

when the incident Lamb mode is S0 (a) and A0 (b). 

 

5.6 Comparison  

 

Figure 14 presents the superimposition of power coefficients 

obtained by the Shan 1-1.5 WT and by the 2DFFT for 

various values of the ratio h/e (1/6, 2/6,…, 5/6). The 

comparison between the two methods of analysis shows a 

very good agreement. We can note that the error in the 

energy balance is less than 1%. We can also note that the 

measurement of reflected coefficient (or transmitted 

coefficient) value can provide crucial information for the 

deep of defect. 

 

 

 
Figure 14: The superimposition of power coefficients of 

reflected (R) and transmitted (T) Lamb modes by using the 

2D-FFT (…) and the WT (__) when the incident Lamb mode 

S0(a) and A0 (b). 

 

6. Conclusion 
 

In this paper, we presented a finite element modeling of S0 

and A0 Lamb modes in a steel plane plate with an internal 

defect. The complex mother wavelet Shan 1-1.5 and the 2D 

fast Fourier transform were used for the post processing of 

predicted displacement field in order to compute power 

coefficients of reflected and transmitted Lamb modes by the 

defect. The concordance between the two processing 

methods proved good. This demonstrated the effectiveness of 

the complex mother wavelet Shan 1-1.5 processing of Lamb 

modes displacements in a plate with an internal defect. 

 

References 
 

[1] M. El Allami, H. Rhimini, A. Nassim, M. Sidki. 

"Application of the wavelet transform analysis to Lamb 

modes signals in plates", Electronic Journal Technical 

Acoustics, http://www.ejta.org, 2010, 8. 

[2] H. Lamb, "On waves in an elastic plate "Poc.Roc.Soc 

.London,1917.Ser .A. 

[3] I. Viktorov, “Rayleingh and Lamb waves”,Plemum 

Press New York, 1970. 

[4]  G. Dhatt, G. Touzot, “Unereprésentation de la méthode 

des éléments finis”, Maloine SA. Editeur Paris, 

Deuxièmeedition, 1984. 

[5] D. Alleyne, P. Cawley, “A 2-dimensional Fourier 

transform method for the quantitative measurement of 

Lamb modes”, in: D.O.Thompson, D.E. Chimenti 

(Eds.), Review of Progress in Quantitative 

Nondestructive Evaluation, Vol. 10A, 1991, pp. 201–

208. 

[6] Chui CK. “An introduction to wavelets”, San Diego, 

CA: Academic Press, 1992. 

[7] H. Jeong, Y.S. Jang, “Wavelet analysis of plate wave 

propagation in composite laminates”, Compos. Struct. 

49, 2000, 443-450 

0  20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

Time (micro sec)

M
ag

ni
tu

de

d 

TEST 

A 
A0 

T 

1/6 2/6 3/6 4/6 5/6
0  

0.1

0.2

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

h/e

Po
w

er
 c

oe
ffi

ci
en

ts

T 
S0 

S0 
R 

Energy

a 

1/6 2/6 3/6   4/6 5/6
0  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

h/e

Po
w

er
 c

oe
ffi

ci
en

ts

Energy

T 
A0 

R 
A0 

b 

1/6 2/6 3/6 4/6 5/6
0  

0.1

0.2

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

h/e

Po
w

er
 c

oe
ffi

ci
en

ts

T 
S0 

S0 
R 

Energy

a 

1/6 2/6 3/6   4/6 5/6
0  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

h/e

Po
w

er
 o

ef
fic

ie
nt

s

Energy 

T 
A0 

R 
A0 

b 

Paper ID: SUB15437 1854




