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Abstract: Basically this paper states about multi atlas segmentation and joint label fusion is better than any other methods for 
biomedical images. In this paper the images of brain are segmented in multi atlases and then joint label fusion is used. A target image is 
segmented by referring to atlases, i.e., expert-labeled sample images. As an extension, multi-atlas-based segmentation makes use of more 
than one atlas to compensate for potential bias associated with using a single atlas and applies label fusion to produce the final 
segmentation. This method requires higher computational costs but, as extensive empirical studies have verified in the recent literature. 
It is more accurate than single atlas-based segmentation. Enabled by the availability and low cost of multicore processors, multi-atlas 
label fusion (MALF) is becoming more accessible to the medical image analysis community. Recently, the concept has also been applied 
in computer vision for segmenting natural images. Errors produced by atlas-based segmentation can be attributed to dissimilarity in the 
structure (e.g., anatomy) and appearance between the atlas and the target image. 
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1. Introduction 
 
Atlas based segmentation is motivated by the observation 
that segmentation strongly correlates with image 
appearance. A target image can be segmented by referring to 
atlases, i.e., expert-labeled sample images. After warping 
the atlas to the target image via deformable registration, one 
can directly transfer labels from the atlas to the target image. 
Multi-atlas-based segmentation makes use of more than one 
atlas to compensate for potential bias associated with using a 
single atlas and applies label fusion to produce the final 
segmentation [1]. Single Atlas segmentation requires higher 
computational costs but, as extensive empirical studies have 
verified in the recent literature, e.g.,[16],[3], [22], it is more 
accurate than single atlas- based segmentation. Enabled by 
the availability and low cost of multicore processors, multi-
atlas label fusion (MALF) is becoming more accessible to 
the medical image analysis community. Recently, the 
concept has also been applied in computer vision for 
segmenting natural images [1], [21].Errors produced by 
atlas-based segmentation can be attributed to dissimilarity in 
the structure and appearance between the atlas and the target 
image. 
 
Recently for research researcher are focusing on addressing 
this problem. For instance, such errors can be reduced by 
optimally constructing a single atlas that is the most 
representative of the population using training data [12], 
[11], [18]. Constructing multiple representative atlases from 
training data has been considered and usually works better 
than single-atlas-based approaches. Multi-atlas construction 
is done either by constructing one representative atlas for 
each mode obtained from clustering training images [5], [2], 
[32] or by simply selecting the most relevant atlases for the 
unknown image on-the-fly [30], [1]. Either way, one needs 
to combine the segmentation results obtained by referring to 
different atlases to produce the final solution. Most existing 
label fusion methods are based on weighted 
voting[30],[16],[3],[17], [33], where each atlas contributes 

to the final solution according to a nonnegative weight, with 
atlases more similar to the target image receiving larger 
weights. Among weighted voting methods, those that derive 
weights from local similarity between the atlas and target, 
and thus allow the weights to vary spatially, have been most 
successful in practice [3], [17], [33]. One common property 
of these spatially variable weighted voting MALF methods 
is that the weights for each atlas are computed 
independently. It is taking into consideration the similarity 
between the warped atlas and the target image. These 
methods are less effective when the label errors produced by 
the atlases are not independent, e.g., most atlases produce 
similar errors. As a simple example, suppose that a single 
atlas is duplicated multiple times in the atlas set. If weights 
are derived only from atlas-target similarity, the total 
contribution of the repeated atlas to the consensus 
segmentation will increase in proportion to the number of 
times the atlas is repeated, making it more difficult to 
correct the label error produced by the duplicated 
atlas.[1],[4].Likewise, if the atlas set is dominated by a 
certain kind of anatomical feature or configuration, there 
will be an inherent bias toward that feature, even when 
segmenting target images which do not share that feature. 
As a result, the quality of the segmentation for the less 
frequent anatomical features/configurations may be reduced. 
Another class of label fusion methods performs majority 
voting (MV) among a small subset of atlases that globally or 
locally best match the target image, discarding the 
information from poor matching atlases [3], [7]. This paper 
derives a novel label fusion strategy that aims to reduce the 
bias due to the fact that atlases may produce correlated 
segmentation errors, without sacrificing the attractive 
properties of voting. The strategy is derived from 
formulating the weighted voting problem as an optimization 
problem over unknown voting weights, with the expected 
total error of the consensus segmentation relative to the 
unknown true segmentation being minimized. This 
formulation requires the joint distribution of label errors 
produced by any pair of atlases in the neighborhood of each 
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voxel to be known. In practice, this distribution is unknown, 
and we estimate it using image intensity similarity. 
However, unlike previous methods, similarity with the target 
image is not measured independently at each atlas. The 
similarity between the target and each pair of images is 
considered, which leads to an ability to explicitly estimate 
the probability that a pair of atlases produce the same 
segmentation error. They hypothesized that this strategy 
improves segmentation accuracy over existing techniques 
that consider atlas-target similarity independently [3], [33].  
 They used the dataset of the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI).3 ADNI MRI data include 
1.5 T structural MRI from all 800 subjects and 3 T structural 
MRI from 200 subjects. Our study is conducted using only 3 
T MRI and only includes data from mild cognitive 
impairment (MCI) patients and controls. Overall, the dataset 
contains 139 images (57 controls and 82 MCI patients). The 
images were acquired sagittally, with 1 mm 1 mm in-plane 
resolution and 1.2 mm slice thickness[1]. 
 
2. Multiatlas Based Segmentation 

 
 Let FT be a target image to is segmented and A1 = 
(F1,S1),……,An=(Fn,Sn) be n atlases. Fi and Si denote the 
ith warped atlas image and the corresponding warped manual 
segmentation of this atlas, obtained by performing 
deformable image registration to the target image. Each of 
the candidate segmentations may contain some 
segmentation errors. Label fusion is the process of 
integrating the candidate segmentations produced by all 
atlases to improve the segmentation accuracy in the final 
solution. Errors produced in atlas-based segmentation are 
mainly due to registration errors, i.e., registration associates 
wrong regions from an atlas to the target image. To test this 
hypothesis, they performed cross-validation segmentation 
experiments in manually labeled MRI datasets, and report 
significant improvements over earlier methods. Preliminary 
versions of this work appeared in [1], effectively reduce 
label errors. For example, the majority voting method [13], 
[19] simply counts the votes for each label from each 
warped atlas and chooses the label receiving the most votes 
to produce the final segmentation ST: 
 

ST(x)= argmax ∑ Si 
l(x)                        (1) 

 
where l indexes through labels and L is the number of all 
possible labels, x indexes through image pixels. S(x) is the 
vote for label l produced by the ith atlas, defined by 
 

Si 
l(x) = � 1 if si(x) = l 

 0 otherwise
�                       (2) 

 
 The recent work focused on developing segmentation 
quality estimations based on local appearance similarity and 
assigning greater weights to more accurate segmentations. 
For instance, the votes received by label l can be estimated 
by 
 

ST(x)= ∑ wi (x) Si 
l(x)                      (3) 

 
where wi(x) is a local weight assigned to the ith atlas, with 
∑n 

i=1 wi(x) = 1 
 They estimated the weight is based on local image 

similarity under the assumption that images with similar 
appearance are more likely to have similar segmentations. 
When the summed squared distance (SSD) and a Gaussian 
weighting model are used [33], 1 the weights can be 
estimated by  
 

wi(x) = 1
𝑧𝑧(𝑥𝑥)

 e - ∑𝑦𝑦ℇ 𝑁𝑁(𝑋𝑋) [ FT (Y) –Fi(y)]2 /𝜎𝜎          ( 4) 
 
where N (x) defines a neighborhood around x and Z(x) is a 
normalization constant. 
 
3.  Joint Label Fusion 

 
It is applied to multi label segmentation problems by 
producing weight maps as described below, using weighted 
voting to compute a consensus segmentation for each label, 
and selecting at each voxel the label with the highest value 
of the consensus segmentation. In binary segmentation, they 
are modeling segmentation errors produced in atlas-based 
segmentation as follows: 
 

ST(x) = Si(x) + δi(x)                                 (5) 
where δi(x) is the label difference between the ith atlas and 
the target image at x. 
 
The weighted voting framework, where at each x, consensus 
segmentation Si(x) is generated as the weighted sum 
 

ST(x)= ∑ wi (x) Si 
l(x)                                 (6) 

 
4. Hippocampal Subfield Segmentation 
 
To illustrate the performance of LWJoint on a segmentation 
problem with multiple labels, they apply it to the problem of 
automatic segmentation of the subfields of the hippocampal 
formation from oblique coronal T2-weighted MRI. The 
Coronal views of some subfield segmentation results 
produced by MV, LWGaussian, and thier method. 
Segmentation performance is evaluated using cross 
 
validation. Note that cross validation is performed 
twice,once to separate the dataset into an atlas subset and a 
test subset, and the second time to search for the optimal 
value of the label fusion parameters among the atlas subset. 
For outer cross validation, we randomly select 20 images to 
be the atlases and another 20 images for testing. Image-
guided registration is performed between all pairs of atlases, 
and between all atlases and the target image. Global 
registration was performed using the FSL FLIRT tool [35] 
with six degrees of freedom and using the default 
parameters (normalized mutual information similarity 
metric; search range from -5 to 5 in x, y, and z). Deformable 
registration was performed using the ANTS Symmetric 
Normalization (SyN) algorithm [4] with the cross-
correlation similarity metric (with radius 2) and a Gaussian 
regularizer with _ ¼ 3. After registration, reference 
segmentations from each of the atlases were warped into the 
target image space. 
 
Fig. 1 illustrates optimal label fusion parameter selection for 
the three methods in the first cross-validation experiment. 
The figure plots the number of voxels mislabeled by the 

 ^ 

 ^ 
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automatic segmentation, averaged over 20 inner cross-
validation experiments, against the value of each parameter. 
Note that although the figure plots each parameter 
separately, the actual search for optimal parameters 
considers all possible combinations of parameter values. 
Note that using the appearance window with r ¼ 1, all 
methods performed significantly worse than using larger 
appearance windows. This indicates that estimation of joint 
atlas error probabilities in (18) is inaccurate for very small 
appearance windows. For this cross-validation experiment, 
the optimal parameters for LWGaussian, LWInverse, and 
LWJoint are (_ ¼ 0:05, r ¼ 2, rs ¼ 2), (_ ¼ 6, r ¼ 2, rs ¼ 2), 
and (_ ¼ 0:5, r ¼ 2, rs ¼ 3), respectively. LWJoint gives 
better result rather than any other method. 
 

 
Fig. 1 illustrates optimal label fusion parameter selection for 
the three methods LWGaussian, LWInverse, and LWJoint 
respectively.  
 

Table 1: Hippocampus Segmentation Performance for Each Label Fusion Method, in Terms of Dice Similarity Between 
MALF Results and Reference Segmentation 

Label Fusion Strategy Dice similarity(Left Hippocampus) Dice Similarity 
Majority Voting 0.836±0.084 0.829±0.069 

STAPLE 0.846±0.086 0.841±0.086 
LWGaussian (0.885±0.025)0.886±0.027 (0.873±0.030)0.875±0.030 
LWInverse (0.884±0.026)0.886±0.027 (0.872±0.030)0.873±0.030 
LWJoint (0.893±0.025)0.897±0.024 (0.884±0.027)0.888±0.026 

 

 
 Image L W Gaussian LWJoint 

Figure 2: Sagittal views of a segmentation produced by 
LWGaussian and our method. Red: reference segmentation; 

blue: automatic segmentation;green: overlap between 
manual and automatic seg. 

 
Table 2: Hippocampal Volume (MM3) (Left/Right) 

Measured by Different Label Fusion Methods for Control 
and MCI Cohorts 

  Left Hippocampus 
Label Fusion Method Volume (CTL) Volume (MCI) Cohen's d 

LWGaussian 2026±277 1642±334 1.726 
LWInverse 2014±274 1635±326 1.7266 

LWJoint 2156±285 1755±353 1.7468 
Reference Seg. 2285±325 1841±368 1.5747 

 
Right Hippocampus 

Label Fusion Method Volume (CTL) Volume MCI) Cohen's d 
LWGaussian 1947±311 1553±346 1.5576 
LWInverse 1930±309 1544±338 1.5504 

LWJoint 2083±322 1668±373 1.57 
Reference Seg. 2201±378 1785±408 1.3643 

 
Table 2 presents the average hippocampal volume in control 
and MCI cohort obtained using different label fusion 
techniques. The corresponding Cohen’s d effect size [14] is 
also shown (computed as the difference of the sample means 
of the two cohort, divided by the pooled sample standard 
deviation). To account for differences in head size, the effect 
size is computed after normalizing the hippocampal volumes 
by the subject’s intracranial volume. Larger values of 
Cohen’s d indicate greater effect, i.e., greater ability to tell 
cohorts apart based on hippocampal volume. This method 
produced more accurate volume measurements than 
LWGaussian and LWInverse, compared to the reference 
segmentations.  

 
All results are produced with local searching using the 
optimal parameter for each method. Label description: red—
CA1; green—CA2; yellow—CA3; blue—DG; light 
brown—miscellaneous label; brown—SUB; cyan—ERC; 
pink—PHG. 
 

 
Figure 3: The MALF result and corresponding manual 
segmentation for each subfield, also averaging over left and 
right hemispheres and over 10 cross-validation experiments 
Label description: red—CA1; green—CA2; yellow—CA3; 
blue—DG; light brown—miscellaneous label; brown—
SUB; cyan—ERC; pink—PHG 
 
5. Conclusions 

 
 Label fusion techniques that independently assign voting 
weights to each atlas, MALF method takes the dependencies 
among the atlases into consideration and attempts to directly 
reduces the expected label error in the combined solution. 
Provided estimated pairwise dependencies among the 
atlases, the voting weights can be efficiently solved in a 
closed form. In their experiments, they estimated the 
pairwise dependency terms from local image intensities and 
compared our method with previous label fusion methods in 
whole hippocampus segmentation and hippocampus subfield 
segmentation using MR images. 
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