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Abstract: Empirical studies and theoretical modeling of networks has been the subject of a large body of recent research. Network 
ideas have been applied with great success to topics as diverse as the Internet and the World Wide Web. The graph or the network is a 
powerful tool to characterize the complex relations between a set of instances by taking each instance as a vertex and the interaction 
between a pair of vertices as an edge. Many complex systems can be modelled and analyzed as complex networks such as technological 
networks, social networks and biological networks and so on. A property that seems to be common to many networks is community 
structure, the division of network nodes into groups within which the network connections are dense, but between which they are 
sparser. It has been proved that many real world networks reveal the structures of the modules or the communities that are sub graphs 
with more edges connecting the vertices of the same group and comparatively fewer links joining the outside vertices. The Modules or 
the communities reflect the topological relations between the elements of the underlying system and the functional entities. 
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1. Introduction 
 
A very widespread informal definition of the community 
concept considers it as a group of nodes densely 
interconnected compared to the rest of the network. In other 
terms, a community is a cohesive subset clearly separated 
from the rest of the network. Formal interpretations try to 
formalize and combine both these aspects of cohesion and 
separation. Note this definition is not always explicit: 
procedural approaches exist, in which the notion of 
community is implicitly defined as the result of the 
processing. Although it is not always straightforward to 
categorize the definitions, we regroup them in four classes: 
density-, pattern-, node similarity- and link centrality-based 
approaches [4]. 
 
Communities can have concrete applications. Clustering Web 
clients who have similar interests and are geographically near 
to each other may improve the performance of services 
provided on the World Wide Web, in that each cluster of 
clients could be served by a dedicated mirror server. 
Identifying clusters of customers with similar interests in the 
network of purchase relationships between customers and 
products of online retailers (like, e. g., www.amazon.com) 
enables to set up efficient recommendation systems, that 
better guide customers through the list of items of the retailer 
and enhance the business opportunities [4]. 
 
Community detection is important for other reasons, too. 
Identifying modules and their boundaries allows for a 
classification of vertices, according to their structural 
position in the modules. So, vertices with a central position in 
their clusters, i.e. sharing a large number of edges with the 
other group partners, may have an important function of 
control and stability within the group; vertices lying at the 
boundaries between modules play an important role of 
mediation and lead the relationships and exchanges between 
different communities. Such classification seems to be 
meaningful in social and metabolic networks. Another 
important aspect related to community structure is the 

hierarchical organization displayed by most networked 
systems in the real world. Real networks are usually 
composed by communities including smaller communities, 
which in turn include smaller communities, etc. The aim of 
community detection in graphs is to identify the modules and, 
possibly, their hierarchical organization, by only using the 
information encoded in the graph topology. The problem has 
a long tradition and it has appeared in various forms in 
several disciplines [2]. 

 

 
Figure 1: A simple graph showing communities, enclosed by 

the dashed circles 
 
 The investigation of the community structure inside 
networks has acquired a great relevance during the last years, 
in particular in the context of Social Network Analysis 
(SNA). This, also because of the unpredicted success of 
Online Social Networks (OSNs). In fact, social phenomena 
such as Facebook and Twitter amongst others, glue together 
millions of users under a unique network whose features are a 
goldmine for Social Scientists. Several works are focused on 
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the Social Network analysis of these OSNs; others describe 
the strategies of analysis themselves [2]. 

 
2. Literature Review 
 
The study of community structure in networks has a long 
history. It is closely related to the ideas of graph partitioning 
in graph theory and computer science, and hierarchical 
clustering in sociology. Finding communities within an 
arbitrary network can be a computationally difficult task. The 
number of communities, if any, within the network is 
typically unknown and the communities are often of unequal 
size and/or density. Despite these difficulties, however, 
several methods for community detection have been 
developed and each has its own advantages/disadvantages. 
Furthermore, the number of inter-community edges needn’t 
be strictly minimized either, since more such edges are 
admissible between large communities than between small 
ones. 
 
Overview of Community Detection Methods 
The problem of graph clustering, intuitive at first sight, is 
actually not well defined. The main elements of the problem 
themselves, i.e. the concepts of community and partition, are 
not rigorously defined, and require some degree of 
arbitrariness and/or common sense. Indeed, some ambiguities 
are hidden and there are often many equally legitimate ways 
of resolving them. 
 
It is important to stress that the identification of structural 
clusters is possible only if graphs are sparse, i.e. if the 
number of edges m is of the order of the number of nodes n 
of the graph. If m >> n, the distribution of edges among the 
nodes is too homogeneous for communities to make sense. In 
this case the problem turns into something rather different, 
close to data clustering, which requires concepts and methods 
of a different nature. The main difference is that, while 
communities in graphs are related, explicitly or implicitly, to 
the concept of edge density (inside versus outside the 
community), in data clustering communities are sets of points 
which are “close” to each other, with respect to a measure of 
distance or similarity, defined for each pair of points [1].  
 
Below are broad level categories of the different methods for 
community detection: 
 
A. Partitioning 
In these methods, the network is partitioned into a 
predetermined number of groups, usually of approximately 
the same size, chosen in a way that the number of edges 
between groups is minimized. These methods find 
communities regardless of whether they are implicit in the 
structure or not, and it will find only a fixed number of them. 
This method is not always an ideal method for finding 
community structure in general networks. 
 
B. Hierarchical clustering 
Hierarchical clustering is another method for finding 
community structures in networks. These methods use a 
similarity measure quantifying some (usually topological) 
type of similarity between node pairs. Commonly used 

measures include the cosine similarity, the Jaccard index, and 
the Hamming distance between rows of the adjacency matrix. 
Then the similar nodes are grouped into communities 
according to this measure. There are several common 
schemes for performing the grouping, the two simplest being 
single-linkage clustering, in which two groups are considered 
separate communities if and only if all pairs of nodes in 
different groups have similarity lower than a given threshold, 
and complete linkage clustering, in which all nodes within 
every group have similarity greater than a threshold [4]. 
 
C. Modularity optimization 
Modularity optimization is one of the most widely used 
methods for community detection. Modularity is a benefit 
function that measures the quality of a particular division of a 
network into communities. The modularity optimization 
method detects communities by searching over possible 
divisions of a network for one or more that have particularly 
high modularity. Since exhaustive search over all possible 
divisions is usually intractable, practical algorithms are based 
on approximate optimization methods such as greedy 
algorithms, simulated annealing, or spectral optimization, 
with different approaches offering different balances between 
speed and accuracy [3][5][6]. 

 
D. Statistical inference 
Methods based on statistical inference attempt to fit a 
generative model to the network data, which encodes the 
community structure. The overall advantage of this approach 
compared to the other methods is its more principled nature, 
and the capacity to inherently address issues of statistical 
significance. 
 
E. Clique based methods 
Cliques are sub graphs in which every node is connected to 
every other node in the clique. As nodes cannot be more 
tightly connected than this, there are many approaches to 
community detection in networks based on the detection of 
cliques in a graph. 
 
3. Elements of Community Detection 
 
Many networks of interest in the sciences are found to divide 
naturally into communities or modules. The problem of 
detecting and characterizing this community structure is a 
key step for understanding complex networks. The idea of 
community detection is closely related to data clustering, 
graph partitioning, and hierarchical clustering. Therefore, 
traditional approaches in these areas can be employed for 
community detection. Two key approaches that have been 
widely investigated in community detection are: 1) spectral 
clustering-based techniques and 2) network modularity 
optimization strategies. Spectral clustering-based approaches 
rely on the optimization of the process of cutting the graph 
representing the given network. Since this problem is NP-
hard, different approximate techniques such as the 
normalized cuts algorithm and ratio cuts algorithm have been 
proposed. The main problem with spectral clustering-based 
techniques is that one has to know in advance the number and 
the size of communities in the network. Network modularity-
based methods, on the other hand, rely on the modularity 
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function Q to determine the optimal number of clusters in the 
network. A good partitioning of a network is expected to 
have high modularity Q with Q=(fraction of edges within 
communities)-(expected fraction of such edges), where the 
expected fraction of edges is evaluated for a random graph. 
For a directed weighted network represented by a graph G = 
(V, E) with N nodes and an association matrix A, the 
modularity function is given as [4]:  
 

Q=1/W ∑
i,j=1

N
 [Aij−(Sout

i Sin
j )/W]δCi,Cj

 (1) 

 
Where  
Aij is the weight of edge ei→j  

Sin
i  ∑

j
 Aj,i  , Sout

i  ∑
j

 Ai,j

4. Computational Complexity 

 is the inflow, outflow of the node  

i,W= ∑
i,j

 Ai,j,CiCj is the community that node(i,j) belongs to  

δCiCj
 is equal to 1 when i and j are in the same community 

and is equal to 0 otherwise. 
 

 
The massive amount of data on real networks currently 
available makes the issue of the efficiency of clustering 
algorithms essential. The computational complexity of an 
algorithm is the estimate of the amount of resources required 
by the algorithm to perform a task. This involves both the 
number of computation steps needed and the number of 
memory units that need to be simultaneously allocated to run 
the computation. Such demands are usually expressed by 
their scalability with the size of the system at study. In the 
case of a graph, the size is typically indicated by the number 
of vertices n and/or the number of edges m. The 
computational complexity of an algorithm cannot always be 
calculated. In fact, sometimes this is a very hard task, or even 
impossible. In these cases, it is however important to have at 
least an estimate of the worst-case complexity of the 
algorithm, which is the amount of computational resources 
needed to run the algorithm in the most unfavourable case for 
a given system size. The notation O(nα mβ) indicates that the 
computer time grows as a power of both the number of 
vertices and edges, with exponents α and β, respectively. 
 
Algorithms with polynomial complexity form the class P. For 
some important decision and optimization problems, there 
are no known polynomial algorithms. Finding solutions of 
such problems in the worst-case scenario may demand an 
exhaustive search, which takes a time growing faster than any 
polynomial function of the system size, e.g. exponentially. 
Problems whose solutions can be verified in a polynomial 
time span the class NP of nondeterministic polynomial time 
problems, which includes P. A problem is NP-hard if a 
solution for it can be translated into a solution for any NP-
problem. However, a NP-hard problem needs not be in the 
class NP. If it does belong to NP it is called NP-complete. 
The class of NP-complete problems has drawn a special 

attention in computer science, as it includes many famous 
problems like the Travelling Salesman, Boolean Satisfiability 
(SAT), Linear Programming, etc. The fact that NP problems 
have a solution which is verifiable in polynomial time does 
not mean that NP problems have polynomial complexity, i.e., 
that they are in P. In fact, the question of whether NP=P is 
the most important open problem in theoretical computer 
science. NP-hard problems need not be in NP (in which case 
they would be NP-complete), but they are at least as hard as 
NP-complete problems, so they are unlikely to have 
polynomial complexity, although a proof of that is still 
missing. Many clustering algorithms or problems related to 
clustering are NP-hard. In this case, it is pointless to use 
exact algorithms, which could be applied only to very small 
systems. Moreover, even if an algorithm has a polynomial 
complexity, it may still be too slow to tackle large systems of 
interest. In all such cases it is common to use approximation 
algorithms, i.e. methods that do not deliver an exact solution 
to the problem at hand, but only an approximate solution, 
with the advantage of a lower complexity. Approximation 
algorithms are often non-deterministic, as they deliver 
different solutions for the same problem, for different initial 
conditions and/or parameters of the algorithm. The goal of 
such algorithms is to deliver a solution which differs by a 
constant factor from the optimal solution. In any case, one 
should give provable bounds on the goodness of the 
approximate solution delivered by the algorithm with respect 
to the optimal solution. In many cases it is not possible to 
approximate the solution within any constant, as the 
goodness of the approximation strongly depends on the 
specific problem at study. Approximation algorithms are 
commonly used for optimization problems, in which one 
wants to find the maximum or minimum value of a given cost 
function over a large set of possible system configurations 
[4].  
 
The problem of maximizing the network modularity has been 
proven to be NP complete. For this reason, several heuristic 
strategies to maximize the network modularity such as 
Girvan Newman algorithm, the fast clustering algorithm, the 
external optimization method and the Newman Leicht 
mixture model-based approach have been proposed. 
Although most of the modularity-based community detection 
algorithms have focused on binary and undirected networks, 
in recent years there have been some extensions to weighted 
and directed networks. However, these approaches are 
limited to networks with a small number of clusters. 
Recently, Blondel et al. introduced an alternative greedy 
algorithm, which is known as the Louvain method, to find the 
hierarchical structure of undirected weighted graphs. 
Compared to other methods, this method performs better in 
terms of the computation time especially for networks with a 
large number of nodes. 
 
5. Conclusion 
 
The rate of information development growth has been 
increased tremendously because of the World Wide Web. 
Despite the fact that exploration on community detection 
began around 50 years prior, there is still a long trail to stroll 
in this field. This review accentuates some of the 
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methodologies for community detection. As to date, two 
paradigms exist to discover the community structure of a 
network. The former is based on the analysis of the global 
features of the network, for example its topology. These 
approaches are characterized by high computational 
complexity and high quality results. The latter paradigm 
relies on exploiting local information, for example those 
acquirable by nodes and their neighborhoods. The 
computational cost of these techniques is lower than those 
exploiting global features, but the reliability decreases. There 
could be numerous possibilities to improve the efficiency and 
performance of various algorithms of community detection. 
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