
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Review Paper of Improving Task Division
Assignment Using Heuristics

Shripadrao Biradar1, Deepika Pawar2

1Professor, Department of Computer Engineering, RMD Sinhagad School of Engineering, University of Pune, India

2Department of Computer Engineering, RMD Sinhagad School of Engineering, University of Pune, India

Abstract: This paper presents an innovative idea of distributing the tasks to their best processor to reduce the execution time of task by
using various scheduling techniques. This paper presents hybrid scheduling techniques which provide better solution of scheduling task
that means combination of different scheduling provides better performance without degrading the result quality. Scheduling algorithms
such as MinMin+, MaxMin+ and Sufferage+ are suitable for overcomes the drawback of previously used scheduling methods such as
MinMin, MaxMin and Sufferage as well as scheduling in this paper provides better complexity as compare to previous scheduling
methods. This scheduling are also suitable for heterogeneous environment more effectively to execute different set of task on different
processors with different configurations.

Keywords: Task Scheduling, MinMin, MaxMin, Sufferage, Standard Deviation, Load Balancing.

1. Introduction

Distribution of large application into task for faster
processing is one of the important process in the area of
distributed systems. Although many types of resources can
be shared and used in a distributed system, usually they are
accessed through an application running in the network.
Normally, an application is used to define the piece of work
of higher level in the system. An application can generate
several tasks, which in turn can be composed of subtasks;
this system is responsible for sending each subtask to a
resource to be solved. It performs an important step of
mappings task to different machines based on the expected
execution time. Normally an application is used to define the
piece of work of higher level in heterogeneous environment.

Since this application can generate several number of jobs
that can be divided into subtasks and provided to different
processors that should get completed within minimum time
so that the processor use can be made to assign different
task. Makespan is one of the most important term in case of
mapping task to their processors using different scheduling.
Makespan is nothing but turnaround time that is maximum
of completion time. An optimal schedule will be the one that
minimizes the makespan [1, 2].

Large numbers of task scheduling algorithms are available to
minimize the makespan. All these algorithms try to find
resources to be allocated to the tasks which will minimize
the overall completion time of the jobs. Minimizing overall
completion time of the tasks does not mean that it minimizes
the actual execution time of individual task. The simple
well-known existing algorithms used for scheduling are
Min-Min and Max- min and sufferage. These algorithms
work by considering the execution and completion time of
each task on the each available grid resource. Scheduling is
considered to be an important issue in the current distributed
system scenario. The demand for effective scheduling
increases to achieve high performance computing. Typically,
it is difficult to find an optimal resource allocation which
minimizes the schedule length of jobs and effectively utilize

the resources. The three main phases of scheduling are
resource discovery, gathering resource information and job
execution. The choice of the best pair of jobs and resources
in the second phase has been proved to be NP- complete
problem.

The existing scheduling algorithms provide the various
techniques for assigning different task to different resources
with minimum completion time. These existing scheduling
algorithms can be divided into two classes that are online
mode and Batch mode scheduling. In online mode, a task is
assigned to processor as soon as it arrives at the scheduler
[1]. Wherein Batch mode scheduling tasks are not assigned
to processor immediately instead they are collected in to set
of tasks also called as Metatarsi that are examined for
assigning at prescheduled times to different processors also
called as mapping events. Since in this system, batch mode
is used in very efficient way for mapping different
independent tasks to processors. Also these existing
algorithms can be applied for heterogeneous environment
effectively.

The proposed system in this work contains various
scheduling methods along with hybrid technology such as
Minmin+, Maxmin+, and Sufferage+. Hybrid technology
involves combination of different scheduling methods to
overcome disadvantages of minmin and maxmin. Overall,
the scheduling algorithms aim to minimize the idle time and
makespan of tasks. This paper also involves the concept of
Load Balancing [2, 6], wherein, once scheduling of task is
done using some scheduling the load balancing algorithm
will take place to reschedule the task to utilize all the
resources in the heterogeneous environment [5]. Each of this
scheduling provides better performance and also decreases
time complexity without degrading the solution quality.

To avoid the drawbacks of the existing scheduling
algorithm, the proposed system algorithms are being used to
enhance the system performance. All the problems discussed
in those methods are taken and analyzed to give a more
effective schedule. The algorithm proposed in this paper

Paper ID: SUB15145 609

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

outperforms all those algorithms both in terms of makespan
and load balancing. Thus a better load balancing is achieved
and the total response time of the system is improved. The
proposed algorithm applies the Min-Min strategy in the first
phase and then reschedules by considering the maximum
execution time that is less than the makespan obtained from
the first phase.

2. Literature Survey

A distributed scheduling algorithm aims to increase the
utilization of resources with light load or idle resources
thereby freeing the resources with heavy load. The algorithm
tries to distribute the load among all the available resources.
At the same time, it aims to minimize the makespan with the
effective utilization of resources. In classical distributed
systems comprised of homogeneous and dedicated
resources, scheduling

Algorithms have been intensively studied. But these
algorithms will not work well in Grid architecture because
of its heterogeneity, scalability and autonomy. This makes
load balanced scheduling algorithm for grid computing more
difficult and an interesting topic for many researchers. The
Non-traditional algorithms differ from the conventional
traditional algorithms in that it produces optimal results in a
short period of time. There is no best scheduling algorithm
for all grid computing systems. An alternative is to select an
appropriate scheduling algorithm to use in a given
heterogeneous environment because of the characteristics of
the tasks, machines and network heterogeneity resources.
These scheduling algorithms will work well even for
heterogeneous resources also. Heterogeneous systems
provides with the facility of utilization of all available
resources as load balancing concept that aims at keeping
resources busy [5].

Opportunistic Load Balancing (OLB) is specially used to
keep all the processors busy that is to make utilization of all
the available resources by assigning task in arbitrary order,
to the next available processor, without considering task
expected execution time on that particular processor but this
result in poor makespan [6].

Minimum Execution Time (MET) assigns tasks to processor
in arbitrary order with best expected execution time for that
task, without taking into consideration processors
availability. Since assigning the task to its best processor
provides better performance but causes severe load
misbalancing and does not provide support for
heterogeneous environment [4, 5].

Minimum Completion Time (MCT) assigns tasks to
different processors in arbitrary order, with minimum
expected completion time for that task. Since this causes
some of the task to be assigned to the processor that do not
have minimum execution time. For this purpose this
minimum completion time is defined in a way that combines
the benefit of both opportunistic load balancing (OLB) and
minimum execution time (MET) to provide better
performance of task mapping [3].

Min-Min algorithm starts with a set of all unmapped tasks.
The machine that has the minimum completion time for all
jobs is selected. Then the job with the overall minimum
completion time is selected and mapped to that resource.
The ready time of the resource is updated. This process is
repeated until all the unmapped tasks are assigned.
Compared to MCT this algorithm considers all jobs at a
time. So it produces a better makespan. When selected task
is assigned to the resource it is removed from the met task
that is set of task. Since this method provides easiest way to
assign task to processor but has one drawback due to
selection of task having minimum expected completion time,
the task with largest expected completion time remains
unassigned for longer time and also load is not balanced
across the systems, due to which some resources remains
idle and this also results in increase in makespan.

Max-Min is similar to Min-Min algorithm. The machine that
has the minimum completion time for all jobs is selected.
Then the job with the overall maximum completion time is
selected and mapped to that resource. The ready time of the
resource is updated. This process is repeated until all the
unmapped tasks are assigned. The idea of this algorithm is to
reduce the wait time of the large jobs. Since this scheduling
algorithm provides the way of mapping task to its best
machine with longer execution time first allows this task to
be executed concurrently with the task that having shorter
execution time. Since this mapping of task to resources is
better than minmin scheduling wherein the task with smaller
execution time is selected and assigned to the available
resource for execution and then task with longer execution
time are executed while several machines sit idle. Since
maxmin scheduling provides better load balancing across
machines as well as better makespan [6, 7].

Sufferage scheduling differs with previous scheduling
algorithms in the sense of task selection process. Like
minmin and maxmin it also begins with set of unassigned
task that has minimum completion time i.e. sufferage
scheduling is also based on the concept of minimum
completion time, since it differ from the previous scheduling
in the sense it selects and assigns the task to the processor on
the basis of sufferage value and not minimum or maximum
completion time. Since it computes second MCT value
instead of computing MCT value for each task and
calculates sufferage value which is defined as difference
between MCT and second MCT values of a task is taken
into account. This scheduling selects the task with largest
sufferage value and assigns it to available resource. Thus
sufferage scheduling differs from minmin and maxmin
scheduling in the task selection policy [4, 5].

3. Enhanced Scheduling Methods

In this work, propose system contains novel algorithms, such
as MinMin+, MaxMin+ and Sufferage+.

In these scheduling algorithms, the MCT values that are
associated with each processor are separately maintained,
instead of being unnecessarily recomputed at each iteration
for every unassigned task. In particular, a priority queue Qk is
being used for each processor Pk to maintain the completion
times of all tasks on that processor. This type of scheduling

Paper ID: SUB15145 610

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

algorithms provides better performance than the previous
scheduling methods without degrading solution quality. That
is previously mentioned scheduling methods increases time
complexity by using number of iterations for computing
minimum completion time of each task.

A. Minmin+ scheduling

Minmin+ scheduling uses different methods such as
MinMin+Select function invokes a MIN (Qk) operation on
each priority queue Qk to find a candidate task for processor
Pk. The candidate task Ti selected for processor Pk is
effectively the task that will increase the current completion
time of Pk (i.e., ek) by the smallest amount if Ti is assigned
to Pk. For each processor Pk, the execution time of the
candidate task Ti on Pk is added to ek to compute the updated
ek value for Pk if Ti is assigned to Pk. A running-min
operation performed over these K updated ek values gives
the minimum MCT value (min) for the current iteration as
well as the task-to-processor assignment (i’, k’) that
achieves this minimum MCT value. At the end of each
iteration of the main loop, the assigned task Ti’ is deleted
from all priority queues. For the implementing this priority
queue two alternatives are being considered that are binary
heap and sorted linear array, and also some operations are
being used like sorting operation, deletion operation, and
necessary check is made on the queue to know which task
has not being yet assigned to available resource that is with
minimum completion time. Hence the overall running time
complexity is reduced.

B. Maxmin+ scheduling

The solution quality obtained in the earlier iterations is
likely to deteriorate due to the late assignment of very large
tasks. In case of the MaxMin scheduling, the larger tasks are
assigned in earlier iterations, but not necessarily to their
favorite processors. Since, in the first few iterations of
MaxMin, the first iteration assigns the largest task to its
favorite processor. It is assumed that the second largest task
has the same favorite processor as the largest task. In the
second iteration, the task selection policy of MaxMin
prevents the assignment of the second largest task to its
favorite processor. In the next iteration, the third largest task
loses the flexibility of being assigned to the favorite
processors of the largest two tasks and so on. To alleviate
the above-mentioned drawbacks of the MinMin and
MaxMin scheduling, these scheduling algorithms are
combined under a hybrid scheduling, which referred to as
MaxMin+. Like MinMin and MaxMin, the MaxMin+
scheduling involves a main loop that assigns a selected task
to a processor at each iteration. Within an iteration, the
scheduling first computes a task- to-processor assignment
according to the MinMin scheduling. The computed
assignment is realized only if it does not lead to an increase
in the makespan of the previous iteration. If, however, the
computed assignment increases the makespan, the task-to-
processor assignment is recomputed according to the
MaxMin scheduling. This scheduling overcome drawback of
maxmin scheduling of task assignment problem to same
processor by doing the combination of maxmin with
minmin+ under a hybrid scheduling that is maxmin+.

C. Sufferage+ scheduling

The main idea behind the Sufferage+ scheduling is to
perform critical assignment decisions by Sufferage so that
the solution quality is not significantly degraded and
perform non-critical assignment decisions by the fast
MinMin+ algorithm. With this approach, it is expected a
considerable decrease in the execution time of Sufferage
with a small potential degradation in the solution quality.
Since Sufferage+ working is similar to sufferage scheduling
since to make applicable sufferage scheduling to large
datasets it is combine with minmin+ scheduling under a new
scheduling that is sufferage+. As in MaxMin+, in this
scheduling also the MinMin+Init function performs the
necessary initializations. It computes the assignment
according to MinMin+. The comparison operation checks
whether makespan will change if the computed assignment
is used. Then this algorithm computes the task-to-processor
assignment according to Sufferage. This scheduling differs
from previous scheduling in the sense that when assignment
is computed, it is realized only if it does not, lead to increase
in makespan of previous iteration otherwise assignment is
recomputed using sufferage scheduling.

D. Switcher Scheduling

As the name indicates it is the combination of different
scheduling also known as hybrid scheduling. Switcher
scheduling is based on concept of standard deviation value
comparison with threshold value. Based on this it switches
between scheduling that is if standard deviation [6] value is
less than threshold value than tasks are considered to be with
minimum execution time and minmin scheduling is applied
to assign the tasks to available resources, otherwise maxmin
scheduling is used to assign the tasks to available resources.
This process is repeated until all the tasks are assigned to
their respective available resources [3, 13].

Standard deviation concept is specially used for hybrid
scheduling that is combination of different scheduling.
Wherein, the standard deviation value is compared with
threshold value to check which scheduling to be applied for
mapping of task to different resources [6]. Since the standard
deviation value is calculated on the basis of average of
completion time of all tasks, as mention below:

Where avgCT denotes average of completion time that is
sum of all completion time of given tasks and s is nothing
but index of task. Using this average value standard
deviation is calculated as:

Based on above mentioned formulae standard deviation is
calculated. Since, this is compared with the threshold value
in case of hybrid scheduling wherein the multiple scheduling
are called by algorithm alternatively for mapping task to
processors. This hybrid scheduling will use standard
deviation concept wherein if the calculated standard
deviation is less than threshold value then that particular task
is assigned using the minmin scheduling to available

Paper ID: SUB15145 611

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

resource otherwise the task is assigned to available resource
using maxmin scheduling. Since after the assignment of task
to resource it will be deleted from set of task that is metatask
and the hybrid scheduling will repeat all the process until all
the task are assigned to processors.

There are many different types of hybrid algorithms that call
alternatively different scheduling for mapping tasks to their
best processors. This type of scheduling also maintains the
proper load balance across the processors due to which all
the available resources get fully utilized and no resource
remains an idle.

4. Balancing Load In Distributed Systems

To better utilize the machines, the load should be balanced
to minimize the machine idle time. To balance the load, the
sizes of tasks must be taken into consideration. In a
heterogeneous system, execution time of a task varies on
different machines. The task size can simply be measured as
the average of the execution times over all machines. Tasks
can be assigned with priorities based on their sizes, either
favorable to the smaller tasks or to the larger tasks. Or the
priority can be assigned independently of task sizes. It has
been found that the load is severely imbalanced when
smaller tasks are mapped first. If large tasks are given higher
priorities, it generally leads to a better balanced load. Also, a
priority independent of tasks sizes has a fairly good chance
for load balancing. Scheduling mentioned above like
minmin and maxmin maps different tasks to different
available resources efficiently but it does not maintain
proper load balancing among the resources due to which
some resources are utilized and some remain idle. This load
balancing concept can be applied to this scheduling to get
done execution faster [6].

Minmin scheduling selects tasks with minimum completion
time and allocates it to available resource, due to which task
with longer execution time remains unassigned although the
resource is available that causes resources to remain idle.
Similarly in maxmin scheduling tasks with maximum
completion time is selected and assigned to processor, due to
which smaller tasks are assigned after long time to available
processors [7].

Solution for above is to apply load balancing concept with
this types of scheduling. This can be done when tasks are
assigned to their resources that is once minmin scheduling is
applied to assign tasks to available resources using minimum
completion time, the load balancing method is applied again
on this assigned task for rescheduling it i.e. it may happen
that minmin scheduling will use some resources to assign
task and some remain idle then load balancing method will
select the task with
maximum completion time that will be less than makespan
produced by Minmin scheduling and reschedule it to the
resource that is available and not utilized yet so that
execution of tasks will be more faster [11]. Other tasks
maximum completion time is not less than makespan. So
whichever task has maximum completion time less tan
makespan is selected and rescheduled to available resource.

5. Example Of Balancing Load in Distributed
Systems

Consider a heterogeneous environment with two resources
R1 and R2 and metatask that contain four different tasks T1,
T2, T3 and T4 as shown below in table1 that contains tasks,
resources along with expected execution time for mapping
tasks to their respective resources.

Table 1: Resources and Tasks with Expected Execution
Time

Tasks

Resources
R1 R2

T1 7 2
T2 13 4
T3 14 1
T4 11 3

As shown in above table task assignment is done to different
processors using minmin scheduling is done in following
way.

Figure 1: Mapping of Tasks to Resources with Minmin

Algorithm

As shown in figure1 minmin scheduling will select tasks
according to given execution time so task T3 will be assigned
first to Resource R2, then task T1 will be assigned again on
resource R2, then task T4 will be assigned again on resource
R2 and finally the remaining task that is task T2 will also be
assigned to resource R2 only according to given expected
execution time in Table1. Since on resource R2 task
completion is faster than on resource R1, so all the task will
be assigned on resource R2 only.

Once minmin scheduling is applied for mapping tasks to
available resources, load balancing technique is applied for
again rescheduling tasks to make utilization of idle resources
that minimizes overall task completion time that is
makespan.

Paper ID: SUB15145 612

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Rescheduling of tasks to Resources with Load

Balancing method

As shown in figure2 task T1 is rescheduled to balance the
load as it provides maximum completion time on resource
R1 as shown in Table1 as well as it is less than makespan
produced by minmin scheduling. While remaining tasks
although have maximum completion time but are not less
than makespan. So task T1 is rescheduled on resource R1 that
results in better makespan as compared to minmin
scheduling.

6. Conclusion

The aim of this paper was to present various scheduling
methods like minmin, maxmin, sufferage, hybrid, load
balancing techniques in the field of distributed systems. The
scheduling like minmin and maxmin are suitable for small
scale distributed systems but when number of tasks increases
than these scheduling cannot schedule task appropriately
that affects on makespan which relatively become large. To
overcome limitations of these scheduling and make them
applicable for large scale distributed systems, a new task
scheduling algorithm like minmin+, maxmin+ and
sufferage+ along with hybrid scheduling are used that also
maintains proper load balancing across the systems. This
scheduling uses advantages of minmin and maxmin and
covers there disadvantages. This study can be further
extended by considering task heterogeneity and machine
heterogeneity.

References

[1] T. D. Braun,H. J. Siegel,N. Beck, L. L. Boloni, “A

comparison of eleven static scheduling for mapping a
class of independent tasks onto heterogeneous
distributed computing systems”, J. Parallel Distrib.
Comput., vol. 61, no. 6, pp. 810837, 2001.

[2] P. Luo, K. Lu, and Z. Shi, “A revisit of fast greedy
scheduling for mapping a class of independent tasks
onto heterogeneous computing systems”, J. Parallel
Distrib. Comput., vol. 67, pp. 695714, 2007.

[3] Kamali Gupta, Manpreet Singh, “Scheduling Based
Task Scheduling In Grid”, International Journal of
Engineering and Technology (IJET), vol. 4, pp. 254260,
Aug-Sep 2012.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems”, J. Parallel Distrib. Comput., vol. 59,
pp.107131, 1999.

[5] H. J. Siegel and S. Ali, “Techniques for mapping tasks
to machines in heterogeneous computing systems”, J.
Syst. Archit., vol. 46, no. 8, pp. 627639, 2000.

[6] T. Kokilavani, Dr. D.I. George Amalarethinam, “Load
Balanced Min-Min Algorithm for Static Meta-Task
Scheduling in Grid Computing”, International Journal
of Computer Applications, vol. 20, April 2011.

[7] George Amalarethinam. D.I, Vaaheedha Kfatheen .S,
“Max-min Average Algorithm for Scheduling Tasks in
Grid Computing Systems”, International Journal of
Computer Science and Information Technologies, Vol.
3, pp. 3659-3663, 2012.

[8] K. Kaya, B. Ucar, and C. Aykanat, “Scheduling for
scheduling file-sharing tasks on heterogeneous systems
with distributed repositories”, J. Parallel Distrib.
Comput., vol. 67, no. 3, pp. 271285, 2007.

[9] Doreen Hephzibah Miriam. D and Easwarakumar. K.S,
“A Double MinMin Algorithm for Task Metascheduler
on Hypercubic P2P Grid Systems”, IJCSI International
Journal of Computer Science Issues, Vol. 7, Issue 4, No
5, July 2010.

[10] Kamalam.G.K and Muralibhaskaran.V, “A New
Scheduling Approach: MinMean Algorithm For
Scheduling Meta-Tasks On Heterogenous Computing
Systems”, International Journal of Computer Science
and Network Security, VOL.10 No.1, January 2010.

Author Profile

 S.S. Biradar received the B.E. degree in Computer
Science & Engineering from PDACOE Gulbarga
Karnataka & M.E. degree in DC&N from Dr. AIT
Bangalore Karnataka in 2010 & 2012 , respectively.
Currently he is working as Assistant Professor of

Computer Engineering Department in RMD SSOE Pune, India.

Deepika R. Pawar Research Scholar RMD Sinhagad School of
Engineering Warje, Pune, University of Pune. She received B.E. in
Computer Engineering from Cummins College of Engineering,
Karvenagar, Pune from PU. Currently she is pursuing M.E. in
computer engineering from RMD Sinhagad School of Engineering
Warje, Pune University of Pune.

Paper ID: SUB15145 613

http://creativecommons.org/licenses/by/4.0/�

