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A Computational Approach for Solving Singular
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Functions
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Abstract: In this paper, a computational approach for solving singular Volterra integral equations with Abel kernel or logarithmic
singularities will introduced. The technique of block-pulse functions will be used to solve the linear Volterra Integral equations with Abel
kernel and Logarithm Kernels. This method is based on approximating of unknown function in terms of Block Pulse Functions and
Taylor series expansion of singular part. The error analysis is presented to show the efficiency. lllustrative numerical examples are given
to demonstrate the efficiency and simplicity of the proposed method in solving such types of systems of Abel or Logarithm integral

equations.
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1. Introduction

The Volterra integral equations are a special type of
integral equations. These integral was studied by many
author. These equations find applications in demography,
the study of viscoelastic materials, and in insurance
mathematics through renewal equation. Volterra integral
equations arise in many problems pertaining to
mathematical physics like heat conduction problems.
Several numerical methods for approximating the solution

example, in [1] the author presented a method based on
Legendre and Chebychev collocation method are presented
to solve numerically the Fredholm Integral Equations with
Abel kernel. The same technique can be used for the
Volterra Integral equation. In the work of chniti ??, there
are many complicated integral must be computed and
difficult recurrence relation. | will try to avoid these
difficult computation in this paper. In this paper we present
a method based on the use of Taylor series expansion and
Block Pulse Functions (BPFs) for solving a special case of

singular Volterra integral equations of the second kind with

of Volterra integral equations with weakly singular kernel ar v L i |
logarithmic and Abel singularities defined as follows:

are known see for example [2, 4, 5, 6, 7, 8, 9, 10, 11]. For
u(x) = f(x)+IOXK(x,t)K1(x,t)u(t)dt, 0<t<x<l, €h)

where functions f and K are assumed to be sufficiently smooth in order to guarantee the existence and uniqueness of a
solution U € C[0,1] (see [3, 6]). The singular kernels will be investigate in this paper are

Kl(x,t):{ (x=1), 0<a <1, forthe Abel kernel

In(| x—t]), for the Logarithm kernel
for both kernels, we will present a strategy of solution using Block-Pulse Functions.

The paper is organized as follows. In section 2, we recall some property of the Block-Pulse Functions with exact proof. In
section, 3, we present the system derived from Volterra Integral equation for both Abel and logarithm Kernel. In section, 4, we
present the error analysis of our model problem. In section, 5, we present some numerical results to confirm the strategy
proposed in our analysis.

2. Block-Pulse Functions

In this section, we define a K -set of Block-Pulse Functions (BPF) over the interval [0,T[ as:

G-1)T . iT .
1 DT T oralli=1o K
py=4b T St o toali=la.., @)

0, elsewhere
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with a positive integer value for K. Also, @, isthe i-th

Block-Pulse Function. In this paper, it is assumed that T
= 1, so BPFs are defined over [0,1[ . BPFs, a set of

orthogonal functions with piecewise constant values, are
studied and applied extensively as a useful tool in the
analysis, synthesis, identification and other problems of
control and systems science. In comparison with other
basis functions, BPFs can lead more easily to recursive
computations to solve concrete problems. There are some
properties for BPFs, the most important properties are
disjointness, orthogonality, and completeness. The
disjointness property can be clearly obtained from the
definition of BPFs:
wo,0=1 % 17l
@i\He; (L) = o
@), 1=]
where, 1, j =1,2,...,k.
The other property is orthogonality:

1
< i (t) (01 (t) == 5” (4)

where o is Kronecker delta.

Then
[ ®p, dt=0

[|u(t) ZOG it || =<u(t _Zai,k%(t)!u(t)_Z‘Zi,kq’i(t)>

k K
- J':u (t)*dt+ Zaiz,k J.:(”iz (tydt - Zgai,kjju(t)(oidt
+2 a8, (0,00t
i=j=1
2 2 [ : Qi k
= IOU(t) dt+iZ_1:0£i’k J-Oqu (t)dt—ZZai'k —X (5)
1 kgl
= jou(t)zdu; Z—(ﬁ)
1
- J'Ou (t)2dt - I;af’k )

Using, the mean value theorem we get:

The third property is completeness. To introduce the i—1 i
completeness we need the following result. al = u(t)?, e <0t < %— (8)
Proposition 2.1 For every U € C([0,1)), we have Substituting (8) into (7), we obtain:
k 1 1 [
lim [fu(t) - Z“. POl 2, =0 lu®) =Y, (1) |P= _[Ou(t)zdt‘gzu(ti)z
i=1 i=1

where . From elementary calculus, we have:

oy, =k [ U )t ,
Proof. First we have ||m [lu(t Za, A ||mj ) dt——Zu(ti)2 =
vie i A =0 “

Tk ok k 'k

Proposition 2.2 For every K e C([0,1]x[0,1]), we have

lim I K (1) - ;;K. P 0P Ol =
where

—v2

Ky = K2 [ [K (D9, ()0, (©)d xdt

Proof. Similarly to the proof of proposition 2.2. A simple calculus gives:
Kk
| K(x,t) - ZZKi,j,k(Pj,k (X)(/’i,k (t) ||2
j=1i=1
Kk Kk
=<K () =2 YK B (e (). K(x )= Y K; 1B, (g (1) > ©)
j=li=l j=Li=l
”K(x t)? dt+zzj K; ;B ()¢ ()d xdt

j=li=1

—ZZZK. i LK (6D, ()0, (0 xdt

j=1i=1
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161
+2 z Ki,j,k Ki’,j',k J.o_[o(pj,k (X, (1) Bj',k (X)B,  (H)d xdt
(i, )=,

”K(x t)? dxdt+ZZK.kajgo,k(x)go,k(t)dxdt 222}(,,k "k

j=li= j=li=1
= [[[rx.p? dxdt+zz ZZZ "k
j=1i=1 j=li=1
) 1 kK k
= IoIOK(X’t) dth——zzlzl: (10)
Using, the mean value theorem we get:
K= K(x.6)% %z Xt < % (12)

Substituting (11) into (10), we obtain:

1 k k
IKOD = 20K, 10, (00, O IF= [[[rx.b) LI DICH

j=li=1 =1li=1
From elementary calculus we have:

lim [| K (x.0) - ZZK.,kw,kw.k(t)ll —anK (x, t)dxdt——zZZK(X,,t.) =0

Now we give the third property for BPFs, completeness. For every U € L2[(0,1) ), when K approaches to the infinity,
Parseval’s identity holds

[utydt = |.mzu.k 1o, 1,

k= =1

where,

Uy = K <UD, 0 (K) >= k[u®)g,, Ot

Now using all the results mentioned above we can expand functions u(t) and K(X,t) interms of BPFs.

3. System derived from Volterra Integral equation

A function U defined over the interval [0,1] may be expanded as:

u(t) = iui¢i,k (t). (12

In matrix form
u(t) = u'®(t), (13)
where,

e u= (ui)i .+ isainfinite vector.
« D(t) = ((pi‘k)i \+ isainfinite vector.
Also, K(x,t) e L*([0,1]°) may be approximated as:

K(x,t) = ZZKij,k¢i,k (X)@;, (1),
i=1 j=1
or in matrix forrrj1
K(x,1) = @' (X)KD(t), (14)

where

K=Ky b e Ky =K LKD), (0o, (Odxdt
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Obviously, the infinite vector relation 13 and 14 must be g(t) = (x—t)™“
truncated to used numerically. In particular, only a finite ’
number of modes can be used to describe the solution. So,

in a finite form one can write the same equation like in 13 Taylor series expansion of g(t) based on expansion

and 14 but with i, j =1,...,K. The number of modes K about the point t =0 leads to:

to retain in the approximation must be fixed to get an * ~

accurate solution. g(t) = ZH(“ +m)X“" —, (15)
n=0m=0

3.1 Abel Kenel Substituting (15) into (1) we get

Now we define functions

. ﬁ(our m)

UD(x) = f(x)+ Y 20— x @' (K[ 1"D(t)dtu. (16)
n=0 n! 0
where the matrix D(t) is a diagonal matrix with diagonal coefficient f; = @, (t). We set

h(x) = ont”D(t)dt, (17)

For numerically reason, the infinite system 16 will be truncated and we set 1, j =1,...,K , where K is the number of modes
will be used to make our approximation. We define the nodes

!
J. :TZ’ j=1,2,....k
it’s will be used to evaluate the function h(X) . Now, we use the collocation points to evaluate the function h(X) at the nodes
X; for J=0,1,...,K, we define the diagonal matrix matrix d’ asfollows:
d’ =D(x;), dl, :{

1, m=n=]j,
0, elsewhere.

«If j=1 wehave

1

P 1
h = |2t"D(t)dt = ———d"' (19
(%) = [*"D(t) r@od 9

By evaluating the infinite system (16) after truncation at X, and using (19) we get

. ﬁ(ourm) L

_ I 1L
U= F )+ 2 G ) e o s
. ﬁ(a+ m) . »

(Xl) nzo (n +]_)I (2k)17a €, u
= f(x)+ . )(2k)1‘ KU, (20)
where

e; = (1,0,..,0) eRF.

n-1
. H(a+m) 1
elKd'u = K, u,, m=0 =
' H Z; (h+1)! 1-«

Using

then
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TER (P —

(1- )—(Zk) Kyb- (21)

«If j=2 wehave
3
h(x,) = IOZKt”D(t)dt
1 3
= jokt"dldt+ jfkt”dzdt

_ 1
~ (n+1)(2k)™

The infinite system (16) evaluate after truncation at X, and using (22) we get
H(a+m) 1
u —_ f X, ) + m=0 etK 2n+ldl+ 3n+l_2n+l dZ
() Z n! (ij *(n +1)(2k)”+1{ ( ) }“

. H(a+ m)

- f X, )+ m=0 3—a—netK 2n+ldl+ 3n+1_2n+1 d2 U,
(%) Z; (D! (2K K{ ( )d}

{2n+ldl n (3n+l _ 2n+1)d2} (22)

therefore,

u, = f(x,)

n-1 n-1

(O{ + m)3—a—n2n+1 B H(a + m)3—a—n (3n+l _ 2n+l)

elK{ Ym0 gty S 0 a2 by
(2k)1‘“ ZO (n+1)! +Z; (n+1)!

:f(x2)+(2k1)lae‘2K{( )3 1)d1+( o)

= f(x,)+ W e K {3 ~1)d" +dju
1

~ O @

Using
el K{(3"* —1)d! +d?Ju = (3 —1)K U, + K,,U,,

B ﬁ(a + m)s—a—n (3n+l _ 2n+1) 1
Z m=0 =

— (n+1)! 1-a

{(317“ _1) KZlul + Kzzuz }v

We conclude that

1 —a
u2 =f (X2)+W{(31 —1)K21U1 + KZZUZ}' (23)
* In general, evaluating h(X) at the points X;(2/< jI< k) leads to

h(x;) = j ;t "D(t)dt

(ij't"d dtj+L"1t didt
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1 n+l n+lyAi H n+1 H n+1 j
W(Z{(ZI) _2) }d +{(2J—1) —(2]-2) }d )’ (24)

The infinite system (16) after truncation evaluate at X; and using (24) we get

H(a + m) 1

u; = f(x )+Z = ( 2k )_a_nethW{Z}{(Z')n+ (2i-2)""}d'

+ {(21_1)n+l_ _2)n+l}dj}u

lerm@i-ner . -
:f(xj”nz:o D) e ,K{Z{(zn) 2i - 2)"1}d
+ {ei-n™-@j- 2)”+1}d"}u

i H(a+m)(21 nr
= f(x)+(2k)la i {Z{Z

r=1 n=0 (n+1)!
n-1

o [Tl@+m@j-1
m=0 £(oi_1\"+1 _ R LS P B
+2, D) {@j-D""-(@2j-2" ',

therefore, by calculating the series in the Iast equation we obtain

(zr)n+l _ (Zr _ 2)n+l}d r}

U= f(x)+ W JK{Z{(Zj—(ZI’ 1) — (2 - @2r +1))"3" +d'Ju
this implies that

uj:f(xj)+W{Z{(21 (2i-1))" = (2] - Qi +1))"“IKu + Kyu 3,
Using

eth{jZ_i{(Zj —@r-1))""—-2j-@r+1) W + d‘}u

{(2 j—@i-1) - (- i +1))"“ K u, + K u

jidi ITha

|_\

j-

i=
and Vi= 2, ., J we have

i mzo(a +m)(2j-1)"{(2i-2)"" - (2i - 4"} _Qi-@i-3)" —@Rj-@i-1)
~ (n+1)! 1-a ’
then

. H(a+m)(21 ) ™@j-1)™-2j-2)" 1

o (n+1)! T1a

We obtainfor  j = 2,...,k.

u; = f(xj)+—1a2{(2] —(2i-1))7" = (2] - (2 +1))IK U + Kyu,
(1-a)(2k)
Finally, we will soIve the following system:
1
=)+ —=

— - Kyuu
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1 a
u, = 1=(><2)+W{(31 “1)K,u, + Ky, | (25)

And for j=2,...,k.

u; = f(x)++ WZ{(ZJ —Qi-1))" -2 - (21 +1)) KU, + Ku,

This lead to:

(1 (1- Ol) (Zk)l p 11)u = f(x)

(_L_ll KZIJul + (1 T NiALLa f(x,)
(1-a)(2k) (1- a)(2k) “

—%Z{QJ—(ZI D) —(2j-(2i+1))“IKu, + [

(1-a)(2K) Ui = 1)

i
o

(1- 0!)(2k)l’

(26)

The system (26) is a lower triangular system of algebraic equations with O(kz) operation gives column vector U, then a

desired approximation U, (t) of u(t) is obtained.

3.2 Logarithm Kernel

Following the procedure presented in the section 3.1, we consider here the logarithmic singularities, let us denote by
g(t) =In|x—t],0 <t < x. Using Taylor formulae the expansion of the function g is given by:
=1
In|x=t|=In|x|-Y —t"
; nx"
The same techniques applied to Abel Kernel lead to:

U'd(x) = f (X)+ onmt(x)KQ(t)(ln I x| —in—int”jdtu

o]

= f(X)+ D' (X)KIn|x| Joxq’(t)®t(t)dtu 3 ml(n

(XK jOX(I)(t)CI)‘ Ot"dtu (27

m=1
.1
| —_
Let us use the collocation points X; = TZ, for i=1,...,k . Now, the equation (27) is evaluated at the collocation points
reads as:
u'®(x) = f(x)+® (x)KIn|x, | joxid)(t)(I)‘ (t)dtu - Zinq)‘ (x)K joxiq)(t)q)t (Ht"dtu
m=1 nXi

A simple calculation on can get the following system:
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In|x|t 1& 1 ¢!

u, = f(x)+ e;Kd'u - Kd'u
2kn1n(n+1)
I | | 1 1 - 1 n+l 41 n+l n+1 2
u, = f(x,)+ eK2d+d u-—>3» ————elK(2"d"' + (3" -2"Nd
= F00)+ T ek d +du—g ek (2 )d*

Voj=2.0kup = f(x)+ lk | tK(22d'+d’)u

13 1 i 1 _ (o _ 2y )y na ]
C2k&n(n+1)(2j-1)" €] ( (@) - @i-2)" ' + (2] -1)™ - 2] - 2)")d Ju_

i=1

Using e‘j Kd'u = KU , we get the following system:

1
1 In(zkj 1
u, = f(ﬁ)"‘ oK Kllul_EKllul
In(Sj
3 2k 1 = n+ n+ n+
u, = f(ﬁ)"‘ ok (2K, + Kyu,)— E;n(n+1)3n (2 1K21u1+(3 t-2 1)Kzzuz)
(2" ) &
2j-1 !
Voj=2..k:u, = f( ‘2k )+ (ZZKJ,u,+K”uj)
1& I . .
- 2| n+l 2 n+1 K 2 _1 n+l_ 2 _2 n+1 KU )
D T Ll(() K+ (@11 - 2] -2 K, ]
Using
0 2n+l
Z—:—In(3)+2
~n(n+1)3"

) N+l Hn+l
zu:1+ln(3)

= n(n+1)3"
© 2J _ )n+l ( J
nZ; n(n+1)2j-1)

= (20" - (2i-2)™ o (2j-1-2i
nz iy e 2'“”( 2j-1 j

n+1
2) =1+In(2j-1),Vj= 2

j-2i+1

—@j-2i +1)In(

then we have a simple system:

j,m i< j-1
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[1+i(1— In(iD Klljul =f (i)
2k 2k 2k

_i|n i +m K21u1+ 1_&“'] i +K22w u, = f(i)
k \ 2k 2k 2k 2k 2k 2k

anu|+7/1u]_f(21 1; j:2,...,k:
i=1
In(zj_lj (29)
N 1 2j-1-2i L 2j-2i+1
=[- 2+ (2j-1-2i)In| 22222 | _2j—2i+1)In| 2222 | K
n=-— 2k[+(1 )(2_1](1 +)(21—1D ,.

_ 2j-1 1+In(2j-1)
yi=l-—- Jn +Kyj———
2k 2k 2k

The system (29) is a lower triangular system of algebraic equations with O(kz) operation gives column vector U, then a
desired approximation U, (t) of u(t) is obtained.
4. Error Analysis

In this section we assume that u(t) is a differentiable function with bounded first derivative on (0,1), that is,
M >0; Vte(0,1): |u'(t)|<M.

-1 i
The representation error when U(t) is represented in a series of BPFs over every subinterval [T’E) is

& (t) =g () -u(t)
=@, —u(t).

We may prqceed as follows:
e IP= [Ee? @dt = [*u(p —u(t))?dt
= (-0 0w = o -uw), st <) @

where we used mean value theorem. As before, if
u(t) = Z¢i¢i ®,
i=1
the i -th fourier coefficient is given by ¢, =k <u(t), ¢, (t) > . Using the mean value theorem leads to:
; i i-1 i-1 i
7, =k <u(D.0,0)>= kJLuOdt =k~ () =ul), (CZ<t <) @
K
Now, we obtain:

e 1= 22 ~U()* =5 (u(t) - o))

- %(tz _tl)zu‘z(to) (t, <t <t,) Si3|\/| 2

Now for i< J we have [ —) [ ,%) =, so Llei (t)e, (t)dt = 0. Therefore,

lelP= [e*ydt = jj(Zei ()2t
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= I:Zk]ez (O)dt+23 jolei (t)e; (t)dt = Zk: j:ef (t)dt

. 2
=Z|Ie I ——M
i=1

Therefore, || e(t) ||= O(%), where, e(t) =u, (t)—u(t).

5. Numerical Examples

Now for implementing the described method to solve weakly singular integral equation, we give 4 examples with exact solution
for compare with approximate solution.

Example 1:
2048 u(t)
u(x) = dt
()= 3003 \/_) I
with exact solution y(x) = x°.
Example 2

— 7+ 2arctan( L u(t) —=t,

N
1

1
U(X):ﬁ

with exact solution U(Xx) =

Example 3
U(x) = 4% — 4J_|n(2)+2&|n(—)+|n(x)+j “(t) ot
with exact solution u(x) = In(x).

Example 4 :
u(x) = —x(In(x))* - 2xIn(x) - 2x+éx;r +I )In(x —t)dt

with exact solution U(X) = In(x). For the case of two singular kernel and exactly Abel and logarithmic kernel, let us verify
numerically how the method presented behave. The convergence will be tested and the logarithmic convergence curve will be
plotted. In the case of Abel kernel and taking K = 64, we can compute the error between the approximate solution Ug, and

the exact solution. The left Figure in Figure (1) shows the error log,,(|[€][) where || e]|=|u(X) —ug,(X)| for the Abel

problem. The right Figure in Figure (1) shows the error log,,(||€][]) where || €||=[u(X)—ug(X)]| for the logarithm
problem. Let us notice in many cases we can not compute the exact solution with logarithmic kernel, so one can proceed as the
following: we test the convergence using the difference of between two sum at upper lower index 2" and 2™ i.e. we define
an error €, =U (x) - u2m+1(x), with different value of m Example 1 is solved in [8] using Bernstein polynomials and
example 2 is solved in [10] using the application of transformations of Korobov, Laurie and Sidi type in combination with the
trapezoidal quadrature rule, evidently, in both cases, the methods are somewhat more accurate than our method. However, in our

method high order convergence can be obtained easily by increasing the value of parameter K (the number of Block Pulse
Functions).
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Ing.“[[r arl

Ing JEmn;

Examplz |
+ Examplz 2
— & —Examplz4
Tl a2 a3 1= a3 106G as= a3 aa Al 1.2 1.4 a= 1.3 14 1.7 RE: | aa

Figure 1: log,,(||e]]) versus t. Using Abel Kernel (right figure) and Logarithm Kernel (left figure).

6. Conclusion

In present paper, a very simple and straight forward
method, based on Block-Pulse Functions and Taylor
expansion together with the collocation points is applied to
solve the linear Volterra integral equations of the second
kind with weakly singular kernel. For generalized
orthogonal polynomials such as Legendre polynomials,
Chebyshev polynomials and other, the calculation
procedures are usually exhausting, see [1]. The advantages
of presented method are low cost of setting up the
equations and no use of any projection method. Also, the
linear system of equations (25) is a lower triangular system
which can be easily solved by forward substitution with

O(K?) operations, therefore the count of operations is

very low. Considering the results obtained in this paper, we
plan in the future to tackle the following questions.

e Solve the Volterra-Fredholm integral equation with
Abel and logarithm kernel using the same technique.
Indeed, the Volterra-Fredholm integral can be
transformed into a system of Fredholm equation, and
this system can be solved using the present method.

e One can investigate a more general complicated
problem, in higher dimension space.

e Solving a nonlinear Volterra integro-differential
equations.
e Solving a nonlinear Volterra high-order

integro-differential equation, it can be reduced to an
algebraic system easy to solve.
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