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Abstract: This paper presents a probabilistic determination algorithm for dynamic objects. Gaussian model is used along with path 
balancing. The predictive system uses state estimate and covariance of the tracking system and map of the environment to compute the 
probability distribution of the future obstacle state over a specified area. Here the system is assumed to be nonlinear. The core of this 
approach is a weighing matrix that balances the contribution of each vector constraint used for prediction of object state. The 
constraints are considered as additional feature which is injected into control law. The computed object state is integrated with 
navigational behaviours to enable a robot to reach its navigational goal, avoiding any hazards. All the posture is represented by polar 
coordinates and the dynamic equation is feedback-linearized. After determining the object state a novel sliding mode control law is used 
for asymptotically stabilizing the mobile robot to a trajectory so it can navigate by avoiding any hazards.  
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1. Introduction 
 
Autonomous driving is one of the widely growing field in 
mobile robotics. Intelligent vehicles aim in improving road 
safety, vehicle efficiency and convenience. Most of the 
autonomous cars are based on reactionary planners that rely 
on rapid replanning in order to respond to dynamic 
environment in which they operate. One way to handle the 
autonomous cars more intelligently is to incorporate 
probability based determination of object state into path 
planning. The potential field method is a common technique 
for generating collision-free trajectories. 
 
The problem of prediction is inherently probabilistic, as it is 
impossible to know the true future behaviour of any 
dynamic obstacles that make their own independent 
decisions. In addition, the behavioural model used to predict 
the obstacle behaviour are often highly nonlinear. Several 
algorithms have been proposed to simplify the problem, 
such as assuming no uncertainty in future obstacle 
behaviour. These algorithms are well suited for cooperative 
situations, where the obstacles can communicate their 
intentions to the robot, or for short anticipation horizons. 
However, they do not provide sufficient information for 
reasoning about an obstacle with unknown intentions over a 
significant anticipation horizon. Several of this proposed 
methods consider only a subset of obstacle uncertainty, such 
as along track error. These approaches reduce the 
complexity of the problem to a manageable level, while still 
considering the probabilistic aspects of obstacle anticipation, 
but are typically very simple and narrow in their application. 
 
The stabilized movement of a mobile robot on a pre-
determined trajectory has several difficulties. One of the 
problem is that, nonholonomic systems cannot be applied to 
methods of linear control theory, and they are not 
transformable into linear control problems. Another 
difficulty in controlling nonholonomic mobile robots is that, 
in the real world there are uncertainties in their modelling. 
 

Some other algorithms applies standard estimation filters to 
the problem of anticipation. Such approaches assume a 
model for the behaviour of the obstacle, and provide 
mathematically rigorous, probabilistic estimates of that 
obstacle’s state over the anticipation horizon. These 
approaches are well suited to obstacles that are accurately 
described by linear models because they maintain a single 
Gaussian to represent the uncertainty. For obstacles with 
more complex behaviours, such as those based on nonlinear 
dynamics like car, truck, etc. and those that make discrete 
decisions like crossing, passing, etc., the uncertainty of the 
anticipated obstacle state becomes inaccurate very rapidly. 
 
2. Existing System 
 
Most of the algorithm used to determine the future state of 
dynamic obstacle in an operating environment addresses the 
complex uncertainties by avoiding the linearization 
problems of standered filters. For example, Monte-Carlo 
(MC) methods. These approaches consider complex, non-
Gaussian uncertainties and allow for the use of nonlinear 
obstacle models to capture complex obstacle behaviour. 
However, the accuracy of prediction scales with the number 
of particles, and there is no guarantees that the particle set 
effectively covers the true distribution of possible future 
obstacle states. Because the assumed dynamics model for 
the obstacle has to be evaluated at every particle used in 
anticipation, increasing confidence in the estimate is strongly 
traded with computational resources. 
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Figure 1: MC model Network Structure 

 
3. Proposed System 
 
The algorithm presented in this paper is designed to predict 
the probability distribution of dynamic object over the state 
of tracked obstacle forward in time. The main aim is to make 
accurate, probabilistic information about future obstacles 
behaviour available for use in path planning. The obstacle 
model includes nonlinear behaviour and discrete variables to 
capture higher level decisions. After determining the future 
state of dynamic objects a collision free trajectory is 
constructed by planning the trajectory in image space 
allowing the visibility and the navigation constraints. 
 

 
Figure 2: Object State Determination Model 

 
Gradient projection method (GPM) is used to draw a 
hierarchy between the different tasks and to build a control 
scheme that prevents lower subtasks from disturbing higher 
ones. However, a common issue with this approach is, when 
upper tasks constrain all the robot’s degrees of freedom 
(DOF), it prevents the lower subtasks from being performed. 
A solution can be to build a new operator that projects a 
subtask on to the norm of the main tasks, freeing some DOF 
that can then be used by secondary tasks. Task sequencing 
technique is used to make the task hierarchy dynamic. 

 
Figure 3: Transformation of Gaussian axis to offline 

problem. (a) Single Gaussian. (b) Translated to origin. (c) 
Transformed to unit variance. (d) Rotated splitting axis. 

 
Here the Gaussian model is used to uniquely include discrete 
state elements that capture complex, high-level obstacle 
behaviours. Accurate anticipation of a wide variety of 
dynamic obstacles is ensured using a novel method for 
detecting linearization errors using sigma-point methods, 
and adjusting the mixture accordingly by optimally splitting 
inaccurately propagated mixands 
 
A novel sliding mode control law for solving trajectory 
tracking problems of nonholonomic mobile robots is used. 
Dynamic models of mobile robots is used to describe their 
behaviours with bounded disturbances in system dynamics. 
The posture variables of mobile robots is represented in 
polar coordinates and is feedback linearized with a sliding 
mode control law which is applied for stabilizing the robots 
to a reference trajectory and compensating for existing 
disturbances. 

 
Figure 4: Schematic diagram of robot control system 

 
4. Algorithm Used 
 
This algorithm is invoked at sensory node when a new 
obstacle is seen along the duty path trajectory to determine 
its future state. Algorithm: DYNAMIC OBSTACLE STATE 
This program at node is invoked when a new obstacle is 
seen {e;w;B}. 
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1: if (the current object is on the duty path) then 
2: Search pq’s record and put the qualified records in 
FoundList; 
3: if (FoundList !=empty) then 
4: Send FoundList to the LCM computation node; 
5: Return; 
6: else 
7: if (new record) then; 
8: add record to ForwardList; 
9: Send the query message with ForwardList to the selected 
path trajectory; 
10: end if 
11: end if 
12: else 
13: Forward the query message {e;w;B} based on PSM Slice 
Handler rules; 
14: Compute weighing matrix; 
15: end if 
 
The core of this approach is a weighing matrix that balances 
the contribution of each vector constraint used for prediction 
of object state. Denoting s=(s1,s2,…..,sn) as the m-
dimensional signal of a multiple obstacle nonlinerized 
system, the signal time variation is given by  
 

s`=Jsq`                                         (1) 
 
The weighing matrix is given by 

Js=LWe
eJq                                      (2) 

 

 
Figure 5: Full rank matrix 

 
The weighted error is given by 

eH=He                                          (3) 
 

where e is the sensor error defined as 
e=s-s*                                          (4) 

 
and H is the diagonal positive semi definite weighing matrix 
that depends on the current value of s. 
 
The weighing matrix for sensor S is given by 

 

 
Figure 6: Diagonal positive Semi definite weighing matrix 

 
The two state stochastic obstacle state determination in 
nonlinear system with fixed logistics takes following form 
Max f(X,Y,Z) =∑Ω p(β)[max qF(β)] - (cX+aY+kZ) 
 
St= A[X,Z] < b, 
-T(β)Z + UF(β) =0, β € Ω 
-V[X,Y] + WF(β) = h, β € Ω 
X > 0; Y,Z binary; F(β) > 0, β € Ω 

 
Figure 7: Logistic obstacle state determination 

 
5. Performance Analysis 
 
The proposed system was analysed for performance and 
efficiency with existing anticipation and path balancing 
techniques. The result of performance analysis is visualized 
in the form of a graph to provide a clear insight on the 
improvements achieved. This analysis was carried out on the 
following metrics: state estimate, path optimization, DOF, 
fairness index, efficiency. The resultant values is graphically 
plotted below, for comparison of the existing and the 
proposed system. Series 1: Existing System, Series 2: 
Proposed System. 

 

 
Figure 8: Performance analysis of proposed system vs 

existing system 
 
The path balancing is viewed as a step function where the 
path between intermediate nodes from source to destination 
is developed in an iterative manner. 

 
Figure 9: Path generation as step function 

 
6. Conclusion 
 
This entire work is based on creating an efficient and light 
weight constraint based probabilistic determination 
algorithm for determining the future state of dynamic objects 
in the operating environment. Technically speaking, the 
solution is to modify the predictive system to use state 
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estimate and covariance of the tracking system and map the 
environment to compute the probability distribution of the 
future obstacle state over a specified area. For this, Gaussian 
model along with path balancing is used. The system was 
assumed to be nonlinear during the entire project. The core 
of this approach is a weighing matrix that balances the 
contribution of each vector constraint used for prediction of 
object state where the constraints are considered as 
additional feature which is injected into control law. The 
computed object state is integrated with navigational 
behaviours to enable a robot to reach its navigational goal, 
by avoiding any hazards. The accuracy of state estimate in 
the proposed system has increased to 87.4 % from 65.7 % of 
the existing system and at the same time the degree of 
freedom (DOF) of the proposed system has increased to 
73.1% from 58.4% Using LMI optimization the path 
optimization has increased from 32.1% to 54.3% with an 
increase in fairness index of 29.5%. Thus the overall 
efficiency of the system has increased from 50.3% to 64.8%. 
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