
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Parallelization of Symmetric and Asymmetric

security Algorithms for MultiCore Architectures

T. Balamurugan
1
, T. Hemalatha

2

1PG Scholar, PSNA College of Engineering & Technology, Dindigul, Tamilnadu-624622, India,

2Associate Professor, PSNA College of Engineering & Technology, Dindigul, Tamilnadu-624622, India,

Abstract: Symmetric and Asymmetric algorithms are complex that requires large number of mathematical computations to be done.

The sequential execution of the algorithms would require a considerable amount of execution time. This may not feasible for most of

the applications that require faster rate of encryption and decryption to match the required data flow. The objective of this work is to

optimize the execution of Symmetric and Asymmetric algorithms at code level that is to be implemented in a MultiCore environment. In

this work, code level parallelism is preferred since it can work on any architecture without any modifications. Hence, our objective is to

parallelize the existing security algorithms, so that the proposed algorithm can enhance the power of MultiCore architectures thereby it

leads to less run time complexity. In this work the time complexity of the most popular algorithms for parallelization since it is

predominantly used in all Network Protocols and Applications. The work focuses on enhancing the performance of these algorithms by

parallelizing code so that it can utilize more than one processor in MultiCore architecture efficiently for its execution.

Keywords: Cryptography, Parallel Computation, AES, DES

1. Introduction

Earlier computers had only uniprocessor in which Single

central processing unit is used to execute all computer tasks

sequentially one at a time. All the operations are executed

sequentially. Uniprocessor is used to distinguish the class of

computers where all processing tasks are executed in a single

CPU. Recent desktop computers are having multiprocessing

architectures. Recent computers have MultiCore processors

which have more than one CPU. MultiCore computers have

two or more Central Processing Units (CPUs) within a single

computer system. Multiprocessing refers to the execution of

multiple concurrent processes in a system as opposed to a

single process at any one instant.

1.1 Parallel Computing

Parallel computing is the computation in which many

calculations are carried out simultaneously,

operating on the

principle that large problems can often be divided into

smaller ones, which are then solved concurrently. Parallelism

can be achieved in data level, task level and code level.

1.1.1 Code level parallelism

Code level parallelism is measure of number of lines of codes

that are executed in a computer system can be performed

simultaneously. The potential overlap among code is called

Code level parallelism. Code level parallelism can be

implemented by using Message Passing Interface (MPI) and

OpenMP. Here OpenMP tool is used for parallel computing.

OpenMP supports Linux platform. We can speedup by

multiple threads simultaneously. OpenMP is directly

supported by the compiler. Additional libraries unlike MPI

need not be installed.

Open MultiProcessing is the tool used for parallel

programming interface which is supported by MultiCore

architectures to provide multithreaded shared memory

parallelism. The master thread executes sequentially until the

first parallel region construct is encountered and then it

creates a team of parallel threads, within the parallel region

construct are then executed in parallel among the various

threads. [6]

1.1.2 Techniques used in OpenMP

a) Fork/join threads

 Synchronization

 Mutual exclusive

b) Assign/distribute work to threads

 Work share

 Task queue

c) Run time control

 Query/request available resources

 Interaction with OS

Figure 1: OpenMP Execution Model

1.1.3 MPI

MPI is a communication protocol used to program parallel

computers. MPI is a message-passing application

programmer interface. mpicc is a program which helps the

programmer to use a standard C programming language

compiler together with the Message Passing Interface (MPI)

Paper ID: SUB141046 2810

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

libraries Most MPI implementations consist of a specific set

of routines. MPI's goals are high performance, scalability,

and portability.

1.1.4 Parallel Algorithm Models

An algorithm model is the representation of a parallel

algorithm by selecting a strategy for dividing the data and

processing technique and applying the appropriate method.

The various models available are

 The Data Parallel model

 The Task Graph model

 The Work Pool model

 The Master Slave model

 The Pipeline or Producer Consumer model

 Hybrid models

1.1.4.1 The Data-Parallel Model

In this model, the tasks are statically or semi-statically

attached onto processes and each task performs identical

operations on a variety of data. Tasks are executed in

different phases that are uniformly partitioned. Data-Parallel

algorithms can be implemented in both shared address space

and message passing paradigms. Shared address space is

easily programming. Dense matrix multiplication is an

example for this model.

1.1.4.2 The Task Graph Model

The computations in any parallel algorithm can be viewed as

a task graph. The type of parallelism that is expressed by the

task graph is called task parallelism. This model is applied to

huge relative to the amount of data associated with them.

Parallel quick sort, sparse matrix factorization are the

example for this model.

1.1.4.3 The Work Pool Model

The work pool or the task pool model is characterized by a

dynamic mapping of tasks onto processes for load balancing

in which any task may potentially be executed by any

process. There is no desired pre-mapping of tasks onto

processes. Parallel tree search is an example for thi]]s model.

1.1.4.4 The Master-Slave Model

In the master-slave model, one or more master processes

generate work and allocate it to slave processes. The

manager can estimate the size of the tasks or random

mapping can do an adequate job of load balancing. Workers

are assigned smaller pieces of work. This model is suitable to

shared address space or message passing paradigms.

1.1.4.5 The Pipeline or Producer-Consumer Model

In the pipeline model, a stream of data is passed on through a

succession of processes. This simultaneous execution of

different programs on a data stream is called stream

parallelism.

1.1.4.6 Hybrid model

In this hybrid model more than one model may be applicable

to the problem at hand, resulting in a hybrid algorithm model.

This model may be composed either of multiple models

applied hierarchically or multiple models applied

sequentially to different phases of a parallel algorithm.

Parallel quick sort is an example for this model. [7]

1.2 Security

Security is the most important requirement for exchanging

information from one place to another. The Cryptography

mechanism can provide the most secure way of transferring

information between sender and receiver. The objective is to

make the secret information to non readable format to all

other except specified receiver. So Advanced Encryption

Algorithm (AES) and Data Encryption Standard algorithm

(DES) provides confidentiality. AES and DES algorithm

requires more memory and execution time. So that we have

to speed up the AES and DES algorithm by parallelizing the

implementations. So that it can enhances the computing

power if all cores. This enhances the performance by

reducing the running time and speeds up the encryption and

decryption powers. The existing implementations of such

algorithm are designed for executing in single core

architecture.

Security algorithms are categorized into two types. They are

Symmetric algorithm and Asymmetric algorithm.

1.2.1 Symmetric algorithm

Symmetric algorithm is also called shared key algorithm in

which both encryption and decryption uses the same key. The

speed of this algorithm is at least 1000 times faster when

compared to asymmetric algorithm. The weakness of this

algorithm is distribution of the key and does not provide non

repudiation of data. [8]

Example: AES, Blowfish, DES, Serpent, Twofish.

1.2.2 Asymmetric algorithm

Asymmetric algorithm is also called public key algorithm,

public key is used for encryption and private key is used for

decryption. Public key is available to all and private need to

be secured.

Example: Diffie–Hellman key exchange, Digital Signature

Algorithm, ElGamal, RSA, Merkle–Hellman.

Table 1: list of Security Services & its Algorithms
Security service Most widely used algorithms

Confidentiality SSL_RSA_WITH_RC4_128_MD5

Authentication Rivest Shamir Adleman (RSA) algorithm and

Diffie-Hellman (DH) algorithm

Integrity SHA-1, MD5

Non reputation Digital signature

2. Related Work

Jyothi and Omar suggested the parallelization of AES

algorithm in their work by proposing a hardware model. The

hardware models of advanced encryption standard algorithm

protects from malicious attacks. The Rinjindael AES

algorithm with key length 128 bits is implemented in

hardware. The two hardware models based on HDL and IP

core are used to evaluate the performance of the algorithm.

As single custom processors are used in specific applications,

Paper ID: SUB141046 2811

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

they outperform general purpose processors used in a SoPC

model. The encryption time and the performance metrics

such as speed and memory utilization are evaluated. Since

the proposed system uses a hardware model and the fixed

length of key size 128 bit alone is supported. Other key

lengths are not supported. The proposed system is hardware

specific thereby the parallelized implementation is not

portable. Hence the hardware implementation is not efficient

than the software implementation. [1]

Dazhong Wang and Xiaoni suggested the Parallelization of

AES algorithm in their work by improved method to increase

AES system speed which is used to protect electronic data.

The system consists of two main components Cipher and

Key-Expansion. Furthermore, there are four small parts in

process of cipher conversion. The AES algorithm is capable

of using cryptographic keys of 28,192 and 256 bits to encrypt

and decrypt information. In the design, after receiving the

key matrix, every part of the key expansion is continuously

working state. The S-box size is used to improve the

encrypting performance. Combining the AES algorithm and

the RSA algorithm that could increase the speed of

encryption and the decryption. Many devices like memory

units and time delay are used to increase the speed. There are

various methods used in this work, not focused on MultiCore

environment. [2]

Navalgund suggested the parallelization of AES algorithm in

their work by Parallelization of AES algorithm using

OpenMP. The parallelization of AES algorithm is optimized

at data level and control level. According to the parallel

computation paradigms, the independent parts of the

algorithms must be identified and then prepared to work in

separate threads. The AES algorithm is divided into

parallelizable and unparallelizable parts. The parallelized

portion and unparallelized portion are joined using fork-join

model. This work is focused on parallelization at data level

and control level. AES and DES have number of iteration for

encryption and decryption. So it is not more efficient than

using code level. The system is specially designed for AES

algorithm, not focused on DES algorithm. [3]

Bin Liu and Bevan M. Baas suggested the parallelization of

AES algorithm in their work by improving the performance

of AES algorithm at task level and data level. The system is

designed for fine-grained many core systems. The design of

this system requires minimum six cores for offline key

expansion and eight cores for online key expansion. The

largest requires 107 and 137 cores respectively. The fastest

design achieves a throughput, when the processors are

running at a specified frequency. This system allocates the

workload of each processor, which reduces the number of

cores. This type of parallelization is suitable only for 6 cores

but not less than that i.e. 2/3/4 cores. Parallelization is done

only for AES under symmetric cryptosystem. [4]

Nagendra and Chandra Sekhar suggested the Parallelization

of AES algorithm in their work by improving the

performance of Advanced Encryption algorithm using

parallel computation that uses divide and conquer strategy.

Such strategy is used in parallel computation to solve

algorithms in parallel by partitioning and allocating number

of given subtask to available processing units. The text file is

given as input. The text file is decomposed into number of

blocks. Each block is executed in a single core. The

implementation of cryptography algorithm is done on dual

core processor. OpenMP API is used to reduce the execution

time. The system is specially designed for dual core

processors but recent processors have many cores, thereby

performance of the system is not improved much. The system

is specially designed for AES algorithm, under Symmetric

cryptosystems. But most of the applications in internet use

only asymmetric cryptography to achieve confidentiality,

authentication and integrity. The blocks of text file are

executed in dual core processor, so that the CPU resources

are not fully utilized in looping statements. The text file is

executed in parallel, but the source code is not parallelized.

[5]

3. Techniques

The objective of the proposed system is attained in two

phases. In phase I, the sequential code that satisfies the

property of SIMD is selected. In this phase, the sequential

code and parallelized codes are executed in Linux platform.

gcc compiler is used execute the sequential code. mpicc

complier is used execute the parallelized code. The result of

execution time is calculated.

Message Passing Interface is a powerful model used in high

performance computing. It allows users to create programs

that can run efficiently on most parallel architectures.

Communicator is a group of processes that are used to

communicate to each other. Rank is to distinguish each

process of the communicator, an ID assigned to each of

termed as rank of the process. One processor communicates

explicitly to another process using this ID. Size is the total

number of processes belonging to a communicator.

MPI runs on virtually any hardware platform. They are

 Distributed Memory

 Shared Memory

 Hybrid

The group of routines is used for interrogating and setting the

MPI execution environment. They are

MPI_Init

Initializes the MPI execution environment. This function

must be called in every MPI program, must be called before

any other MPI functions and must be called only once in an

MPI program.

MPI_Init (&argc,&argv)
MPI_INIT (ierr)

MPI_Comm_size

Returns the total number of MPI processes in the specified

communicator, such as MPI_COMM_WORLD. If the

communicator is MPI_COMM_WORLD, then it represents

the number of MPI tasks available to your application.

Paper ID: SUB141046 2812

https://computing.llnl.gov/tutorials/mpi/man/MPI_Init.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_size.txt

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MPI_Comm_size (comm,&size)
MPI_COMM_SIZE (comm,size,ierr)

MPI_Comm_rank

Returns the rank of the calling MPI process within the

specified communicator. Initially, each process will be

assigned a unique integer rank between 0 and number of

tasks - 1 within the communicator MPI_COMM_WORLD.

This rank is often referred to as a task ID.

MPI_Comm_rank (comm,&rank)
MPI_COMM_RANK (comm,rank,ierr)

MPI_Abort

Terminates all MPI processes associated with the

communicator. In most MPI implementations it terminates all

processes regardless of the communicator specified.

MPI_Abort (comm,errorcode)
MPI_ABORT (comm,errorcode,ierr)

MPI_Get_processor_name

This function returns the name of the processor. Also returns

the length of the name. The buffer for "name" must be at

least MPI_MAX_PROCESSOR_NAME characters in size.

What is returned into "name" is implementation dependent -

may not be the same as the output of the "hostname" or

"host" shell commands.

MPI_Get_processor_name

(&name,&resultlength)
MPI_GET_PROCESSOR_NAME

(name,resultlength,ierr)

MPI_Get_version

It returns the version and subversion of the MPI standard

that's implemented by the library.

MPI_Get_version (&version,&subversion)
MPI_GET_VERSION (version,subversion,ierr)

MPI_Initialized

Indicates whether MPI_Init has been called - returns flag as

either logical true (1) or false(0). MPI requires that MPI_Init

be called once and only once by each process. This may pose

a problem for modules that want to use MPI and are prepared

to call MPI_Init if necessary. MPI_Initialized solves this

problem.

MPI_Initialized (&flag)
MPI_INITIALIZED (flag,ierr)

MPI_Wtime

Returns an elapsed wall clock time in seconds on the calling

processor.

MPI_Wtime ()
MPI_WTIME ()

MPI_Wtick

Returns the resolution in seconds of MPI_Wtime.

MPI_Wtick ()
MPI_WTICK ()

MPI_Finalize

Terminates the MPI execution environment. This function

should be the last MPI routine called in every MPI program -

no other MPI routines may be called after it.

MPI_Finalize ()
MPI_FINALIZE (ierr)

For MPI program in C language include the header file mpi.h

using the command #include<mpi.h> will include all MPI

subroutines. During the MPI subroutine call from the main

program, compiler will go to MPI subroutine definition,

which is available at the MPI library and executes the

function definition. After execution, result is returned to the

program from where it was called. All the MPI subroutines

have the form MPI subroutine. In an MPI function call, the

arguments that specify the address of a buffer should be

specified as pointers. Return code of an MPI function call

should be an integer value. Data types defined in the C

semantics is in that is more individual.

4. Implementation

The second phase of the proposed work is decomposed into

six modules. The high level design of the proposed system is

shown in figure 2. The Request handler accepts the source

code from the user and it transfers to the code level

Parallelizer. The source code may be in C/C++/JAVA

languages. The code level Parallelizer stores the code into the

database. The source code analyzer fetch the source code by

using substring functions. Each substring is converted by

using XML tags and it is stored in the file system. The

convertor separates the declaration statements, looping

statements, etc in source code. Then the looping statements

are converted into parallelized code by the Code Level

Parallelizer. Code Level Parallelizer consists XML Encoder,

XML parser and Parallelizer. XML Encoder encodes the

code into the XML instance. XML parser is used to identify

the strings in the source code. XML Parallelizer converts the

parallelized parts like looping statements. The result of

parallelized code sent back to the user.

Paper ID: SUB141046 2813

https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_rank.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Abort.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Get_processor_name.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Get_version.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Initialized.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtime.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtick.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Finalize.txt

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: High level Design of the proposed system

The parallelized code can be executed in MultiCore

architectures. The system checks for more than one CPU. If it

has more number of cores present in the CPU. According to

the number of cores the tasks are subdivided and each core

executes the appropriate task. After executed of all the tasks

the results are obtained from all cores and combined into one.

The inputs file are divided into number of core present in the

CPU and the encryption/decryption on multiple blocks of

code simultaneously executed by core-0, core-1, up to core-

(n-1). Else the system has only one core the code executed in

the single processor. The sequential and parallel code

execution time is calculated.

Figure 3: Flow chart for parallel execution

The required objective is automated by the proposed system

which is implemented using C#. The high level design of the

proposed system is decomposed into six modules.

1. Request Handler

2. Source Code Analyzer

3. Code Level Parallelizer (CLP)

4. XML Encoder

5. XML Parser & Parallelizer

6. Performance Analyzer

Figure 4: Module level Design of the proposed system

4.1 Request Handler

The proposed system is implemented as a web application

through which the user can submit the source code in

sequential form. The sequential source code should meet the

requirements of proposed systems that it has to be in any one

of the high level languages that are supported by the

proposed system i.e. C/C++/JAVA. In this request handler,

the end user sends code to parallelize, by performing

authentication. Only authorized users can use this.

4.2 Source Code Analyzer

The Request Handler dispatches the source code submitted

by the end user to this module. The functionality of Source

Code Analyzer is to analyze the source code and ensure

whether it is supported by the proposed system or not.

Source code analyzer categorizes each statement of the

source code. The set of XML tags are stored in the file

system that is used to analyze the source code. Using user

defined XML tags the source code is categorized into

declaration statement, control statement, variables and etc.

From top to bottom code is analyzed.

Each and every Word of the source code has to be identified

in order to find which area of code to parallelize. The system

automatically decides the code which is to be parallelized.

XML supports user defined tags and facility to store XML

files in the file system.

Paper ID: SUB141046 2814

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Source Code Analyzer

4.3 Code Level Parallelizer (CLP)

The CLP converts the sequential code into parallelized code.

It does the main objective of parallelization. The looping

statements are taken for the conversion. This searches each

looping statements from the top to bottom of the source code.

The design of CLP is shown in the figure 4.5. It consists of

three modules

 XML Encoder

 XML Parser

 Parallelizer

Figure 6: Code Level Parallelizer

4.4 XML Convertor

The source code written in C/C++/JAVA serves as the input

to this module. The role of this process is to convert the

source code into a form that can be parsed for parallelization.

The process of conversion involves following steps.

 Identify each and every section & keyword in the input

file.

 Insert the appropriate XML Tags as per the section.

 The Tags are user defined and it is inserted appropriately

in the source code so that the task of parallelization can be

made simple by the use of XML parser.

 The sample source code, the major user defined tags and

parallelized code are listing below.

Example source code:

#include <stdio.h>

void main()

{

 int sum=0,i, n=15;

 for(i=0;i<=n;i++)

{

 sum=sum+i; }

printf(“Sum= %d”,sum);

}

XML encoder reads the above program from top to bottom

and categorizes the string by the following XML tags.

<header_file>#include<stdio.h></header_file>

<data_type>int</data_type>

<variable>sum=0,n=15,i</variable>

<loop>for</loop>

Using the above XML parser the above codes are categorized

as header files, declaration type, variable, loop, etc. If

looping statement is found then the code can be parallelized.

Check until the source program reaches the end of file. The

Parallelizer translates the looping statements that are

executed in parallel. The following program shows the

parallelized code for the above example.

The statement for(i=0;i<=n;i++) is identified by the XML

Parser. This statement is parallelized as

#pragma omp parallel for

 for(i=0;i<=n;i++)

Finally the unparallelized codes and parallelized codes are

combined into single code as follows.

Parallelized code:

#include <stdio.h>

#include “mpi.h”

void main()

{

 int sum=0,i, n=15;

#pragma omp parallel for

 for(i=0;i<=n;i++)

{

 sum=sum+i; }

printf(“Sum= %d”,sum);

}

4.5 XML Parser & Parallelizer

XML Parameterized source code is parsed by the XML

parser. XML parser is administered by the rules. Rules are

defined for each of the high level language like C, C++, and

Java. These rules are fetched by the XML parser from the

rule repository and it is applied on the source code.

Whenever there is a match against a rule in the source code,

the Parallelizer is involved to insert the corresponding

parallel construct in the source code. This process is repeated

until it reaches End of file. The output of these two modules

is parallelized code.

Paper ID: SUB141046 2815

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 12, December 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Results and Analysis

The system accepts the sequential code from the end user and

returns the parallelized code to the end user. The parallelized

code is stored in the file system which is further pushed to the

end user by two means. They are

 If the client is synchronous, the Parallelized code is sent to

the client using push technology.

 If the client is asynchronous, the parallelized code is sent

to the client’s mail box using SMTP/POP3 protocol.

The execution times of sequential and parallelized code for

different sizes are calculated by the performance analyzer in

the environment of OpenMP, Linux, Dual core CPU and 2

GB RAM. The execution time required by different size text

input files for encryption and decryption process. The

execution time of sequential code is greater than the

parallelized code in all cases. The AES and DES algorithm

has been successfully parallelized by using OpenMP.

6. Conclusion

In this work, the parallelization of sequential algorithms are

done by using MPI. The execution times of both sequential

and parallel algorithm are measured. The parallel

implementation takes very less time than the sequential

implementation. Hence, multi-core processors can execute in

less time compared to sequential execution of AES and DES

cryptography algorithm. The multi-core processing

environment can be utilized effectively by performing code

level parallelism, which provides an efficient and reliable

way to execute AES and DES cryptography algorithm with

less execution time thereby the overall performance can be

improved.

References

[1] Jyothi Yenuguvanilanka and Omar Elkeelany,

“Performance Evaluation of Hardware Models of

Advanced Encryption Standard (AES) Algorithm”,

IEEE, pp. 222-225, 2008.

[2] Dazhong Wang and Xiaoni Li, “Improved Methods to

Increase AES system Seed”, The Ninth Conference on

Electronic Measurement & Instruments, pp. 49-52,

2009.

[3] Navalgund. S. S, Akshay Desai, Krishna Ankalgi and

Harish Yamanur, ”Parallelization of AES Algorithm

Using OpenMP”, Lecture Notes on Information Theory

Vol. 1 No. 4, pp. 144-147, 2013

[4] Bin Liu, “Parallel AES Encryption Engines for many

core Processor Arrays, IEEE, pp.536-547.

[5] Nagendra. M and Chandra Sekhar. M, “Performance

Improvement of Advanced Encryption Algorithm using

Parallel Computation”, International Journal of

Software Engineering and Its Applications, pp.287-296,

2014

[6] Shao-Ching Huang ,“Parallel Computing and OpenMP

Tutorial”, 2013.

[7] http://nptel.ac.in/courses/106106112/2

[8] www.cryptoforge.com/what-is-encryption.htm.

[9] William Stallings, “Cryptography and Network

Security”, 4
th

 Edition, 2006.

Author Profile

T. Balamurugan received the D.C.T from Christian

Polytechnic College, Oddanchatram in 2003 and B.E.

degree in Computer Science and Engineering from

R.V.S College of Engineering and Technology,

Dindigul in 2007. During 2013-2015, he is doing M.E

Computer Science and Engineering, from PSNA College of

Engineering and Technology, Dindigul.

T. Hemalatha received the Bachelors degree in

Computer Science & engineering from Thiagarajar

College of Engineering in 1994 and Masters Degree in

Computer Science & Engineering from College of

Engineering - Guindy, Anna University in 2004. She is a research

scholar of Anna University. Currently, she is an Associate Professor

at P.S.N.A. College of Engineering and Technology, Tamilnadu,

India. Her interests are in Network Security, Grid Computing,

Distributed System and Computer Networks.

Paper ID: SUB141046 2816

http://nptel.ac.in/courses/106106112/2
http://www.cryptoforge.com/what-is-encryption.htm

