
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Secure Decentralized Erasure for Code-Based
Cloud Storage System

Shaik Fathima Zahera

Nawab Shah College of Engineering & Technology (Affliated to JNTUH), Hyderabad, Telangana 500024, India

Abstract: A cloud storage system, consisting of a collection of storage servers, provides long-term storage services over the Internet.
Storing data in a third party’s cloud system causes serious concern over data confidentiality. General encryption schemes protect data
confidentiality, but also limit the functionality of the storage system because a few operations are supported over encrypted data.
Constructing a secure storage system that supports multiple functions is challenging when the storage system is distributed and has no
central authority. We propose a threshold proxy re-encryption scheme and integrate it with a decentralized erasure code such that a
secure distributed storage system is formulated. The distributed storage system not only supports secure and robust data storage and
retrieval, but also lets a user forward his data in the storage servers to another user without retrieving the data back. The main technical
contribution is that the proxy re-encryption scheme supports encoding operations over encrypted messages as well as forwarding
operations over encoded and encrypted messages. Our method fully integrates encrypting, encoding, and forwarding. We analyze and
suggest suitable parameters for the number of copies of a message dispatched to storage servers and the number of storage servers
queried by a key server. These parameters allow more flexible adjustment between the number of storage servers and robustness.

Keywords: Encryption, Threshold Proxy Re-encryption, Severs, Cloud storage, Storage sever, Decentralized

1. Introduction

This paper describes Farsite, a serverless distributed file
system that logically functions as a centralized file server but
whose physical realization is dispersed among a network of
untrusted desktop workstations. Farsite is intended to provide
both the benefits of a central file s access, and reliable data
storage) and the benefits of local desktop file systems (low
cost, privacy from nosy sysadmins, and resistance to
geographically localized faults). Farsite replaces the physical
security of a server in a locked room with the virtual security
of cryptography, randomized replication, and Byzantine
fault-tolerance Farsite is designed to support typical desktop
file-I/O workloads in academic and corporate environment.
Data robustness is a major requirement for storage systems.
There have been many proposals of storing data over storage
servers [1], [2], [3], [4], [5]. One way to provide data
robustness is to replicate a message such that each storage
server stores a copy of the message. It is very robust because
the message can be retrieved as long as one storage server
survives. Another way is to encode a message of k symbols
into a codeword of n symbols by erasure coding. To store a
message, each of its codeword symbols is stored in a
different storage server. A storage server failure corresponds
to an erasure error of the codeword symbol. As long as the
number of failure servers is under the tolerance threshold of
the erasure code, the message can be recovered from the
codeword symbols stored in the available storage servers by
the decoding process. This provides a tradeoff between the
storage size and the tolerance threshold of failure servers. A
decentralized erasure code is an erasure code that
independently computes each codeword symbol for a
message. Thus, the encoding process for a message can be
split into n parallel tasks of generating codeword symbols. A
decentralized erasure code is suitable for use in a distributed
storage system. After the message symbols are sent to
storage servers, each storage server independently computes
a codeword symbol for the received message symbols and
stores it.

This finishes the encoding and storing process. The recovery
process is the same. Storing data in a third party’s cloud
system causes serious concern on data confidentiality. In
order to provide strong confidentiality for messages in
storage servers, a user can encrypt messages by a
cryptographic method before applying an erasure code
method to encode and store messages. When he wants to use
a message, he needs to retrieve the codeword symbols from
storage servers, decode them, and then decrypt them by
using cryptographic keys. There are three problems in the
above straightforward integration of encryption and
encoding.

First, the user has to do most computation and the
communication traffic between the user and storage servers
is high. Second, the user has to manage his cryptographic
keys. If the user’s device of storing the keys is lost or
compromised, the security is broken. Finally, besides data
storing and retrieving, it is hard for storage servers to directly
support other functions. For example, storage servers cannot
directly forward a user’s messages to another one. The owner
of messages has to retrieve, decode, decrypt and then
forward them to another user.

In designing Farsite, our goal has been to harness the
collective resources of loosely coupled, insecure, and
unreliable machines to provide logically centralized, secure,
and reliable file-storage service. Our system protects and
preserves file data and directory metadata primarily through
the techniques of cryptography and replication. Since file
data is large and opaque to the system, the techniques of
encryption, one-way hashing, and raw replication provide
means to ensure its privacy, integrity, and durability,
respectively. By contrast, directory metadata is relatively
small, but it must be comprehensible and revisable directly
by the system; therefore, it is maintained by Byzantine-
replicated state-machines [8, 36] and specialized
cryptographic techniques that permit metadata syntax
enforcement without compromising privacy [15]. One of
Farsite’s key design objectives is to provide the benefits of

Paper ID: 31101401 700

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Byzantine fault-tolerance while avoiding the cost of full
Byzantine agreement in the common case, by using signed
and dated certificates to cache the authorization granted
through Byzantine operations. Both Farsite’s intended
workload and its expected machine characteristics are those
typically observed on desktop machines in academic and
corporate settings. These workloads exhibit high access
locality, a low persistent update rate, and a pattern of
read/write sharing that is usually sequential and rarely
concurrent [22, 48]. The expected machine characteristics
include a high fail-stop rate (often just a user turning a
machine off for a while) [6] and a low but significant rate
[41] of malicious or opportunistic subversion. In our design,
analysis, evaluation, and discussion, we focus on this
environment, but we note that corporate administrators might
choose to supplement Farsite’s reliability and security by
adding userless machines to the system or even running
entirely on machines in locked rooms. Farsite requires no
central administration beyond that needed to initially
configure a minimal system and to authenticate new users
and machines as they join the system. Administration is
mainly an issue of signing certificates: Machine certificates
bind machines to their public keys; user certificates bind
users to their public keys; and namespace certificates bind
namespace roots to their managing machines. Beyond
initially signing the namespace certificate and subsequently
signing certificates for new machines and users, no effort is
required from a central administrator.

2. Literature Survey

Designing a cloud storage system for robustness,
confidentiality and functionality. The proxy re-encryption
scheme supports encoding operations over encrypted
messages as well as forwarding operations over encoded and
encrypted messages. To provide data robustness is to
replicate a message such that each Storage server stores a
copy of the message. It is very robust because the message
can be retrieved as long as one storage server survives.

The number of failure servers is under the tolerance
threshold of the erasure code, the message can be recovered
from the codeword symbols stored in the available storage
servers by the decoding process. This provides a tradeoff
between the storage size and the tolerance threshold of
failure servers.

A decentralized erasure code is an erasure code that
independently computes each codeword symbol for a
message. A decentralized erasure code is suitable for use in a
distributed storage system. A storage server failure is
modeled as an erasure error of the stored codeword symbol.
We construct a secure cloud storage system that supports the
function of secure data forwarding by using a threshold
proxy re-encryption scheme. The encryption scheme
supports decentralized erasure codes over encrypted
messages and forwarding operations over encrypted and
encoded messages. Our system is highly distributed where
storage servers independently encode and forward messages
and key servers independently perform partial decryption.

3. Problem Definition

In this paper, we address the problem of forwarding data to
another user by storage servers directly under the command
of the data owner. We consider the system model that
consists of distributed storage servers and key servers. Since
storing cryptographic keys in a single device is risky, a user
distributes his cryptographic key to key servers that shall
perform cryptographic functions on behalf of the user. These
key servers are highly protected by security mechanisms.

The distributed systems require independent servers to
perform all operations. We propose a new threshold proxy
re-encryption scheme and integrate it with a secure
decentralized code to form a secure distributed storage
system. The encryption scheme supports encoding operations
over encrypted messages and forwarding operations over
encrypted and encoded messages.

Advantages of Proposed System

• Tight integration of encoding, encryption, and forwarding

makes the storage system efficiently meet the requirements
of data robustness, data confidentiality, and data
forwarding.

• The storage servers independently perform encoding and
re-encryption process and the key servers independently
perform partial decryption process.

• More flexible adjustment between the number of storage
servers and robustness.

4. System Architecture

Figure 1

5. Methodologies

5.1 Construction of Cloud Data Storage Module

In Admin Module the admin can login to give his username
and password. Then the server setup method can be opened.
In server setup process the admin first set the remote servers
Ip-address for send that Ip-address to the receiver. Then the
server can skip the process to activate or Dis-activate the
process. For activating the process the storage server can
display the Ip-address. For Dis-activating the process the
storage server cannot display the Ip-address. These details
can be viewed by clicking the key server. The activated Ip-
addresses are stored in available storage server. By clicking

Paper ID: 31101401 701

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the available storage server button we can view the currently
available Ip-addresses.

5.2 Data Encryption Module

In cloud login module the user can login his own details. If
the user cannot have the account for that cloud system first
the user can register his details for using and entering into
the cloud system. The Registration process details are
Username, E-mail, password, confirm password, date of
birth, gender and also the location. After entering the
registration process the details can be stored in database of
the cloud system. Then the user has to login to give his
corrected username and password the code has to be send
his/her E-mail. Then the user will go to open his account and
view the code that can be generated from the cloud system.

In Upload Module the new folder can be create for storing
the files. In folder creation process the cloud system may ask
one question for that user. The user should answer the
question and must remember that answer for further usage.
Then enter the folder name for create the folder for that user.
In file upload process the user has to choose one file from
browsing the system and enter the upload option. Now, the
server from the cloud can give the encrypted form of the
uploading file.

5.3 Data Forwarding Module

In forward module first we can see the storage details for the
uploaded files. When click the storage details option we can
see the file name, question, answer, folder name, forward
value (true or false), forward E-mail. If the forward column
display the forwarded value is true the user cannot forward to
another person. If the forward column display the forwarded
value is false the user can forward the file into another
person. In file forward processes contains the selected file
name, E-mail address of the forwarder and enter the code to
the forwarder. Now, another user can check his account
properly and view the code forwarded from the previous
user. Then the current user has login to the cloud system and
to check the receive details. In receive details the forwarded
file is present then the user will go to the download process.

5.4 Data Retrieval Module

In Download module contains the following details. There
are username and file name. First, the server process can be
run which means the server can be connected with its
particular client. Now, the client has to download the file to
download the file key. In file key downloading process the
fields are username, filename, question, answer and the code.
Now clicking the download option the client can view the
encrypted key. Then using that key the client can view the
file and use that file appropriately.

6. Conclusion and Future Work

In this paper, we consider a cloud storage system consists of
storage servers and key servers. We integrate a newly
proposed threshold proxy re-encryption scheme and erasure
codes over exponents. The threshold proxy reencryption
scheme supports encoding, forwarding, and partial

decryption operations in a distributed way. To decrypt a
message of k blocks that are encrypted and encoded to n
codeword symbols, each key server only has to partially
decrypt two codeword symbols in our system. By using the
threshold proxy re-encryption scheme, we present a secure
cloud storage system that provides secure data storage and
secure data forwarding functionality in a decentralized
structure. Moreover, each storage server independently
performs encoding and re-encryption and each key server
independently performs partial decryption. Our storage
system and some newly proposed content addressable file
systems and storage system are highly compatible. Our
storage servers act as storage nodes in a content addressable
storage system for storing content addressable blocks. Our
key servers act as access nodes for providing a front-end
layer such as a traditional file system interface. Further study
on detailed cooperation is required.

 References

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “Oceanstore: An Architecture for
Global-Scale Persistent Storage,” Proc. Ninth Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 190- 201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A Large-Scale,
Persistent Peer-to-Peer Storage Utility,” Proc. Eighth
Workshop Hot Topics in Operating System (HotOS VIII),
pp. 75-80, 2001.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R.
Chaiken, J.R. Douceur, J. Howell, J.R. Lorch, M.
Theimer, and R. Wattenhofer, “Farsite: Federated,
Available, and Reliable Storage for an Incompletely
Trusted Environment,” Proc. Fifth Symp. Operating
System Design and Implementation (OSDI), pp. 1-14,
2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier:
Highly Durable, Decentralized Storage Despite Massive
Correlated Failures,” Proc. Second Symp. Networked
Systems Design and Implementation (NSDI), pp. 143-
158, 2005.

[5] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-
Authority Filesystem,” Proc. Fourth ACM Int’l
Workshop Storage Security and Survivability
(StorageSS), pp. 21-26, 2008.

Author Profile

Shaik Fathima Zehra is pursuing M.Tech (C.S), working in
Nawab Shah College of Engineering & Technology, Hyderabad,
Telangana 500024, India and as an Assistant Professor in CSIT
department

Paper ID: 31101401 702

http://creativecommons.org/licenses/by/4.0/�

	5.1 Construction of Cloud Data Storage Module

