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Abstract: A direct implementation of the bilateral filter requires O(σs

2) operations per pixel, where σs is the (effective) width of the 
spatial kernel. A fast implementation of the bilateral filter was recently proposed that require O(1) operations per pixel with respect to σs. 
This is done by using trigonometric functions for the range kernel of the bilateral filter, and by exploiting their so-called shiftability 
property. In particular, a fast implementation of the Gaussian bilateral filter is realized by approximating the Gaussian range kernel 
using raised cosines. Later, it is demonstrated that this idea could be extended to a larger class of filters, including the popular non-local 
means filter. For an image with dynamic range [0, T], the run time scaled as O(T2/σr

2) with σr. This made it difficult to implement 
narrow range kernels, particularly for images with large dynamic range. This project discusses this problem and propose some advanced 
methods to accelerate the implementation, in general, and for small σr in particular and also provides some experimental results to 
demonstrate the acceleration that is achieved using these modifications. 
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1. Introduction 
 
Image restoration [1] is a process to recover or reconstruct an 
image that has been degraded by using some prior knowledge 
of degradation model. Degradation comes in many forms 
such as motion blur, noise, and camera misfocus. In cases like 
motion blur, it is possible to come up with a very good 
estimate of the actual blurring function and "undo" the blur to 
restore the original image. In cases where the image is 
corrupted by noise, the best we may hope to do is to 
compensate for the degradation it caused. 
 
Degradation model:  
 

 
Figure 1: Degradation model 

 
Where: 
H: degradation operator. 
Ƞ: noise. 
f(x,y): input image. 
g(x,y): degrade output. 
 
The field of image restoration (sometimes referred to as 
image deblurring or image deconvolution) is concerned with 
the reconstruction or estimation of the uncorrupted image 
from a blurred and noisy one. Essentially, it tries to perform 
an operation on the image that is the inverse of the 
imperfections in the image formation system. In the use of 
image restoration methods, the characteristics of the 
degrading system and the noise are assumed to be known a 
priori. In practical situations, however, one may not be able to 
obtain this information directly from the image formation 
process.  
 

Blurring is a form of bandwidth reduction of an ideal image 
owing to the imperfect image formation process. It can be 
caused by relative motion between the camera and the 
original scene, or by an optical system that is out of focus. 
When aerial photographs are produced for remote sensing 
purposes, blurs are introduced by atmospheric turbulence, 
aberrations in the optical system, and relative motion between 
the camera and the ground. Noise may be introduced by the 
medium through which the image is created (random 
absorption or scatter effects), by the recording medium 
(sensor noise), by measurement errors due to the limited 
accuracy of the recording system, and by quantization of the 
data for digital storage. 
 
Image restoration algorithms distinguish themselves from 
image enhancement methods in that they are based on models 
for the degrading process and for the ideal image. For those 
cases where a fairly accurate blur model is available, 
powerful restoration algorithms can be arrived at. 
Unfortunately, in numerous practical cases of interest the 
modeling of the blur is unfeasible, rendering restoration 
impossible. The limited validity of blur models is often a 
factor of disappointment, but one should realize that if none 
of the blur models described in this chapter are applicable, the 
corrupted image may well be beyond restoration. Therefore, 
no matter how powerful blur identification and restoration 
algorithms are, the objective when capturing an image 
undeniably is to avoid the need for restoring the image. 
 
The image restoration methods also fall under the class of 
linear spatially invariant restoration filters. We assume that 
the blurring function acts as a convolution kernel or point-
spread function d(n1,n2) that does not vary spatially. It is also 
assumed that the statistical properties (mean and correlation 
function) of the image and noise do not change spatially. 
Under these conditions the restoration process can be carried 
out by means of a linear filter of which the point-spread 
function is spatially invariant, i.e., is constant throughout the 
image.  
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These modeling assumptions can be mathematically 
formulated as follows. If we denote by f(n1,n2) the desired 
ideal spatially discrete image that does not contain any blur or 
noise, then the recorded image g(n1,n2) is modeled as in 
figure1. 
 

1 2 1 2 1 2 1 1(n ,n ) d(n ,n )*f(n ,n ) w(n ,n )g = +
  

1 2

1 1

1 2 1 1 2 2 1 2
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− −

− −
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Here w(n1,n2) is the noise that corrupts the blurred image. 
Clearly the objective of image restoration is to make an 
estimate ƭ(n1,n2) of the ideal image f (n1,n2), given only the 
degraded image g(n1,n2), the blurring function d(n1,n2) and 
some formation about the statistical properties of the ideal 
image and the noise. 
 

 
Figure 2: Image formation model in spatial domain 

 
2.  Bilateral Filtering 
 
The bilateral filter is an edge-preserving diffusion filter, 
which was introduced by Tomasi et al [2]. The edge-
preserving property comes from the use of a range kernel 
(along with the spatial kernel) that is used to control the 
diffusion in the vicinity of edges. 
 
In this work, we will focus on the Gaussian bilateral filter 
where both the spatial and range kernels are Gaussian. This is 
given by 
 

~
(x y1(x) (x y)g ( ) (x) (x y)dy....(2))

s r
f f fg fσ ση Ω

− − −= −∫
 

 
where  
 

((x y)g ( x y) (x))dy
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Here, g

rσ
(x) is the centered Gaussian distribution on the 

plane with variance σs
2, and (s)

r
gσ  (is theone-dimensional 

Gaussian distribution with variance σr
2 is the support of 

(x)
s

gσ  over which theaveraging takes place. We call 

(x)
s

gσ and (s)
r

gσ  the spatial and the range kernel. The 
range kernel is controlled by the local distribution of 
intensity. Sharp discontinuities (jumps)in intensity typically 
occur in the vicinity of edges. This is picked up by the range 
kernel, which isthen used to inhibit the spatial diffusion. On 
the other hand, the range kernel becomes inoperative in 
regions with smooth variations in intensity. The spatial kernel 

then takes over, and the bilateralfilter behaves as a standard 
diffusion filter. Together, the spatial and range kernels 
perform smoothingin homogeneous regions, while preserving 
edges at the same time. The bilateral filter has found 
widespread use in several image processing, computer 
graphics, and computer vision applications. More recently, 
the bilateral filter was extended by Baudes et al [3] in the 
form of the non-local means filter, where the similarity 
between pixels is measured using patches centered around the 
pixel. 
 
The direct mplementation of bilateral filter requires O( σs

2) 
operations per pixel. This makes the filter slow for real-time 
applications. Several efficient algorithms have been proposed 
in the past for implementing the filter in real time. Porikli [4] 
demonstrated for the first time that the bilateral filter could be 
implemented using O(1) operations per pixel (with respect to 
σs). This was done for two different settings: (a) Spatial box 
filter and arbitrary range filter, and (b) Arbitrary spatial filter 
and polynomial range filter. The author extended (b) to the 
Gaussian bilateral filter in (2) by approximating (s)

r
gσ  with 

its Taylor polynomial. The run time of this approximation 
was linear in the order of the polynomial. The problem with 
Taylor polynomials, however, is that they provide good 
approximations of (s)

r
gσ  only locally around the origin. In 

particular, they have the following drawbacks: 
 
1) Taylor polynomials are not guaranteed to be positive and 

monotonic away from the origin, where the 
approximation is poor. Moreover, they tend to blow up at 
the tails. 2) It is difficult to approximate (s)

r
gσ  using 

the Taylor expansion when σr is small. 
 
In particular, a large order polynomial is required to get a 
good approximation of a narrow Gaussian, and this 
considerably increases the run time of the algorithm .Later 
wises [5] proposed a fast median bilateral filtering. 
 
In this project, it is observed that it is important that the 
kernel used to approximate gσr(s) be positive, monotonic, and 
symmetric. While it is easy to ensure symmetry, the other two 
properties are hard to enforce using Taylor approximations. It 
was noticed that, in the absence of these properties, the 
bilateral filter created strange artifacts in the processed image. 
It is proposed to fix this problem using the family of raised 
cosines, namely, functions of the form 
 

(s) cos ( T s )....(3)
2

N
s T
T
πφ   = − ≤ ≤      

 
Here N is the order of the kernel, which controls the width of 
∅(s). The kernel can be made narrow by increasing N. The 
key parameter in (3) is the quantity T. The idea here is that 
[cos(s)]N is guaranteed to be positive and monotonic provided 
that is restricted to the interval [-π/2,π/2]. Note that the 
arguments in (3) takes on the values │f(x -y)-f (x)│ as x and 
y varies over the image.  
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Therefore, by letting 
 

max max (x y) (x)
x y R

T f f
≤

= − −
 

 
One could guarantee ∅(s) to be positive and monotonic over 
[-T,T ]. T was simply set to the maximum dynamic range, for 
example, 255 for gray scale images. The polynomials 
suggested were of the form 
 

2

2(s) 1 ( T s T)....(4)
N

s
T

φ
 

= − − ≤ ≤ 
   

 
3.  Non Local Means 
 
Non-local means is an algorithm in image processing for 
image denoising. Unlike "local smoothing" filters, non-local 
means does not update a pixel's value with an average those 
of the pixels around it - instead, it updates it using a weighted 
average of the pixels judged to be most similar. The weight of 
each pixel depends on the distance between its intensity grey 
level vector and that of the target pixel. Non-local means 
algorithm was published by Antoni Buades [6]. If compared 
with other wellknown denoising techniques, such as the 
Gaussian smoothing model, the anisotropic diffusion model, 
the total variation denoising, the neighborhood filters and an 
elegant variant, the Wiener local empirical filter, the 
translation invariant wavelet thresholding, the non-local 
means method noise looks more like white noise. The NL-
means algorithm, is defined by the simple formula 
 

[ ]( ) ( )

( ) ( ) ( )

( )
2

2

(G * . . ) 0
1 ....(5)
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hNL u x e u y dy
C x
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−
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2
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hc x e dz
+ − +

−

Ω
= ∫  

is a normalizing constant, Ga is a Gaussian kernel [7] and h 
acts as a filtering parameter. This formula amounts to say that 
the denoised value at x is a mean of the values of all points 
whose gaussian neighborhood looks like the neighborhood of 
x. The main difference of the NL-means algorithm with 
respect to local filters or frequency domain filters is the 
systematic use of all possible self-predictions in the image.In 
non-local means, the range kernel operates on patches 
centered around the pixel of interest. A “coarse” form of non-
local means was considered, where a small patch 
neighborhood consisting of the pixels u1…. up (where, say, 
u1=0) was used. In this case, the main observation was that 
formula for the non-local means can be written in terms of 
following sums: 
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,
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where g (s1, . . . , sp ) is an anisotropic Gaussian in p variables, 
and has a diagonal covariance. This looks very similar to (2), 
except that we now have a multivariate range kernel. By 
using the separability of g(s1, . . . , sp ), and by approximating 
each Gaussian component by a O(1) algorithm for computing 
(5) was developed.  
 
Given a discrete noisy image v = {v(i) | i ∈ I}, the estimated 
value NL[v](i), for a pixel i, is computed as a weighted 
average of all the pixels in the image, 
 

[ ]( ) ( ) ( ), ,....(6)
j I

NL v i w i j v j
∈

=∑
 

 
where the family of weights {w(i, j)}j depend on the 
similarity between the pixels i and j, and satisfy the usual 
conditions 0 ≤ w(i, j) ≤ 1 and ∑(i.j)=1  . The similarity 
between two pixels i and j depends on the similarity of the 
intensity gray level vectors v(Ni) and v(Nj), where Nk denotes 
square neighborhood of fixed size and centered at a pixel k. 
This similarity is measured. 
 

 
Fig 3: Scheme of Non Local Means strategy. Similar pixel 
neighborhoods give a large weight, w(p,q1) and w(p,q2), 
while much different neighborhoods give a small weight 

w(p,q3) as a decreasing function of the weighted Euclidean 
distance 

 

( ) ( ) 2

2,i j a
v vΝ − Ν

 
a, where a > 0 is the standard deviation of the Gaussian 
kernel. The application of the Euclidean distance to the noisy 
neighborhoods raises the following equality  
 

( ) ( ) ( ) ( )2 2

2 , 2 ,

22 ....(7)
i j i ja a

E u uvv σΝ − Ν = Ν − Ν +
 

 
This equality shows the robustness of the algorithm since in 
expectation the Euclidean distance conserves the order of 
similarity between pixels. The pixels with a similar grey level 
neighborhood to v(Ni) have larger weights in the average, see 
Figure 3.  
 
These weights are defined as, 

( ) ( )

( ) ( ) 2

2,
21,

i j a
v v

hw i j e
Z i

Ν − Ν
−

=
 

where Z(i) is the normalizing constant 
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and the parameter h acts as a degree of filtering. It controls 
the decay of the exponential function and therefore the decay 
of the weights as a function of the Euclidean distances. The 
NL-means not only compares the grey level in a single point 
but the the geometrical configuration in a whole 
neighborhood. This fact allows a more robust comparison 
than neighborhood filters. Figure 1 illustrates this fact, the 
pixel q3 has the same grey level value of pixel p, but the 
neighborhoods are much different and therefore the weight 
w(p, q3) is nearly zero. 
 
4.  Fast O(1) Implementation Using 

Shiftable Kernals 
 
For completeness, we now explain how the above kernels [8] 
can be used to compute (2) using O(1) operations. As 
observed in (3) and (4) are essentially the simplest kernels 
that have the so-called property of shiftability. This means 
that, for a given N, we can find a fixed set of basis functions 
∅1(s), . . . ,∅N(s) and coefficients c1, . . . , cN, so that for any 
translation , we can write 
 

1 1(s ) c ( ) (s) ... c ( ) (s)....(8)N Nφ τ τ φ τ φ− = + +  
 
The coefficients depend continuously on, but the basis 
functions have no dependence on . For (3), both the basis 
functions and coefficients are cosines, while they are 
polynomials for (4). This shiftability property is at the heart 

of the O(1) algorithm. Let (x)f denote the output of the 

Gaussian filter (x)
s

gσ  with neighborhood Ω, 

1(x) (x y) (y)dy....(9)
s

f g fση Ω
= −∫

 
Note that, by replacing gσr (s) with ∅(s), we can write (1) as 

( )
~

1 1
1(x) ( ) (x) ... (x) (x) ....(10)(x) NN

f c F c f Ff
η Ω
 = + + ∫

 
where we have set Fi(x) = f (x) ∅i( f (x)). Similarly, by 
setting Gi(x) = ∅i( f (x)),  
we can write 

( ) ( )11
(x) (x) ... (x) (x)....(11)NN

c f G c f Gη = + +
 

 
Now, it is well-known that certain approximation of (2.5) can 
be computed using just O(1) operations per pixel. These 
recursive algorithms are based on specialized kernels, such as 
the box and the hat function, and the more general class of 
box splines. Putting all these together, we arrive at the 
following O(1) algorithm for approximating (2): 
 
1) Fix N, and approximate (s)

r
gσ using (3) or (4). 

2) For i = 1,2, . . . ,N, set up the images Fi(x) = f (x) 
∅i( f (x)) and Gi(x) = ∅i( f (x)), and the coefficients 
ci( f (x)) . 

3) Use a recursive O(1) algorithm to compute each Fi(x) and 
Gi (x). 
4) Plug these into (10) and (11) to get the filtered image. 
 
It is clear that better approximations are obtained when N is 
large. On the other hand, the run time scales linearly with N. 
One key advantage of the above algorithm, however, is that 
the Fi(x) and Gi(x) can be computed in parallel. For small 
orders (N <10), the serial implementation is found to be 
comparable, and often better, than the state-of-the-art 
algorithms. The parallel implementation, however, turns out 
to be much faster than the competing algorithms, at least for 
N < 50. Henceforth, we will refer to the above algorithm as 
SHIFTABLE-BF, the shiftable bilateral filter. 
 
5.  Proposed Algorithm 
 
In this project, we address the above problem, namely that N0 
grows as O(T2/ σr

2) with σr. In Section, we propose a fast 
algorithm for determining T exactly. Besides cutting down 
N0, this is essential for determining the (local) dynamic range 
of a gray scale image that has been deformed, e.g., by 
additive noise. Setting T = 255 in this case can lead to 
artefacts in the processed image. 
 
Next, this algorithm concentrated on simple and practical 
means of reducing the order, which leads to quite dramatic 
reductions in the run time of SHIFTABLE-BF. These 
modifications are also applicable to the shiftable algorithms 
proposed. Finally, this algorithm provides some experimental 
results to demonstrate the acceleration that is achieved using 
these modifications. We also compare our algorithm with the 
Porikli’s [9] algorithms, both in terms of speed and accuracy. 
 
6.  Conclusion 
 
As expected, Gaussian filtering performed poorly on all the 
test cases. The resulting images show little detail and still 
contain noise. The method noise for the Gaussian filter 
contained extensive structure and detail from the image. The 
Wiener filter performed marginally better than the Gaussian 
filter. More noise was removed by this method, but the 
images were still blurry. Once again the method noise 
contained detail and structure from the image. The non-local 
means method performed exceptionally well. As expected, 
the non-local means did a better job of preserving edges than 
the other methods. It performed best on periodic textures like 
the stripped pants from the Barb test case. In the Camera and 
Walter test cases where no noise was added, the denoised 
images looked clear and smooth. In all test cases for the non-
local means method, the method noise contained little 
structure from the image. The non-local means algorithm 
accomplished its goals of removing noise and preserving 
detail. 
 
7.  Future Scope 
 
This constant time algorithm can be extended to the color 
images. Adaptive Non Local Means algorithm can be used to 
improve the image quality. 
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