
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Performance Evaluation of Hadoop Distributed File
System and Local File System

Linthala Srinithya1, Dr. G. Venkata Rami Reddy2

1M.Tech. Student, School of Information Technology, JNTUH, Hyderabad, India

2Associate Professor, School of Information Technology, JNTUH, Hyderabad, India

Abstract: Hadoop is a framework which enables applications to work and petabytes of data on large clusters with thousand of nodes
built of commodity hardware. It provides a Hadoop Distributed File System (HDFS) that stores data on the computed nodes, providing
very high aggregate bandwidth across the cluster. In addition, Hadoop implements a parallel computational paradigm named map-
reduce which divides the application into many small segments of work, each of which may be executed or re executed on any node in
the cluster. In this project I would like to analyze performance of HDFS and LFS with respective read and write. To measure the
performance I will set up a hadoop cluster and design an interface which gives us the size of the file, time taken for upload or download
from Local File System(LFS) and Hadoop Distributed File System(HDFS). By literature survey the expected HDFS writing
performance scales will on both small and big data set were it is however lower than on the small data-set. This work also draws a
comparison between the HDFS (Hadoop Distributed File System) and LFS performances.

Keywords: HDFS, LFS, DFS, Read, Write, Update, Commodity hardware, fault-tolerant.

1. Introduction

Storage and accessing of data are most important things in
computer world. The data can be stored permanently in
secondary storage device in the form of a “File”. There are
several operation (creating reading, writing, etc.) required to
store and maintain the data in files. All these operations are
provided by “File System”.

The file system is a type of data store which can be used to
store, retrieve and update a set of files. The file system has
maintained aspects such as file names, directories, space
management, and meta-data. Each operating system is
having its own file system to maintain files in file or
directories structure. There are several file systems available.
A. Disk File System/Local File Systems
B. Distributed File Systems(DFS)

A. Disk File System/Local File Systems

Disk File System/Local File Systems is generally provided
by operating systems. It deals with organizing the files on
local disk. The data stored in local disk can be accessed
with-in the machine only. The data has to be physically
copied into another disk or the total file has to be transferred
to other machine for accessing.

Centralized server is the solution to share the files with
different computers. In this technique, the data is stored in a
dedicated file server and other nodes can access that data
through network. To create this type of environment, high
configuration is required to maintain centralizes server to
store large data. If the server is failed, any host cannot access
data to complete their task. Of course, the back-up can be
maintained for server. Another problem with centralized
server is heavy load on server. The server has to take the
request from all client machines and increasing the clients
will affect the performance.

B. Distributed File Systems (DFS)

The solution to the problems with centralized server is
distributed file system. In this, the data will be distributed to
number of servers so that the data-process load will be
distributed to several servers instead of one server. The
replication can be maintained in distributed systems so that
the failure of one server will not affect the file system. Since
the data can be retrieved from different servers, it can be
downloaded in parallel fashion.

1.1 Motivation

There are several file systems available to store and process
large data. The user has to select one of the suitable files
systems among the available file system. The user may face
some trouble in this selection to choose a suitable file
system.
There are various aspects to compare:
 Writing Time
 Reading Time
 Concurrent access of file etc.
Recently much work is going on HDFS (Hadoop Distributed
File System). Since it is fault tolerant distributed file system
and also supports parallel programming by using map-reduce
and frameworks. The HDFS handles well for large data.
Hence the motivation behind the project is to verify whether
the read and write performance of HDFS is efficient for
small and large files than LFS or not. If HDFS supports well
for large files I can further use HDFS for my future works
related to distributed file system.

1.2 Problem Statement

Verify and compare the performance of HDFS and LFS
access time for various file sizes ranging from small file
sizes to large file sizes

Paper ID: SEP14344 1174

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1.3 Objectives of Project

 Build a HDFS cluster environment with one machine
dedicated to name-node, one machine for secondary-node
and 3 machines for data-nodes.

 The main objective of my project is to verify and compare
the reading and writing performance of files on “LFS” and
“HDFS”.

 Design and implement the separate read models for
reading files from both HDFS and LFS.

 Integrate the both read models into 1 GUI.
 Design and implement and separate write model for

writing files from both HDFS and LFS.
 Integrate the both write models into 1 GUI
 Generating the graph by using access times and file sizes

of both read write interfaces for performance analysis.

1.4 Limitation of the Project

The following are few limitations of my project.
 HDFS cluster is established in LAN and not yet tested on

WAN.
 The Cluster is tested only on limited missions.
 The tested files are from sizes 1MB-1GB.
 The performances of map-reduce applications are not

considered.

2. Analyses

2.1 Software Requirement Specification

2.1.1 Purpose
The purpose of this project is to evaluate and compare the
read and write performance of LFS (Local File System) and
HDFS (Hadoop Distributed File System).

2.1.2 Scope
In this project, the read and write operations are considered
from the end user. This project can be used in both pseudo
mode and in fully distributed environments. The interface
can be installed on any data node or in client machine. The
performance of map-reduce application, and other strategies
like catching and replication are not evaluated.

2.2 Non-Functional Requirement

2.2.1 Performance
Since this project is related to HDFS (Hadoop Distributed
File System) performance evaluation with respective to
input/output, this project needs to give high through put for
big files. The HDFS architecture itself supports big data by
storing the big files into number of blocks (64MB size each)
and supports map-reduce frame work. So that our system can
give high performance.

2.2.2 Availability
Whenever user wants to access HDFS (Hadoop Distributed
File System), he is able to get required data enhanced,
availability is provided in our systems.

2.2.3 Scalability
The system should be able to provide the new resources. Our
system is to be designing by considering this future. Hence,
our system will be scalable.

2.2.4 Reliability
Our system performs its functions well in normal cases as
well as un-expected circumstances because HDFS (Hadoop
Distributed File System) provides fault-tolerant future.
Hence our system is able to maintain reliability even through
failure happens.

2.2.5 User Requirements
 HDFS (Hadoop Distributed File System) Cluster

(pseudo/distributed) should be built.
 User interface should be implemented for uploading and

downloading the files easily from form(to be
implemented)

 Users are able to give various files with sizes from 1MB-
1GB for upload/download to/from the LFS/HDFS.

2.2.6 Software Requirements
 Linux/Ubuntu Operating System
 Java Software Development Kit with JXL package
 HDFS
 Office Suite (Spread sheet for graph)

2.2.7 Hardware Requirements
Five computes with minimum configuration of Pentium IV,
4GB RAM, 500GB HDD(Hard Disk Drive).
 System for Name-Node
 System for Secondary-Node
 Systems for Data-Node.
Interconnected network for this five computer with LAN
/Internet.

Figure 1: Diagram of HDFS Cluster

Figure 2: Performance Evaluation System

Paper ID: SEP14344 1175

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.3 Algorithms

There are four algorithms required to design interface.

1. Writing to LFS
2. Reading from LFS
3. Writing to HDFS
4. Reading from HDFS

2.3.1 Writing to LFS Algorithm
This algorithm writes the data to LFS and calculates the time
taken to write. Since it is writing large data, which should be
available in secondary storage. The algorithm takes the data
from one file called source file and write to another file
called destination file.

This algorithm initially prompts the user to give the source
file and destination file. It opens the files for given source
file name and destination file name for reading and writing
respectively. After opening required files successfully, it
creates a time object “T1” that initialized to current system
time. It starts reading the data byte by byte using the given
streams from source file and write the same to destination
file until it finds end of file in source file. After reading and
writing data from LFS, this algorithm creates another time
object “T2” with current system time. The difference
between T1 and T2 is the time taken to write the data on LFS
and it is stored in “T”. Finally, send the file size, time taken
to the spread sheet.

The algorithm is given below.
Step1: Import the source file name and destination file name.
Step2: Open the source file and destination file name LFS.
Step3: Store the system timings T1.
Step4: Write the bytes from given source file to destination
in
 LFS
Step5: Repeat step4 until end of file of Source file.
Step6: Store the system time in T2.
Step7: Find the difference between T1 and T2 let it be T.
Step8: Store the size of file, value of d to Excel sheet in
 proper cells.

2.3.2 Reading from LFS Algorithm

This algorithm read the data to LFS and calculates the time
taken to write. The algorithm takes the data from the file
called source file.

This algorithm initially prompts the user to give the source
file. It opens the files for given source file for reading. After
opening required files successfully, it creates a time object
“T1” that initialized to current system time. It starts reading
the data byte by byte using the given streams from source
file until it finds end of file in source file. After reading data
from LFS, this algorithm creates another time object “T2”
with current system time. The difference between T1 and T2
is the time taken to read the data on LFS and it is stored in
“T”. Finally, send the file size, time taken to the spread
sheet.

The algorithm is designed as following:
Step1: Import the source file name
Step2: Open the source file in LFS.
Step3: Store the system timings T1.
Step4: Read the bytes from given source file from LFS
Step5: Repeat step4 until it finds end of file.
Step6: Store the system time in T2.
Step7: Find the difference between T1 and T2 let it be T.
Step8: Store the size of file, value of d to Excel sheet in
proper cells.

2.3.3 Writing to HDFS Algorithm

This algorithm writes the data to HDFS and calculates the
time taken to write. Since it is writing large data, which
should be available in secondary storage in LFS. The
algorithm takes the data from one file called source file in
LFS and write to another file called destination file HDFS.

This algorithm initially prompts the user to give the source
file and destination file. It opens the files for given source
file name in LFS and destination file name in HDFS for
reading and writing respectively. After opening required
files successfully, it creates a time object “T1” that
initialized to current system time. It starts reading the data
byte by byte using the given streams from source file and
write the same to destination file until it finds end of file in
source file. After reading and writing data from LFS and
HDFS, this algorithm creates another time object “T2” with
current system time. The difference between T1 and T2 is
the time taken to write the data on HDFS and it is stored in
“T”. Finally, send the file size, time taken to the spread
sheet.

The algorithm is designed as following:
Step1: Import the source file name and destination file name
Step2: Open the source file and destination file name in LFS.
Step3: Store the system time in Time object “T1”
Step4: Write the Given File Source File from LFS to
 destination File in HDFS.
Step5: Repeat step4 until end of file in Source file.
Step6: Store the system time in T2.
Step7: Find the difference between T1 and T2 let it be T.
Step8: Store the size of file, value of d to Excel sheet in
 proper cells.

2.3.4 Reading from HDFS Algorithm

This algorithm read the data to HDFS and calculates the time
taken to write. The algorithm takes the data from the file
called source file.

This algorithm initially prompts the user to give the source
file. It opens the files for given source file for reading. After
opening required files successfully, it creates a time object
“T1” that initialized to current system time. It starts reading
the data byte by byte using the given streams from source
file until it finds end of file in source file. After reading data
from LFS, this algorithm creates another time object “T2”
with current system time. The difference between T1 and T2
is the time taken to read the data on HDFS and it is stored in

Paper ID: SEP14344 1176

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

“T”. Finally, send the file size, time taken to the spread
sheet.

The algorithm is designed as following:
Step1: Import the source file name
Step2: Open the source file in HDFS.
Step3: Store the system timings T1.
Step4: Read the bytes from given source file from HDFS
Step5: Repeat step4 until it finds end of file.
Step6: Store the system time in T2.
Step7: Find the difference between T1 and T2 let it be T.
Step8: Store the size of file, value of d to Excel sheet in
 proper cells.

2.4 Conclusion on Analysis

In this I have reviewed the basic architecture of HDFS and
Read and Write operations in detail. There are various
functional requirements like interface, read and write
functions and graph generation are described. The non-
functional requirements such as performance, scalability,
reliability, availability, user requirements, software
requirements and hardware requirements are also explained
related to my project. Algorithms and flow charts are also
designed for read and write operations for both read and
write operations.

3. Design

I have designed read and write operations both Local File
System and Hadoop Distributed File System after building
HDFS cluster. The various modules for both read and write
operations are designed with the help of required diagrams.
In addition to these modules I have also designed a user
interface for performance evaluation of read and write
operations for both Local File System and HDFS.

3.1 Modules

There are 5 Modules in my project.

1. Building HDFS cluster
2. Write Module
3. Read Module
4. Interface
5. Generating Graphs for evaluation.

3.1.1 Building HDFS Cluster
There are several phases to build HDFS Cluster.

1. Pre-requites
2. Configuration HDFS
3. Start/Shutdown cluster.

One of the first tasks in hadoop deployment is selecting the
distribution and version of hadoop that is most appropriate
given the features and stability required. It is available
directly from Apache in both source and binary formats. It
provides not just the distributed file system, but also the map
reduce processing framework—many users view it as the
core of a larger system. In this sense, hadoop is analogous to
an operating system kernel, giving us the core functionality
upon which we build higher-level systems and tools. Many

of these related libraries, tools, languages and systems are
also open source projects available from the ASF.

There are several versions available for HDFS. I have
chosen hadoop 0.22.0release for my project. The hadoop
community released version 0.22, which was based on trunk
was released after 0.23 with less functionality. This was due
to when the 0.22 branch was cut from trunk. Hadoop 0.22.0
features:

 HBase support with hflush and hsync.
 Symbolic links
 Backup node and checkpoint node
 Hierarchical job queues.
 Job limits for Queue/pool
 Dynamically stop/start job queue
 Advances in new map-reduce API: Input/output

formats, chain mapper/reducer.
 Task tracker black listing
 Distributed Cache sharing.

Picking the right hardware is critical. One of the major
advantages of hadoop is its ability to run on so-called
commodity hardware. Hadoop hardware comes in two
distinct classes: masters and workers. Master nodes are
typically more robust to hardware failure and one critical
cluster services. Loss of a master almost certainly means
some kind of service disruption. On the other hand, worker
nodes are expected to fail regularly. This directing impact
the type of hardware as well as the amount of money spent
on these two classes of hardware. Clusters with fewer than
20 workers nodes-do not require much for master nodes in
terms of hardware. A solid base line hardware profile for a
cluster of this size is a dual quad core 2.6 Ghz CPU, 24Gb of
DDR3 Ram, dual 1 GB Ethernet NIC’s, a SASdrive
controller, and atleast two SATA-II drives in a capital JBOD
configuration in addition to the host OS device.

The Secondary name node is almost always identical to the
name node. Not only does it require the same amount of
RAM and Disk, but when absolutely everything goes wrong,
it wins up being the replacement hardware for the name
node. When sizing worker machines for hadoop, there are a
few points to consider given the each worker node in a
cluster is responsible for both storage and computation, we
need to en-source not only that there is enough storage
capacity, but also that we have the CPU and memory to
process that data.

Once, the hardware for masters and worker nodes is selected,
the size of the cluster has to be fixed in my project I have to
build the HDFS cluster and 5 nodes. There are two types of
installation for HDFS.

 Pseudo Distribution
 Fully Distribution.

In Pseudo Installation, the name node and data node are
installed on one machine. In Fully Distributed Installation,
there will be a dedicated machines for name node, secondary
name node and separate machines for data nodes.

Paper ID: SEP14344 1177

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: HDFS Cluster

(1 Name Node, 2 Secondary Name Nodes, 3 Data Nodes)

After fixing the cluster size, OS has to be installed on both
master and marker nodes and assign the IP address to nodes
as shown in figure. Hadoop is designed on Java
Development Kit has to be installed on each system.
Once the hardware and software for nodes are fixed and
installed, the selected hadoop release can be installed on
master and worker machines. After installing hadoop on all
nodes, some of the system files have to be configured to
build the cluster and start the hadoop cluster.

After creation of cluster, I have to implement an interface to
upload or download file between HDFS and local disk
including the time calculations and also stored the values
separately for designing graph.

3.1.2 Write Module
This module is designed to create the environment to write
the data on to LFS and HDFS. The separate functions have
to be developed for LFS and HDFS.m The write module
prompts for source file and destination file. There are 2 cases
in write module which includes writing to local disk, writing
to HDFS. The write function has to copy/ upload to the
corresponding file system and calculate the time taken for
that process. Finally the size of the file and calculated time
should be sent to spread sheet at proper locations.

3.1.3 Read Module
This module is designed to create the environment to read
the data from LFS and HDFS. The separate functions have to
be developed for LFS and HDFS. The read module prompts
for source file. There are 2 cases in read module which
includes reading to local disk, writing to HDFS. The read
function read the data from corresponding file system and
calculates the time taken for that process. Finally the size of
the file and calculated time should be sent to spread sheet at
proper locations.

3.1.4 Designing Interface
I have to design an interface to read and write data. The
interface should provide the environments to read and write
files to/from LFS and HDFS. There are two interfaces to be
designed; one is for writing data into local file system and
HDFS another for reading data from LFS as well as HDFS.
This provides an environment to take file names as input and
call the read and write modules by passing the given file
names as arguments.

4. Implementation

4.1 Building HDFS Cluster

Building of HDFS cluster is discussed. The name-node is
mentioned as “Master” and data-nodes are called “Slaves”.
HDFS Cluster Setup:
Phase-I : Pre-requisites
Phase-II : Configuration HDFS

Phase-III: Starting/Shutdown of HDFS cluster.

4.2 Key Functions

There are various functions to be implemented to achieve the
objectives.

 Write Function
 Read Function
 Generating Graph
 Interface design

Function to write data to HDFS:
This function read the data from source file specified in
source file TextField of LFS and write to destination file
specified in destination file Test Field of HDFS. It calculates
the time to write data to HDFS and call a “copyToExcel ()”
function to store the value in spread sheet to generate graph.

Function to Write data to LFS:
This function read the data from source file specified in
source file TextField of LFS and write to destination file
specified in destination file Test Field of LFS. It calculates
the time to write data to HDFS and call a “copyToExcel ()”
function to store the value in spread sheet to generate graph.

Function to Read data from HDFS:
This function read the data from source file specified in
source file TextField of HDFS. It calculates the time to write
data to HDFS and call a “copyToExcel ()” function to store
the value in spread sheet to generate graph.

Function to Read data from LFS:
This function read the data from source file specified in
source file TextField of LFS. It calculates the time to write
data to HDFS and call a “copyToExcel ()” function to store
the value in spread sheet to generate graph.

4.3 Generating Graph

I have implemented a function to store the values to spread
sheet to generate the graph. This function accepts various
arguments to place the value ate a particular cell. The

Paper ID: SEP14344 1178

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Boolean argument “HADOOP” specifies whether the test is
for HDFS or LFS. The argument file specifies the name of
the spread sheet with path. Size argument specifies the file
size. Test argument gives the test numbers.

4.4 Designing Interface

I have implemented the interface by using java swings it
includes the key function implemented in previous section. It
gives a user friendly environment to input the file names and
to test the read and write time. The corresponding code can
be explained below:

4.5 Interface for writing

The interface is designed with two (2) classes HadoopWrite
extends JPanel and Write Test extends JFrame.
HadoopWrite defines write methods for LFS and HDFS. It
provides common GUI for write operation the type of the
operation is given as parameter of constructor. Write Test
creates objects of type HadoopWrite for both LFS and
HDFS and place them in common form.

4.6 Interface for Reading

The interface is designed with two (2) classes HadoopRead
extends JPanel and ReadTest extends JFrame. HadoopRead
defines read methods for LFS and HDFS. It provides
common GUI for read operation. The type of the operation is
given as parameter of constructor. ReadTest creates objects
of type HadoopRead for both LFS and HDFS and place them
in common form.

5. Result Analysis

I have verified the write and read performance of both HDFS
and LFS on various file sizes 1MB, 2MB, 4MB, 8MB,
16MB, 32MB, 64MB, 128MB, 256MB, 512MB, and 1GB.

5.1 Write Operation
The table of values obtained for above input file sizes is
shown below:

Table 1: Input File Sizes for Write Operation
File Size LFS in Seconds HDFS in Seconds

1 3.02 0.64
2 5.99 1.18
4 16.34 2.38
8 31.3 4.58

15 55.57 12.16
31 117.38 26.16
61 237.01 57.34
122 454.1 115.56
244 950.92 229.95
488 1562.52 387.01
977 3531.36 767.86

In the above table 1, I observed that for 1MB input file, LFS
is taking 3.02 seconds and HDFS I respectively. It is also 4
times more for LFS than HDFS. I observed that all the
values are giving similar results. In the average, LFS is
taking 4.8 times compare to HDFS.

Figure 4: Write Performance Graph

The performance if write operation for the files with various
sizes specifies above in shown Figure.

The dotted line represents the average of 3 test values taken
for writing the files into LFS and solid line indicates the
performance of HDFS.

By considering this graph, I have observed that the write
performance for small files is not having much difference
between LFS and HDFS. There is the considerable
difference in performances of LFS and HDFS for large files.

5.2 Read Operation

The table of values obtained for above input file sizes is
shown below.

Table 2: Input File Sizes for Read Operation
File Size LFS in Seconds HDFS in Seconds

1 1 0.16
2 1.94 0.39
4 3.61 0.64
8 5.97 1.01

15 12.67 2.6
31 25.59 3.93
61 63.77 7.9
122 98.06 14.27
244 194.9 28.75
488 388.84 50.37
977 767.82 111.8

In the above table 2, I observed that for 1MB input file, LFS
is taking 1 second and HDFS is taking 0.16 seconds for
writing and the difference is 0.84 seconds. LFS is taking
more than 6 times than HDFS. For 64 MB (approximately)
file, the values are 63.77 seconds and 7.9 seconds for LFS
and HDFS respectively. It is also 8 times more for LFS than
HDFS. I observed that all the values are giving similar
results. In the average LFS is taking 6 times compare to
HDFS.

Paper ID: SEP14344 1179

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5: Read Perofrmance Graph

The performance of read operation for the files with various
sizes specified above is shown in figure.

The blue color line represents the average of 3 test times
taken for reading the data from LFS and red line indicates
the performance for small files is not having much difference
between LFS and KDFS. There is the considerable
difference in performances of LFS and HDFS for large files.

5.3 Conclusion of Result Analysis

In this project, I built a HDFS cluster on 5 systems (1 Name-
Node, 1 Secondary Name-Node, 3 Data-Nodes). The
required key functions file read (), file write (), hdfsread (),
hdfswrite () are implemented to achieve the main objective
of my project. An interface is also implemented for end user

to give various sizes of files for reading and writing data
to/from LFS and HDFS. A graph is generated with the
values taken from the interfaces and analyzed that the read
and write performances of HDFS are good compare to read
and write operations of LFS.

6. Testing

Even the project is organized well and implemented in
proper manner; there may be chance of some errors or bugs.
I have to verify each and every module whether it is working
properly or not for improving quality if project.

6.1 Design of Test Cases and Scenarios

There are 5 modules in my project. In each module, we have
to verify whether it is functioning properly or not. The end
user may give wrong data that has to be handled by the
application.

Let us verify the quality of my project by designing various
test cases. I have to design various test cases for all modules.
The following are the test cases.

6.1.1 Test Case: 01

Test Case Name: Starting HDFS Cluster

Description:
This test case is designed to verify whether the HDFS cluster
is started or not properly. Name-Node, Secondary-Name-
Node, 3 data nodes have to be verified whether they are
communicating with cluster or not.

Figure 6: Screen Shot

Paper ID: SEP14344 1180

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 3: HDFS Cluster Test Cases
TID Description Input Expected

Output
Actual
Output

Pass
/Fail

1 Verify the
starting of
Name Node
and Data
Nodes

$bin/
start-
all.sh

Master:
starting
name node,

Master:
starting
name node

Pass

Slave1:
starting
Secondary
name node

Slavel1:
starting
secondary
name node

Pass

Slave2:
starting
data node

Slave2:
starting data
node

Pass

Slave2:start
ing data
node

Slave2:starti
ng data node

Pass

Slave2:
starting
data node

Slave2:
starting data
node

Pass

2 Verify JPS
comma-nd
in Name
Node

$jps 14399
Name-
Node
12215 jps

14399
Name-Node
12215 jps

Pass

3 Verify JPS
comma-nd
in
Secondary
Name Node

$jps 11612 jps
16312
Secondary
Name node

11612 jps
16312
secondary
name node

pass

4 Verify JPS
command
in Data
Node

$jps 11501
Data-Node
11612 jps

11501 Data-
Node 11612
jps

Pass

6.1.2 Test Case 02

Test Case Name: Verifying Read Interface

Description:
The test case is designed to verify the read interface. It
verifies whether the proper values or messages are
displaying or not for the given source file or not. If the given
file name and path are correct, the time taken to read will be
displayed otherwise, it displays the error message.

Table 4: Read Test Cases
TID Description Input Expected

Output
Actual
output

Pass
/Fail

1 Verify the
result for

given wrong
source file
name in
HDFS

Source
File:

HDFS:/ur/
16 MB.zip

Message
box should

be
displayed
with error
message

Message
box

displayed

Pass

2 Verify the
result for

given wrong
file name is

LFS

Source
File:/HDF
Scluster/d
esktop/So
urce/16
MB.zip

Message
box should

be
displayed
with error
message

Message
bodx

display

pass

3 Verify the
result for

reading given
source file

name is HDFS

Source
File:/HDF
S:/User/16

MB.zip

Time in
Millisecond
s should be
displayed

3812 Pass

4 Verify the
result for

given source
file name is

LFS

Source
File:/

HDFSclus
ter/deskto
p/source/1
6MB.zip

Time in
Millisecond
s should be
displayed

137824 Pass

6.1.3 Test Case 03

Test Case Name: Verifying the write interface.

Description:
This test case is designed to verify the write interface. It
verifies whether the proper values or messages are
displaying or not for the given source file and destination file
or not. If the given file name and path are correct, the time
taken to read will be displayed otherwise, it displays the
error message.

Table 5: Write Test Case
TID Description Input Expected

Output
Actual
Output

Pass/
Fail

1 Verify the
result for

given
wrong

source file
name in
HDFS

Source
File:/hdfscluste
r/desktop/sourc

e/16MB.zip
Destination file:
HDFS:/ur/16M

B.zip

Message
box should

be
displayed

with
expectation

Message
Box

displayed

Pass

2 Verify the
result for

given
wrong file

name is
LFS

Source
File:/hdfscluste
r/desktop/sourc

e/16MB.zip
Destination file:
/HDFScluster/d
esktop/destinati
on/16MB.zip

Message
box should

be
displayed

with
expectation

Message
Box

displayed

Pass

11 Verify the
result for

given
source file

name is
HDFS

Source
File:/hdfscluste
r/desktop/sourc

e/16MB.zip
Destination file:
HDFS:/ur/16M

B.zip

Time in
Millisecond
s should be
displayed

9737 Pass

3 Verify the
result for

given
source file

name in
LFS

Source
File:/hdfscluste
r/desktop/sourc

e/16MB.zip
Destination file:
/HDFScluster/d
esktop/destinati
on/16MB.zip

Time in
Millisecond
s should be
displayed

51315 Pass

6.2 Conclusion on Testing

In this various test cases are designed for testing HDFS
cluster, read interface and write interface. The HDFS is
tested whether it is starting properly or not by using
bin/start-all.sh and jps command. The read interface is tested
by giving wrong file name in source and correct file names
for both HDFS and LFS. The write interface is tested by
giving wrong file names for source and destination for
HDFS and LFS. My project is passed in all these tests.

Paper ID: SEP14344 1181

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

7. Conclusion & Future Enhancement

7.1 Conclusion

Apache provides a distributed system hadoop Distributed
File System for maintaining large data. HDFS gives an
efficient environment for storing and handling large files in
distributed manner compare to Local File System. LFS is
able to handle small files efficiently. But for large files it
takes lot of time for writing and reading. HDFS handles
large files when compared to LFS. HDFS and LFS give the
performance similar for writing small files and there is a
notable difference in writing large files. The LFS gives
better performance for small files compare to HDFS.
Because the small file is available in disk and can be read
well. HDFS gives less performance for reading small files
because of extra load for java environment. HDFS gives
better performance for reading large files because the data is
divided into blocks which can be read in parallel fashion
where LFS reads the data in Sequential fashion. All the read
and write values obtain through interface are included and
analyzed by generating graphs.

7.2 Future Enhancement

Even though Hadoop Distributed File System is fault
tolerant, scalable and suitable for data intensive applications
in this project I have evaluated the read and write
performance of HDFS. HDFS follows single-writer
multiple-reader model that means while write process is in
progress, if any client wants to read the same file is not
possible in the existing HDFS hence the future work is
mostly to propose a model which supports concurrent file
access.

References

[1] Konstantin Shvachko, Hairong kuand, Sanjay Radia,

Robert Chansler, “The Hadoop Distributed File
System” In MSST ’10 Proceedings of the 2010 IEEE
26th Symposium on Mass Storage Systems and
Technologies(MSST), IEEE Computer Society
Washingtin, DC, USA 2010, pages 1-10

[2] S. Ghemawat, H. Gobioff, S. Leung. “The Google File
System”,In Proc.of ACM Symposium on Operating
Systems Principles,Lake George ,NY,Oct 2003,pp 29-
43

[3] P.H.Carms, W.B Ligon III, R.B.Ross, and R. Thakur,
“PVFS: A Parallel File System for Linux Clusters”
Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, October 2000, pp. 317-327

[4] Russel Sandber, “The Sun Network File System:
Design, Implementation and Experience”, Sun
Mircrosystems, Inc. 2550 Garcia Sve. Mountain
View,CA. 94049(415) 960-7293.

[5] J.J Kistler and M. Satyanarayanan, Disconnected
Operation in the Coda File System, Proceedings of the
Thirteenth ACM Symposium on Operating Systems
Principles, October 13-16, 1991, pages 213-225

[6] John H Howard, An overview of the Andrew File
System, Information Technology Center, Carnegie
Mellon University

[7] Tom White, “Hadoop: The Definitive Guide”, Third
Edition, O’reily/Yahoo! Press

[8] Eric Sammer, Hadoop Operations, September 2012:
First Edition., O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol,CA 95472.

[9] Apache Hadoop. http://hadoop.apache.org/
[10] P.H.Carms, W.B Ligon III, R.B.Ross, and R. Thakur,

“PVFS: A Parallel File System for Linux Clusters,” in
Proc. Of 4th Annual Linux Showcase and Conference,
2000, pp 317-327

[11] J.Dean, S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” In Pric. Of the 6th Se
Pig Experience,” Symposium on Operating System
Design and Implementation, San Francisco CA, Dec.
2004.

[12] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S.
Narayanam, C. Olston, B.Reed, S. Srinivasan, U.
Srivastava. “Building a High-Level Dataflow System
on top of MapReduce: The Pig Experience,” In Pric. Of
Very Large Data Bases, viol 2 no.2,2008 pp 1414-
1425.

[13] S.Ghemawat, H.Gobioff,S.Leung, “The Google file
System,” In Proc. Of ACM Symposium on Operating
Systems Principles, Lake George, NY, Oct 2003, pp
29-43

[14] F.P. Junqueira, B.C. Reed. “The life and times of a
zookeeper” In Proc of the 28th ACM Symposium on
Principles of Distributed Computing, Calgary, AB,
Canada, August 10-12,2009.

[15] Lustre File System. http://www.lustre.org
[16] M.K. McKusick, S.Quinlan. “GFS: Evolution on Fast-

Forward,” ACM Queue, vol. 7, no.7, New York, NY.
August 2009

[17] O. O’Malley, A.C.Murthy. Hadoop Sorts a Petabyte in
16.25 Hours and a Terabyte in 62 seconds. May 2009.
http://developer.yahoo.net/blogs/hadoop/2009/05/hado
op_sorts_a_petabyte_in16_2.html

[18] R. Pike, D. Presotto, k.Thompson, H.Tricky,
P.Winterbottom, “Use of Name Spaces in Plan9,”
Operating Systems Review,27(2), April 1993,pages 72-
76

[19] S. Radia, “Naming Policies in the spring system,” In
Proc. Of 1st IEEE workshop on Services in Distributed
and Networked Environments, June 1994, pp 164-171.

[20] S. Radia, J. Pachl, “The Peer-Process View of Naming
and Remote Execution,” IEEE parallel and Distributed
Technology, vol.1, no.3, August 1993, pp 71-80.

[21] K.v. Shvachko,”HDFS Scalability: The limits to
growth,”; login:. April 2010, pp6-16.

[22] W. Tantisiriroj, S. Patil, G. Gibson. “Data-intensive file
systems for Internet services: A rose by any other
name….” Technical Report CMUPDL-08-114, Parallel
Data Laboratory, Varnegie Mellon University,
Pittsburgh, A, October 2008.

[23] A.T Husoo, J.S. Sarma, N. Jain, Z.Shao,
P.Chakka,S.Anthony, H.Liu,P.Wyckofff, R.Murthy,
“Hive-A Warehousing solution Over a MapReduce
Framework,” In Proc. Of Very Large Data Bases, vol.2
no.2, August 2009, pp 1626-1629.

Paper ID: SEP14344 1182

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Author Profile

Linthala Srinithya received Bachelor of Engineering
in Computer Science and Engineering from TRRCE,
JNTUH. She is pursuing Master of Technology in
Computer Science. Her research interests are Big Data

and Analytics, Operating Systems, Data mining, Networking, Web
Technologies, Image Processing, Computer Graphics.

G. Venkata Rami Reddy has completed his Master of
Technology in Computer Science from School Of IT,
JNTU, Kukatpally Hyderabad.. He is the Associate
Professor and course coordinator of Software
Engineering for School of IT, JNTUH. His subjects of

interests are Image Processing, Computer Networks, Analysis of
Algorithms, Data mining, Operating Systems and Web
technologies.

Paper ID: SEP14344 1183

