
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Tool for Generation of Test Cases in Black Box
Testing

Mamta Sharma1, Durgesh Srivastava2

Computer Science Assistant Professor

Maharishi Dayanad University Rohtak Maharishi Dayanad University Rohtak

Abstract: Software Testing is one of the major area in software development. Each phase of software development life cycle includes
the software testing as its major part. As the software development begin the role of software testing also begin. In this Research we have
developed a tool to generate different test cases automatically. To show the validity of the tool, we have considered the line equation
problem and generated different test cases, and finally we conclude that Robustness Technique is better than Boundary Value Analysis.

Keyword: Black Box Testing, Boundary Value Analysis , Robustness Testing ,Black Box Tool ,White Box Testing,.

1. Introduction

Testing is the major quality control measure used during
software development. Its basic function is to detect errors
in the software. During requirement analysis and design.
The output is a document that is usually textual and non-
executable. After the coding phase, computer programs are
available that can be executed for testing purposes. Thus the
goal of testing is to uncover requirement, design and coding
errors in the programs. Consequently, different levels of
testing are used. The starting point of testing is unit testing
[12]. In this, a module is tested separately and is often
performed by the coder himself simultaneously along with
the coding of the module. The purpose is to exercise the
different parts of the module code to detect coding errors.
After this, the modules are gradually integrated into
subsystem, which are then integrated to eventually form the
entire system. During integration of modules, integration
testing is performed to detect design errors by focusing on
testing the interconnection between modules.

2. Testing

It finds the errors in software design [3]. During software
testing we find bugs and errors in the software and remove
them. We can define the testing as:
(i) The process of exercising software to verify that it

satisfies specified requirements.
(ii) The process of analyzing a software item to detect the

differences between existing and required conditions
(that is,bugs), and to evaluate the features of the
software item.

(iii) The process of operating a system or component under
specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system
or component.

The paper is organized as follows: Section 3 explains
different types of testing i.e., black box and white box
testing Experimental work is carried out in section 4.
Snapshots of the output are given in section 5. We have
tabulated the results of the proposed tool in section 6, and
finally we conclude the paper in section 7.

3. Types of Testing

There are 2 types of testing: [1, 2, 3]
A) Black box testing
B) White box testing

A) Black Box
This type of testing involves testing the software for
functionality, it is used to find out the errors in data
structure, faulty functions, interface errors, etc. Black box
testing ignores internal mechanism of a system [1]. It
Identifies bugs only according to software malfunctions as
they are revealed in its erroneous outputs. It is used to find
incorrect functions that led to undesired output when
executed, incorrect conditions due to which the functions
produce incorrect outputs, when they are executed [2].
Following techniques are used to test a program using black
box testing techniques [1,3, 4].
1. Boundary Value Analysis (BVA)
2. Robustness
3. Worst case
4. Equivalence Partitioning
5. Decision Table
Black Box Testing allows us to carry out the majority of
testing classes, most of which can be implemented solely by
black box tests. Black box testing requires fewer resources.
Brief description about white box testing is given in the next
sub-section. In this paper we will discuss only two
techniques i.e., Boundary Value Analysis and Robustness
Technique.
B) White Box Testing
White-box testing takes into account the internal mechanism
of a system or component. White-box testing is also known
as structural testing, clear box testing, and glass box testing.
It involves testing of all logic of program, testing of loops,
condition testing and data flow based testing. This helps in
detecting errors even with unclear and incomplete software
specification. The objective of white box testing is to ensure
that the test cases exercise each path through a program [1].
The test cases also ensure that all independent paths within
the program have been executed at least once. All internal
data structures are exercised to ensure validity. All loops are
executed at their boundaries and within operational bounds.
Each branch is exercised at least once.

Paper ID: SEP14322 1246

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Experimental Work

In this paper we have developed a tool and implemented in
PHP to generate the test cases automatically. In order to
validate the functionality of the tool we have considered a
straight line problem, with (m1, c1) and (m2, c2) defining
the lines of the form y= m x + c with following conditions;

(i) Parallel lines (m1=m2, c1 != c2
(ii) Intersecting lines (m1 != m2)
(iii) Coincident lines (m1=m2, c1=c2)

(A) Boundary Value Analysis
In black box testing, test cases are derived on the basis of
values that lie on the edge of the equivalence partition [5].. It
is found that most of the errors occur at the boundary rather
then the middle of the domain. If an input consists of certain
values, then test cases should be able to exercise both the
values at the boundaries of the range and the values that are
just above and below the boundary values. For example for
the range [10,100] the input values for a test would be
10,11,55,99,100 Boundary Value Analysis focuses on the
input variables of the function. Let us consider two variables
Y1 and Y2, where Y1 lies between A and B and Y2 lie
between C and D.

 A < = Y1 < = B (1)
C < = Y2 < = D (2)

We have summarized the total 4n+1 number of test cases
and the expected output in the table-I

Table 1: Test cases using Boundary Value Analysis

TEST
CASE

M1 C1 M2 C2 RESULT

1 10 55 55 55 Intersecting Lines
2 11 55 55 55 Intersecting Lines
3 55 55 55 55 Coincident Lines
4 99 55 55 55 Intersecting Lines
5 100 55 55 55 Intersecting Lines
6 55 10 55 55 Parallel Lines
7 55 11 55 55 Parallel Lines
8 55 99 55 55 Parallel Lines
9 55 100 55 55 Parallel Lines

10 55 55 10 55 Intersecting Lines
11 55 55 11 55 Intersecting Lines
12 55 55 99 55 Intersecting Lines
13 55 55 100 55 Intersecting Lines
14 55 55 55 10 Parallel Lines
15 55 55 55 11 Parallel Lines
16 55 55 55 99 Parallel Lines
17 55 55 55 100 Parallel Lines

(B) Robustness Testing

A component is robust when it never fails or crashes,
whatever the input is. Indeed, the failure of a single
component may cause the failure of the entire system. IEEE
defines robustness as the degree to which a system or
component can function correctly in the presence of invalid
inputs or stressful environmental conditions [7]. The value
of detecting errors early in the development cycle, both in
terms of cost and schedule, is well known. Boehm and Basili
reported “Finding and fixing a software problem after
delivery is often 100 times more expensive than finding and
fixing it during the requirements and design phase.” This

statement is as true for robustness problems as it is for
functionality defects. If we adapt our function f to apply to
Robustness testing we find the following equation:

 f = 6n + 1
We have summarized the total number of test cases and the
expected output in the table-02

Table 2: Test cases using Robustness Testing
TEST
CASE

M1 C1 M2 C2 Result

1 9 55 55 55 Intersecting Lines
2 10 55 55 55 Intersecting Lines
3 11 55 55 55 Intersecting Lines
4 55 55 55 55 Coincident Lines
5 99 55 55 55 Intersecting Lines
6 100 55 55 55 Intersecting Lines
7 101 55 55 55 Intersecting Lines
8 55 9 55 55 Parallel Lines
9 55 10 55 55 Parallel Lines

10 55 11 55 55 Parallel Lines
11 55 99 55 55 Parallel Lines
12 55 100 55 55 Parallel Lines
13 55 101 55 55 Parallel Lines
14 55 55 9 55 Intersecting Lines
15 55 55 10 55 Intersecting Lines
16 55 55 11 55 Intersecting Lines
17 55 55 99 55 Intersecting Lines
18 55 55 100 55 Intersecting Lines
19 55 55 101 55 Intersecting Lines
20 55 55 55 9 Parallel Lines
21 55 55 55 10 Parallel Lines
22 55 55 55 11 Parallel Lines
23 55 55 55 99 Parallel Lines
24 55 55 55 100 Parallel Lines
25 55 55 55 101 Parallel Lines

Following program shows the implementation of one of the
module of the proposed tool.

Script in PHP
<Style>
.five {width: 125px; padding: 1px; display: inline-block ;}
.boundary form {text-align: centre ;}
Input {
 margin: 10px;
 padding: 5px;
 width: 250px;
}
</style>
<form method='post' action='' class="boundaryform">
<input type="text" value="" placeholder="First Value"
name="fboundary" required>

<input type="text" value="" placeholder="Second Value"
name="sboundary" required>

Enter 1 for Boundary Value Analysis

Enter 2 for Robustness Testing

Enter 3 for Exit

<input type="text" value="" placeholder="Enter your
Choice" name="choice" required>

<input type="submit" value="enter">
</form>
<div class="boundaryform">
<?php
$a=array();
$s='';

Paper ID: SEP14322 1247

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

$e='';
$count=0;
$mid='';
$steps='';
$ch='';
$ans='';
if (@$_POST['fboundary'] !='' && @$_POST['sboundary']
!= '' && @$_POST['choice'] != ''){
$s=$_POST['fboundary'];
$e=$_POST['sboundary'];
$ch=$_POST['choice'];
if($ch==1)
{
$mid=2;
$steps=5;
$a[0]=$s;
$a[1]=$s+1;
$a[2]=($s+$e)/2;
$a[3]=$e-1;
$a[4]=$e;
}
else if($ch==2)
{
$mid=3;
$steps=7;
$a[0]=$s-1;
$a[1]=$s;
$a[2]=$s+1;
$a[3]=($s+$e)/2;
$a[4]=$e-1;
$a[5]=$e;
$a[6]=$e+1;
}

5. Output of Proposed Tool

In this section we have shown the various snapshots of the
output of the proposed tool under different situations. We
have delineated the comparison between BVA and RT is
shown.

Figure 1: Form for entering Values

Figure 2: Screen shot showing Test Cases Generated

Figure 3: Screen Shot Showing form for second choice

Figure 4: Screen Shot showing test cases generated for

second choice

Paper ID: SEP14322 1248

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Summarized Test Cases

In table 3 showing total number of test cases generated.

Table 3: Test Cases Summarized
S. No Type of Test No. of Test Cases
 1 Boundary Value Analysis 17
 2 Robustness Testing 25

In Table 4 showing total number of Intersecting, Coincident
& Parallel Lines in Boundary Value Testing and Robustness
Testing.

Table 4: Comparing Results
Type of Test Intersecting Parallel Coincident
Boundary Value Analysis 8 8 1
Robustness Testing 12 12 1

7. Conclusion & Future Scope

During the analysis of black box testing we conclude that
the total number of test cases in case of BVA and
Robustness are 17 and 25 respectively, and finally we have
shown that the robustness technique is better than Boundary
Value Analysis we can develop it and can use it for other
test case Designing techniques also. Like Decision Table,
Equivalence Class Testing. We can develop it and can use it
for other test case Designing techniques also. Like Decision
Table, Equivalence Class Testing.

References

[1] Collofello, J., AZ, Vehathiri, K. “An environment for

training computer science students on software testing”,
Dept. of Computer. Sci. & Eng., Arizona State
University pp 12-18, 2005.

[2] Xia Cai., Lyu, M.R., “Software Reliability Modeling
with Test Coverage: Experimentation & Measurement
with a Fault Tolerant Software Project” .pp 17-26,
Chinese Univ. of Hong Kong, Hong Kong, 2007.

[3] Itkonen, J.; Software Bus. & Eng. Inst., Helsinki Univ.
of Technol., Helsinki, Finland; Mäntylä, M.V.,
Lassenius, C. “How do Testers Do It? An Explarotory
study on manual Testing Practices“, Empirical Software
Engineering and Measurement, 2009,Page:494-
497,ISSN: 1938-6451,Oct 2009, Florida.

[4] Sandra Kukolj, Vladimir Marinkovi, Miroslav Popovi,
“Selection and Prioritization of Test Cases By
Combining White Box and Black Box Testing Methods,
3rd Eastern European Regional Conference, page 153-
156, INSPEC: 13900367 Aug 2013, Budapest.L.
Chung. B. Nixon, E. Yu, J. Mylopoulos, “Non-
Functional Requirements in Software Engineering”,
Kluwer, 1999.

[5] Xia Cai, Lyu, M.R. “Software Reliability Modelling
With Test Coverage Experimentation & Measurement
with a Fault Tolerant Software Project” The IEEE 18th
International Symposium, page: 17-26, 5-9 Nov 2007,
ISSN: 1071-9458, , Hongkong.

[6] A. Avezienis, J. Laprie and B. Randell, “Fundamental
Concepts of Computer System Dependability”,
IARP/IEEE-RAS Workshop on Robot Dependability:

Technological Challenge of Dependable Robots in
Human Environments, Seoul, Korea, May 21-22, 2001.

[7] Yi-Tin Hu , Nai-Wei Lin, “ Automatic black box
method level test case generation based on constraint
logic programming”, Computer symposium,2010
International 16-18 Dec. 2010 , ISBN: 978-1-4244-
7639-8, page 977-982, , Germany.

[8] Mohan, K.K. ; Reliability Eng., Indian Inst. of Technol.
Bombay, Mumbai, India ; Verma, A.K. ; Srividya, A.,
“Software reliability estimation through black box and
white box testing at prototype level”, Safety & Hazard
2nd International Conference, 14-16 Dec 2010,
Page:517-522,INSPEC:12030219 , Mumbai.

[9] Accioly, P. Borba, Bonifacio R., “Comparing Two
Black-Box Testing Strategies for Software Product
Lines”, 23-28 Sept 2012, page 1-10, INSPEC:
13251932, 6th Symposium on Software Components
Architecture Reuse, , Natal.

[10] Tilley, S., Praveen, T., “Migrating Software Testing to
Cloud”, Software Maintenance (ICSM), IEEE
International Conference, 12-18 Sept. 2010, ISBN: 978-
1-4244-8628-1, Page: 1-3, Timisoara.

[11] Liu Xue-mei, Gu Guochang, liu Yong-Po; Wu Ji,
“Research and Implementation of Knowledge
Management Methods in Software Testing Process “,
Computer Science and Information Engineering, 2009
WRI World Congress on (Volume:7), March 31 2009-
April 2 2009, ISBN: 978-0-7695-3507-4, page 739-749,
CA.

Paper ID: SEP14322 1249

