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Abstract: In the present paper, we define a new subclass SM,,(t, v, A, @) of meromorphic univalent with positive coefficients defined by
Hadamard product in the punctured unit disk U*. We obtain some interesting properties, like, coefficient estimates, extreme points,

distortion theorem, partial sums, integral representation.
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1. Introduction

Let M,, denote the class of functions of the form:

f@ =24 an, ()
n=1

which are analytic and meromorphic univalent in the
punctured unit disk

U'={z€C:0< |z| <1}

Let SM,, be a subclass of M, consisting of functions of the
from:

f@)=z1+ Z a,z" ,(a, =0). 2
n=1

For the function f_e SM,, given by (2) and g €

SM,, defined by

9@ =24 ) by (b 20), ()
n=1
the convolution (or Hadamard product ) of fandg is
defined by

Frg)@D =274 ) apbya™. @)
n=1
We shall need to state the extended linear derivative operator
of Ruscheweyh type for the function belong to the class SM,,
D} SM, — SM,,
is defined by the following convolution:
-1

DHf(@) = Gy * [, (1> =15 f € SMy).(5)

In terms of binomial coefficients, (5) can be written as
A+ n
Df’lf(z)=z‘1+2( )anzn 1>-1;f
n=1 n
€ SM,).(6)

The linear operator D’l’lanalogous to D} was consider
recently by Raina and Srivastava [7] on the space of analytic
and p-valent functions in U( U = U*U{0}).

A function f € M, is said to be in the class M,S of

meromorphic univalent starlike function of order a if :

zf '(z

e (L@

f(@)

A function f € M, is said to be in the class M,C of
meromorphic univalent convex function of order « if :

Zf,,&} > a,zelU0<a<1).(8)

f@

Definition 1: A function f € SM,, is said to be in the

class of SM,(t,y,A,a)if it satisfies the following
condition:

}>a,zeUh0<a<1). (7)

—Re {1+

zT ,
2 DM (f * 9)(2)
(DX (f * 9)(2)
22ay (DM (f * 9)(2))’
(D (f * 9)(@)

for0<y<1,0<t<10<a<l.
Atshan and Kulkarni [3], Atshan and Buti [1], Atshan and
Joudah [2], Dziok et al. [4], Khairnar and More [5] and

Najafzadeh and Ebadian [6] studied meromorphic univalent
and Multivalent functions for different classes.

+

N S

L 1,(9)

a(l+3y)+

2. Coefficient Inequality

The following theorem gives a necessary and sufficient
condition for a function f to be in the class SM,,(t,y, 4, @).

Theorem 1: Let f € SM,, .Then f € SM,,(t,y, 4, @) if and
only if
= A+n T
Z( n ) (E(n+ D+y+a@+y@3+2n))a,b,
n=1
<a(l+y) (10)
where 0 <y <10<7t<10<a<1.

The result is sharp for the function
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f

Proof: Suppose that the inequality (10) holds true and

a(l+vy)

MG+ 1) +a(l +y(3 + 2n)b,
EN.

2)==z1+

|z| = 1. Then from (9),
we have

|Z

(DM @) +5 (D + @)

- |a(1 +1) (D2 * 9)@) + v (02 (f

+ 9)(2)) + zay (DM (f  9)(2))’

T A+n n
E(n+ 1)( )anbnz

n=1

- A+n
+ z n( ) ap,b,z" 1)

=y A+ n
Zz(n+1)( )anbnz
n=1

—la(1+3y)z7  + a(1

+3y) Z ( )an Wzt —2ayzt
A+n
+ Z 2ayn ( ) a,b,z"
n
n=1
T A+n n
- Zz(n+ 1)( )anbnz
n=1

—la(1 +y)z?

+ Z a(l
n=1

+y(3 +2n) (’1 * n) a,b,z"| (11)

gi% n+1)< n)anbn—a(1+1/)

+Z a(1+ (3 +2n)) (’1+

(/1+n
n

I
NgE

n=1

—-a(l+y) <0,

by hypothesis.

Hence, by maximum modulus principle, f € SM,, (z,y, 4, @)
Conversely, assume that defined by (2) is un the class

SM, (1,7, 4, ).

Tl

A+ n
a(l+3y)(z 1+ Z ( )anbnz") + 2zay (—z72
n=1

n
)an b,

T
) (E n+1)+ a(l +y(3+ Zn)))an b,

Then from (9), we have
S (D (f * ) (D))
DM (f * 9)(@)
2zay (D} (f * 9) (@)
(DM (f * 9)(2))

T
g

a(l+3y)+

s
(@+ap)zt+ 32, a(l1+yB+ 2n))('1;")anbnz"

Since Re (z) < | z | for all z (z € U*), we get

S5+ (M) anbyz"
(a+ay)z7t+3%, a(l +y(3+ Zn))(’lzn)anbnz"
<1.(12)

Re

We choose the value of z on the real axis so that
2(0M (Fr) @)
(O (f+9)(@)
Let z — 17 through real values, so we can write (12) as

2
Z ( :n> (% (n+ 1) +a(d+y(3+2n)))ayb,

is real.

n=1

<a(l+y).
Finally, sharpness follows if we take
f@)
_ a(l+vy) o
(2 (m+1)+a(l+y@B+2n))b, (’Hn)
=12,...(13)

The proof is complete.
Corollary 1: Let f € SM,, (7,7, 4, @). Then

a(l+vy)
('Hn)(z n+1)+ a(l +y(3+ Zn)))b
=23,...(14)

3. Distortion Bounds

Next, we obtain the growth and distortion bounds for the
class SM,,(t,v, A, @).

Theorem 2: If f € SM,(t,y,A,a)and b, = b (n =
1), then
1 a(l+y)
T AT DErad+sh, S @
1
a(l+vy) _
A+ D ta+sppp, " WA=T
<1,
and
1 a(l1+vy) ,
T A DC a5 =@
1
=5
a(l+vy) _
A+ D ta+spnp, " WA=T
< 1).
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The result is sharp for the function:
_ a(l+y)
f@)=z
(1 +A)(t+a(l+ 5}/))b1
Proof: Since

z.(15)

fz)=z1+ i a,z",

then

lf (2] =

Since forn=> 1,
1+ A+ a(+5y)b,

< (/1 + n) T i+ 1)

=\, (2 n

+a(l+y(3+2n)))b,.
By Theorem (1), we have

[oe]

a1+ /1)(1' +a(l+ 5}/))b1 Z a,

<> (e
+a(l+yB+ 2n))> a, b,
Sa(l+y).

That is

[ee)

Z W < a(l+y)
"T @A+ D +ald +5y)b;

Using the above inequality in (16), we have
a(l+vy)
lf (2| <
(1 +D)(t+a(l+ 5)/))b1

and
1 a(l+y)
lf@l=z-- r.
A+DE+a@+5y)b,
The result is sharp for the function:

a(1+7y)
& = A D+ a + 5705, ~
Similarly, we have
. 1 a(l+y)
IF@lz5-a7 D +a(l+57)b;
and
IF @) < iChal

(1 + A (T +a(l+5y)b,’
4. Partial Sums

Theorem 3: Let f € SM, be given by (2)and the partial
sums S;(z) and Sy (z) be defined by
Si(z)=z"1and
k-1
Se(@=z"1+ Z ayz" , (k> 1).

n=1

Also, suppose that
> duan
n=1

<l|d,=

a(l+vy)

17)

Then, we have

re{L) >

Re {S"(Z)} > (z €U,k >1).(19)
f(2) 1+ dk

Each of the bounds in (18) and (19) is the best possible for
n€ N.
Proof: For the coefficients d,, given by (17), it is not
difficult to verify that
dpy1>dp>1n=12,...
Therefore, by using the hypothesis (17), we have
k-1 oo oo

Zan—i-deanSZdnanSl.(ZO)

1 ! 18
dk’( )

and

n=1 n=k n=1
By setting
f(@) ( 1 )
zZ)=dy| —=<—-(1——
gl( ) k (Sk(Z) dk
dk Zn kQn Z n+1
1+ Zn: Z‘n+1 ( )
and applying (20),we find that
-1 di Ym=r @
9:(2) | < k Zn=k On <1,(22)
g1(2)+1| 2_2211 1an dk nk an
which readily yields the assertion (18), if we take
k
f@) =2 ==,23)
dy
then
f(2) z"
=1-—>1-— (z -17),
sk(2) die

which shows that the bound (18) 1s the best possible for
eachn€ N.
Similarly, if we take

9:(@) = (1 +dy) ( L2 )
f@ 1+dy
IUNCET)» SR
1+ Yk 1a,zn*1
and make use of (20), we obtain
92(2) — 1’ I+ di) Xn=k @n
922+ 1] 7 2 =235t a, + (1= di) By an

<1,(24)
which leads us to the assertion (19). The bounds in (18) and
(19) is sharp with the function given by (21).
Theorem 4: If f(z) of the form (2) satisfy the condition

(10). Then
’ k+1
Ref LD 1 -
sk (2) di+1
Re ],“(Z) S din+1 ‘
Sk(Z) k+1+dk+1
where
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nforn=23,..,m
(MG M+ 1) +a(l +y(3 +2n)b, forn

a(l+y)
=m+1m+2,m+3,...
The bounds are sharp, with the extremal function f(z) of the
form (15)
Proof: The proof is analogous to that Theorem 3, and we
omit details.

5. Integral Representation

Theorem 5: Let f € SM,,(7,y, 4, @) . Then

z9(z)a(1+ 3y) — 5

AL(F % =
DIM(f * g)(2) = exp f e 2 g,

where [9(2)| < 1,z € U.

Proof: By putting

2(D2(f * g)(2))’
7 =Q(
O (@) P
in (9), we have
700 +3 | .

|
|a(1 +3y)+ 2ayQ(z)|

or equivalently

20@+y o
a(l+3y) +2ayQ(z) @, ([9@)] <1ze0).
So
DX (f +g)@) _ 9@l +3) -3
OM(f+ @) 2G-9@2ay) |

after integration , we have

z9(z)(a(l+3y)) —=
log(D}'(f * 9)(2)) = fo T( 19(@20:3 =
-

Therefore
z9(z)a(1+ 3y) — 5
DI )(@) = exp | — 24,
5= 9(z)2ay
and this gives the required result.
6. Extreme Points
Theorem 6: Let fo(z) =zt and
fa(2)
= Z_l
a(l+vy) o
(’H")(Z (m+1)+a(l+y@B+2n)))b,
> 1).(25)

Then f € SM, (t,y, 4, @), if and only if it can be represented
in the form

) =)t foa (2 Gn 2 0,) i = 1).(26)
n=0 n=0

Proof: Suppose that

£) = Z tn f (2), where i 20, Z o = 1.
Then .

£ = tofo@ + ) b f @)

f@)
_ a(l+y)u,
T Z (MG 0+ 1) + a1 +y(3 + 2n)b, ‘

n=1

[ee)

=z1+ z 2",

n=1

a(l+y)uy,
NGO+ +a(1+yG +20))b,

n:

Therefore
i a(l+vy)
HUn
=i (’1;”) (% m+D+a(l+yB+ Zn))) b,
(M) G0+ 1) + a( +y(3 + 2m)b,
a(l+vy)

=Z#n=1—uosl-

n=1
So by Theorem (1), f € SM,,(t,y, 4, a).
Conversely, we suppose f € SM, (t,y,4,a). By (4), we
have

a(l+vy) -1
(“")(2 m+1) +a(l+y@B+2n))b,
We set,
(TG 0+ 1) + a(l +y(3 +2m)b,
Up = a(1+7) a,,n=1,
and .
HPo=1-— Z Un-

Then, we have

F@) = b fu @
n=0

£ = tofo@ + ) b f .
n=1

Hence the results follows.
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