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Abstract: This paper describes a technique to tolerate faults in large data structures hosted on distributed servers, based on the concept
of fused backups. The prevalent solution to this problem is replication. To tolerate the faults (dead/unresponsive data structures) among
the whole distinct data structures, replication requires replicas of each data structure, resulting in number of servers and the number of
fault for additional backups. This paper present a solution, referred to as fusion that uses a combination of erasure codes and selective
replication to tolerate f crash faults using just additional fused backups. This paper shows that the solution achieves savings in space
over replication. Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only backups
as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is only as much as
the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, the savings in space outweighs the
cost of recovery. This paper explores the theory of fused backups and provides a library of such backups for all the data structures in the
Visual Studio Collection Framework. The experimental evaluation confirms that fused backups are space-efficient as compared to
replication (approximately n times), while they cause very little overhead for updates. To illustrate the practical usefulness of fusion, this
work use fused backups for reliability in Amazon’s highly available key-value store, Dynamo. While the current replication based
solution uses 300 backup structures, we present a solution that only requires 120 backup structures. This results in savings in space as

well as other resources such as power.
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1. Introduction

Distributed systems are often modeled as a set of
independent servers interacting with clients through the use
of messages. To efficiently store and manipulate data, these
servers typically maintain large instances of data structures
such as linked lists, queues and hash tables. These servers are
prone to faults in which the data structures may crash,
leading to a total loss in state (crash faults) or worse, they
may behave in an adversarial manner, reflecting any
arbitrary state, sending wrong conflicting messages to the
client or other data structures (Byzantine faults).

Active replication is the prevalent solution to this problem.
To tolerate f crash faults among n given data structures,
replication maintains f + 1 replicas of each data structure,
resulting in a total of nf backups. These replicas can also
tolerate [f/2] Byzantine faults, since there is always a
majority of correct copies available for each data structure.

In many large scale systems, such as Amazon’s Dynamo
key-value store, data is rarely maintained on disks due to
their slow access times. The active data structures in such
systems are usually maintained in main memory or RAM. In
fact, a recent proposal of ‘RAM Clouds’ suggests that online
storage of data must be held in a distributed RAM, to enable
fast access.

In these cases, a direct application of coding-theoretic
solutions, that are oblivious to the structure of data that they
encode, is often wasteful. In the example of the lock servers,
to tolerate faults among the queues, a simple coding-
theoretic solution will encode the memory blocks occupied
by the lock servers. Since the lock server is rarely maintained
contiguously in main memory, a structure-oblivious solution

will have to encode all memory blocks that are associated
with the implementation of this lock server in main memory.

This is not space efficient, since there could be a large
number of such blocks in the form of free lists and memory
book keeping information. Also, every small change to the
memory map associated with this lock has to be
communicated to the backup, rendering it expensive in terms
of communication and computation.

In this work, present a technique referred to as fusion which
combines the best of both these worlds to achieve the space
efficiency of coding and the minimal update overhead of
replication. Given a set of data structures, this system
maintain a set of fused backup data structures that can
tolerate f crash faults among the given the data structures.

In replication, the replicas for each data structure are
identical to the given data structure. In fusion, the backup
copies are not identical to the given data structures and
hence, it make a distinction between the given data
structures, referred to as primaries and the backup data
structures, referred to as backups.

Henceforth in this work, assume that it will give a set of
primary data structures among which this system need to
tolerate faults. Replication requires f additional copies of
each primary (f + 1 replicas), resulting in nf backups. Fusion
only requires f additional backups. The fused backups
maintain primary data in the coded form to save space, while
they replicate the index structure of each primary to enable
efficient updates. In Fault Tolerant Stacks show the fused
backup corresponding to two primary array-based stacks X
and X,.

The backup is implemented as a stack whose nodes contain
the sum of the values of the nodes in the primaries. This
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system replicates the index structure of the primaries (just
the top of stack pointers) at the fused stack. When an element
a; is pushed on to Xj, this element is sent to the fused stack
and the value of the second node (counting from zero) is
updated to a3 + b;. In case of a pop to X», of say bs, the
second node is updated to a;. These set of data structures can
tolerate one crash fault. For example, if X, crashes, the
values of its nodes can be computed by subtracting the
values of the nodes in X, from the appropriate nodes of F;.

This system observes that in large practical systems, the size
of data far exceeds the size of the index structure. Hence
replicating the index structure at the fused backups is of
insignificant size overhead. The savings in space is achieved
by fusing the data nodes.

Crash faults in a synchronous system, such as the one
assumed in our model, can easily be detected using time
outs. Detecting Byzantine faults is more challenging, since
the states of the data structures need to be inspected on every
update to ensure that there are no liars in the system. In this
project, present a solution to tolerate f Byzantine faults
among n primary data structures using just (nf + f) backup
structures as compared to the 2nf backups required by
replication. This work uses a combination of replication and
fusion to ensure minimal overhead during normal operation.

2. Related Work

In [1], proposed that Reliability at massive scale is one of the
biggest challenges we face at Amazon.com, one of the
largest e-commerce operations in the world; even the
slightest outage has significant financial consequences and
impacts customer trust. The Amazon.com platform, which
provides services for many web sites worldwide, is
implemented on top of an infrastructure of tens of thousands
of servers and network components located in many
datacenters around the world.

In [2], proposed that Fusible Data Structures for Fault
Tolerance in this concept of fusible data structures to
maintain fault-tolerant data in distributed programs. Given a
fusible data structure it is possible to combine a set of such
structures into a single fused structure that is smaller than the
combined size of the original structures. When any of the
original data structures is updated, the fused structure can be
updated incrementally using local information about the
update and does not need to be entirely recomputed. In case
of a failure, the fused structure, along with the correct
original data structures, can be used to efficiently reconstruct
the failed structure.

In [3], proposed that Fusible Data Structures for Fault
Tolerance in this concept of fusible data structures to
maintain fault-tolerant data in distributed programs. Given a
fusible data structure it is possible to combine a set of such
structures into a single fused structure that is smaller than the
combined size of the original structures.

3. Proposed Work

The proposed work present a solution, referred to as fusion
that uses to avoid replication. It shows that the solution

achieves savings in space over replication. The fused
backups are space-efficient as compared to replication
(approximately n times), while they cause very little
overhead for updates. In our proposed work, the data loss
and time delay can be reduced when compared to the already
existing services. Computer can carry pit calculation in just
few seconds that would require months or perhaps even
years when carried out by hand. Practically, the proposed
work never makes a mistake of its own accord. This consists
of techniques, such as inspection, whose intent is to
eliminate the circumstances by which faults arise. In the
concept of fusible data structures is to maintain fault-tolerant
data in distributed programs. Given a fusible data structure it
is possible to combine a set of such structures into a single
fused structure that is smaller than the combined size of the
original structures. When any of the original data structures
is updated, the fused structure can be updated incrementally
using local information about the update and does not need
to be entirely recomputed

Merits:

» Avoid Replicas

» Less Backups

* Less Processing Time

* Low Space is enough

» Network Traffic is avoided

e Low cost comparing with existing system

e Router is used for boost up the network speed

4. Methodology

4.1 Fusion-Based Fault Tolerant Data Structures

In the proposed work present fusible data structures for array
and list-based primaries. In this section, we present a generic
design of fused backups for most commonly used data
structures such as lists, stacks, vectors, trees, hash tables,
maps etc.

a3+h3
a3 b3 1 1
| | az+h2
az b2
| | 1 1
al b1 altbl
1|1
Primary X; Primary X:  Fuosed Backnp F;

Figure 1: Fused Backup

Design Motivation: In the proposed work present a design to
fuse primary linked lists to correct one crash fault. The fused
structure is a linked list whose nodes contain the xor of the
primary values.

Each node contains a bit array of size n with each bit
indicating the presence of a primary element in that node. A
primary is element inserted in the correct position at the
backup by iterating through the fused nodes using the bit
array and a similar operation is performed for deletes.
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An example is shown in fig.1with two primaries and one
backup. After the delete of primary elements al and b3
(shown in dotted lines), the first and third nodes of the fused
backup are updated to bl and a3 respectively (deleted
elements in grey scale). After the deletes, while the primaries
each contain only two nodes, the fused backup contains three
nodes. If there are a series of inserts to the head of X, and to
the tail of X, following this, the number of nodes in the fused
backup will be very high.

This brings us to the main design motivation of this section:
Can we come up with a generic design for fused backups, for
all types of data structures such that the fused backup
contains only as many nodes as the largest primary (in this
e.g. two nodes), while guaranteeing that updates are
efficient? We present a solution for linked lists and then
generalize it for complex data structures.

4.2 Fused Backups for Linked Lists

We use a combination of replication and erasure codes to
implement fused backups each of which are identical in
structure and differ only in the values of the data nodes. In
our design of the fused backup, we maintain a stack of
nodes, referred to as fused a node that contains the data
elements of the primaries in the coded form. The fused nodes
at the same position across the backups contain the same
primary elements and correspond to the code words of those
elements. The result shows two primary linked lists X; and
X, and two fused backups F, and F, that can correct two
faults among the primaries. The fused node in the Oth
position at the backups contain the elements a; and b, with F;
holding their sum and F, their difference

Along with the stack, at each fused backup, we also maintain
auxiliary structures that replicate the index information of the
primaries. The auxiliary structure corresponding to primary
X; at the fused backup is identical in structure to X;, but
while X; consists data nodes, the auxiliary structure only
contains pointers to the fused nodes.

In the case of linked list based primaries, the auxiliary
structures are simply linked lists. The savings in space are
achieved because primary nodes are being fused, while
updates are efficient since we maintain the”structure” of each
primary at the backup.

4.3 Fused Backups for Complex Data Structures

The design of fused backup for linked lists can easily be
generalized for all types of data structures. At each primary
along with the primary data structure, we maintain an
auxiliary list that tracks the order of elements at the backup
stack. At each backup, we maintain auxiliary structures for
each primary, which is identical to the corresponding
primary except for the fact that it has pointers to the fused
nodes rather than primary elements. For simplicity, we
explain the design using just one backup. The auxiliary
structure at F; for X; is a BBST containing a root and two
children, identical in structure to X;. The algorithms for
inserts and deletes at both primaries and backups remains
identical to linked lists except for the fact that at the primary,
we are inserting into a primary BBST and similarly at the

backup we are inserting into an auxiliary BBST rather than
an auxiliary linked list.

As we maintain auxiliary structures at the backup that are
identical to the primary data structures, it is not necessary
that each container provide the semantics of insert (key,
value) and delete (key). For example, we can also support the
semantics insert (position, value) and delete (position, value)
since the primary data structures and the auxiliary data
structure being identical, support them.

4.4 Fault Detection and Correction

To correct crash faults, we need to obtain all the available
data structures, both primaries and backups. The fused nodes
at the same position at all the fused backups are the code
words for the primary elements belonging to these nodes. To
obtain the missing primary elements belonging to this node,
we decode the code words of these nodes along with the data
values of the available primary elements belonging to this
node. We apply the standard erasure decoding algorithm for
decoding each set of values. To recover the state of the failed
primaries, we obtain F; and F, and iterate through their
nodes. The Oth fused node of F; contains the value a; + by,
while the Oth node of F, contains the value a; — b;. Using
these, we can obtain the values of a; and b;. The value of all
the primary nodes can be obtained this way and their order
can be obtained using the index structure at each backup.

To correct Byzantine faults, the only difference is that we
decode the codes for errors rather than erasures. To detect
Byzantine faults, we need to periodically encode the values
of the primaries and compare it to the fused values at the
backup.

If these values do not match, this indicates a Byzantine error.
In general, a code that can correct f erasures can detect f
errors and correct f/2 errors. Hence, the fused backups that
can correct f crash faults can also detect f Byzantine faults
and correct f/2 Byzantine faults.

4.5 File System in Grid

File Systems for Grids Network file systems can
substantially simplify using heterogeneous distributed
storage resources in grid environments. They not only
provide data sharing among multiple sites, but also allow the
user to view multiple, distributed local file systems as a
unified single file system. Below, we will discuss the major
requirements for file systems on grid environments,
including security and scalability.

NFS or NFS based file systems combined with security
mechanisms support secure data sharing in wide area
networks. However, these systems basically consist of only a
single- or a fixed array of file server node(s), which often
become a performance bottlenecks for large datasets;
therefore, NFS-based file systems are typically inappropriate
for grid environments in terms of scalability. Striping
parallel file systems, which exploit the efficiency of using
multiple storage nodes simultaneously, are mainly used in
HPC cluster environments to attain fast I/O performance. All
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the files are divided into fixed-size chunks, and each chunk
can be placed on any storage node.

However, the performance of such file systems can often be
limited by the available network bandwidth, which is
abundant for local clusters but often would be poor for wide-
area grid environments. Furthermore, most of these file
systems do not support sufficient security mechanisms that
are required to operate over multiple administrative domains.

Grid Data farm is file system architecture for peta-scale data-
intensive computing on grid environments. It not only
provides data sharing on grid environments, but also
supports file-location-aware job scheduling—Jobs are
automatically scheduled to execute on nodes where their
required files or file segments are already available in their
local storage. Such scheduling can be often an efficient
heuristics because it can exploit local I/O performance,
rather than transferring large data between compute and
storage nodes. However, users need to manually manage data
to improve I/O performance when heterogeneous resources
are used. Moreover, inefficient file accesses and compute
scheduling situations could easily arise, such as a large
number of jobs are being simultaneously accessing the same
file, causing substantial CPU and 1/O contentions and
thereby degrading the overall system throughput. Our
intelligent data replication technique tackles these
performance problems.

4.6 Algorithm Description

4.6.1 Insert Fused Backups

This algorithm is for the insert of a key-value pair at the
primaries and the backups. When the client sends an insert to
a primary X;, if the key is not already present, Xi creates a
new node containing this key value, inserts it into the
primary linked list (denoted primaryLinkedList) and inserts a
pointer to this node at the end of the aux list (auxList). The
primary sends the key, the new value to be added and the old
value associated with the key to all the fused backups.

Each fused backup maintains a stack (data Stack) that
contains the primary elements in the coded form. On
receiving the insert from X, if the key is not already present,
the backup updates the code value of the fused node
following the one contains the top-most element of X;
(pointed to by tos[i]). To maintain order information, the
backup inserts a pointer to the newly updated fused node,
into the index structure (indexList[i]) for X; with the key
received. A reference count (refCount) tracking the number
of elements in the fused node is maintained to enable
efficient deletes.

Algorithm

e Step 1: initialize the linked list and Stack

Step 2: Insert the backup into linked list

Step 3: If replicas contains, insert replica data into stack
Step 4: Get top of the stack data

Step 5: Stored into linked list element

4.6.2 Delete Fused Backups

It shows the algorithms for the delete of a key at the
primaries and the backups. X; deletes the node associated
with the key from the primary and obtains its value which

needs to be sent to the backups. Along with this value and
the key k, the primary also sends the value of the element
pointed by the tail node of the aux list. This corresponds to
the top-most element of X; at the backup stack and is hence
required for the shift operation that will be performed at the
backup. After sending these values, the primary shifts the
final node of the aux list to the position of the aux node
pointing to the deleted element, to mimic the shift of the final
element at the backup.

Algorithm:

e Step 1: Gather Top of the Stack

e Step 2: Move TOS into linked list

e Step 3: Store Linked list element

e Step 4: Clear Stack Elements

e Step 5: Set Stack is empty, Null is TOS

5. Experimental Results

Our proposed work fusion-based data structure library that
includes all data structures provided by the Visual Studio
Framework. Further we have evaluated our performance
against replication and the older version of fusion. The
current version of fusion outperforms the older version on all
three counts: Backups space, update time at the backups and
time taken for recovery.

In terms of comparison with replication, we save O(n) times
space as confirmed by the theoretical results while not
causing too much update overhead. Recovery is much
cheaper in replication.

Stack Implementation
? 0
2
? 0
? iy tos2]
? b3 0ol -
tos
— | a b2 azeh [~
1
al bt al@bl atl

8- Denotes the Fused data structures
Figure 2: Array Based Stacks

The actual nodes could be complex fusible objects and in
such cases instead of bitwise xoring, we mean computing the
fusion of those nodes. We now consider data structures that
encapsulate some additional data besides the array and
support different operations. The array based stack data
structure maintains an array of data, an index TOS pointing
to the element in the array representing the top of the stack
and the usual push and pop operations.

We assume that all stacks are initially empty. The fused
stack consists of the fusion of the arrays from the source
stacks. We keep all the stack pointers at y individually. This
additional O(k) additional storage is required for the efficient
maintenance property. The following push and pop
operations satisfy the efficient maintenance property.

Push Operation
function x;:push(newltem)
Xj.array[X;.tos] := newltem;
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Xj.tos++;
y.push(i,newltem);
end function
function y:push(i; newltem)
y.array[y.tos[i]] := y.array[y.tos[i]] - newltem;
y.tos[i]++;
end function
Pop Operation
function X;:pop()
X.tos[i] --;
y.pop(i, Xj.array[X;.tos]);
return X;.array[X;.tos]
function y:pop(i; oldItem)
y.tos[i] --;
y.array[y.tos[i]] := y.array[y.tos[i]] - oldItem;
end function

When an element is pushed onto one of the source stacks, x;,
the source stack is updated as usual and the request is
forwarded to the fused stack. The fused stack does not
require any additional information from x;, i.e., the push
operation is independent. During a pop operation, we xor the
corresponding value in y with the value that would be
returned by x;:pop(). The number of elements, ny, in the array
corresponding to the fused stack is the maximum of
|1 PR n, which is less than N. Therefore, the space
constraint is satisfied.

Recover Operation
function y:recover(failedProcess)
/* Assuming that all source stacks have the same size*/
recoveredArray := new Array[y.array.size];
for j = 0 to tos[failedProcess] j 1
recltem = y[j];
foreach process p != failedP rocess
if (j < tos[p]) recltem := recltem - xp.array][j];
recoveredArray[j] := recltem;
return recoveredArray, tos[failedProcess]

From the algorithm, it is obvious that any stack Xgjedproc CaN
be recovered by simply xoring the corresponding elements of

the other original stacks with the fused stack.

5.1 Performance Comparison With The Existing System
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Figure 3 : Performance Comparisons with the Existing
System

To correct f crash faults among n primaries, fusion requires f
backup data structures as compared to the nf backup data

structures required by replication. For Byzantine faults,
fusion requires nf + f backups as compared to the 2nf
backups required by replication.For crash faults, the total
space occupied by the fused backups in msf as compared to
nmsf for replication (nf backups of size ms each). For
Byzantine faults, since we maintain f copies of each primary
along with f fused backups, the space complexity for fusion
is nfms + msf as compared to 2nmsf for replication.

5.2 Performance of Fused Backups

10.5
| BHNo.of
10 Bacloaps
9.5 m Corvected
Bacloaps

1 Cobinml
8.5

=
7.5 T T T T

10 200 300 00 100
Backups Baclups Baclkups FBaclups Backups

Figure 4: Performances of Fused Backups

This refers to the number of messages that need to be
exchanged once a fault has been detected. When t crash
faults are detected, in fusion, the client needs to acquire the
state of all the remaining data structures. This requires n—t
messages of size O(ms) each. In replication the client only
needs to acquire the state of the failed copies requiring only t
messages of size O(ms) each. For Byzantine faults, in fusion,
the state of all n + nf + f data structures (primaries and
backups) needs to be acquired. This requires nf + f messages
of size O(ms) each. In replication, only the state of any 2t + 1
copies of the faulty primary are needed, requiring just 2t + 1
messages of size O(ms) each.

5.3 Time Complexity of Fused Backups
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Figure 5: Time Complexity of Fused Backups

It defines the number of backups move from the different
servers to the client also analysis the faulted and corrected
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backup’s performance. The chart defines different backups
and corrected data transfer to the client machine.

6. Conclusion and Future Work

A fusion-based technique for fault tolerance was that savings
in space as compared to replication with almost no overhead
during normal operation. This System provide a generic
design of fused backups and their implementation for all the
data structures in the Visual Studio framework that includes
vectors, stacks, maps, trees, and most other commonly used
data structures. This System compare the main features of
work with replication, both theoretically and experimentally.
This work confirms that fusion is extremely space efficient
while replication is efficient in terms of recovery, load on the
backups and the size of the messages that need to be sent to
the backups. In our future, we investigate the other data
structure concepts like Queue, and Tree methods to
implement the current system. Also increase the system
performance when we transfer the bulk data from the server
to client. Utilize the Main memory to recover the faulted
data.
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