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Abstract: This paper describes a technique to tolerate faults in large data structures hosted on distributed servers, based on the concept 
of fused backups. The prevalent solution to this problem is replication. To tolerate the faults (dead/unresponsive data structures) among 
the whole distinct data structures, replication requires replicas of each data structure, resulting in number of servers and the number of 
fault for additional backups. This paper present a solution, referred to as fusion that uses a combination of erasure codes and selective 
replication to tolerate f crash faults using just additional fused backups. This paper shows that the solution achieves savings in space 
over replication. Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only backups 
as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is only as much as 
the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, the savings in space outweighs the 
cost of recovery. This paper explores the theory of fused backups and provides a library of such backups for all the data structures in the 
Visual Studio Collection Framework. The experimental evaluation confirms that fused backups are space-efficient as compared to 
replication (approximately n times), while they cause very little overhead for updates. To illustrate the practical usefulness of fusion, this 
work use fused backups for reliability in Amazon’s highly available key-value store, Dynamo. While the current replication based 
solution uses 300 backup structures, we present a solution that only requires 120 backup structures. This results in savings in space as 
well as other resources such as power. 
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1. Introduction 
 
Distributed systems are often modeled as a set of 
independent servers interacting with clients through the use 
of messages. To efficiently store and manipulate data, these 
servers typically maintain large instances of data structures 
such as linked lists, queues and hash tables. These servers are 
prone to faults in which the data structures may crash, 
leading to a total loss in state (crash faults) or worse, they 
may behave in an adversarial manner, reflecting any 
arbitrary state, sending wrong conflicting messages to the 
client or other data structures (Byzantine faults).  
 
Active replication is the prevalent solution to this problem. 
To tolerate f crash faults among n given data structures, 
replication maintains f + 1 replicas of each data structure, 
resulting in a total of nf backups. These replicas can also 
tolerate [f/2] Byzantine faults, since there is always a 
majority of correct copies available for each data structure.  
 
In many large scale systems, such as Amazon’s Dynamo 
key-value store, data is rarely maintained on disks due to 
their slow access times. The active data structures in such 
systems are usually maintained in main memory or RAM. In 
fact, a recent proposal of ‘RAM Clouds’ suggests that online 
storage of data must be held in a distributed RAM, to enable 
fast access.  
 
In these cases, a direct application of coding-theoretic 
solutions, that are oblivious to the structure of data that they 
encode, is often wasteful. In the example of the lock servers, 
to tolerate faults among the queues, a simple coding-
theoretic solution will encode the memory blocks occupied 
by the lock servers. Since the lock server is rarely maintained 
contiguously in main memory, a structure-oblivious solution 

will have to encode all memory blocks that are associated 
with the implementation of this lock server in main memory.  
 
This is not space efficient, since there could be a large 
number of such blocks in the form of free lists and memory 
book keeping information. Also, every small change to the 
memory map associated with this lock has to be 
communicated to the backup, rendering it expensive in terms 
of communication and computation.  
 
In this work, present a technique referred to as fusion which 
combines the best of both these worlds to achieve the space 
efficiency of coding and the minimal update overhead of 
replication. Given a set of data structures, this system 
maintain a set of fused backup data structures that can 
tolerate f crash faults among the given the data structures.  
 
In replication, the replicas for each data structure are 
identical to the given data structure. In fusion, the backup 
copies are not identical to the given data structures and 
hence, it make a distinction between the given data 
structures, referred to as primaries and the backup data 
structures, referred to as backups.  
 
Henceforth in this work, assume that it will give a set of 
primary data structures among which this system need to 
tolerate faults. Replication requires f additional copies of 
each primary (f + 1 replicas), resulting in nf backups. Fusion 
only requires f additional backups. The fused backups 
maintain primary data in the coded form to save space, while 
they replicate the index structure of each primary to enable 
efficient updates. In Fault Tolerant Stacks show the fused 
backup corresponding to two primary array-based stacks X1 
and X2.  
 
The backup is implemented as a stack whose nodes contain 
the sum of the values of the nodes in the primaries. This 
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system replicates the index structure of the primaries (just 
the top of stack pointers) at the fused stack. When an element 
a3 is pushed on to X1, this element is sent to the fused stack 
and the value of the second node (counting from zero) is 
updated to a3 + b3. In case of a pop to X2, of say b3, the 
second node is updated to a3. These set of data structures can 
tolerate one crash fault. For example, if X1 crashes, the 
values of its nodes can be computed by subtracting the 
values of the nodes in X2 from the appropriate nodes of F1.  
 
This system observes that in large practical systems, the size 
of data far exceeds the size of the index structure. Hence 
replicating the index structure at the fused backups is of 
insignificant size overhead. The savings in space is achieved 
by fusing the data nodes. 
 
Crash faults in a synchronous system, such as the one 
assumed in our model, can easily be detected using time 
outs. Detecting Byzantine faults is more challenging, since 
the states of the data structures need to be inspected on every 
update to ensure that there are no liars in the system. In this 
project, present a solution to tolerate f Byzantine faults 
among n primary data structures using just (nf + f) backup 
structures as compared to the 2nf backups required by 
replication. This work uses a combination of replication and 
fusion to ensure minimal overhead during normal operation.  
 
2. Related Work 
 
In [1], proposed that Reliability at massive scale is one of the 
biggest challenges we face at Amazon.com, one of the 
largest e-commerce operations in the world; even the 
slightest outage has significant financial consequences and 
impacts customer trust. The Amazon.com platform, which 
provides services for many web sites worldwide, is 
implemented on top of an infrastructure of tens of thousands 
of servers and network components located in many 
datacenters around the world.  
 
In [2], proposed that Fusible Data Structures for Fault 
Tolerance in this concept of fusible data structures to 
maintain fault-tolerant data in distributed programs. Given a 
fusible data structure it is possible to combine a set of such 
structures into a single fused structure that is smaller than the 
combined size of the original structures. When any of the 
original data structures is updated, the fused structure can be 
updated incrementally using local information about the 
update and does not need to be entirely recomputed. In case 
of a failure, the fused structure, along with the correct 
original data structures, can be used to efficiently reconstruct 
the failed structure. 
 
In [3], proposed that Fusible Data Structures for Fault 
Tolerance in this concept of fusible data structures to 
maintain fault-tolerant data in distributed programs. Given a 
fusible data structure it is possible to combine a set of such 
structures into a single fused structure that is smaller than the 
combined size of the original structures.  
 
3. Proposed Work 
 
The proposed work present a solution, referred to as fusion 
that uses to avoid replication. It shows that the solution 

achieves savings in space over replication. The fused 
backups are space-efficient as compared to replication 
(approximately n times), while they cause very little 
overhead for updates. In our proposed work, the data loss 
and time delay can be reduced when compared to the already 
existing services. Computer can carry pit calculation in just 
few seconds that would require months or perhaps even 
years when carried out by hand. Practically, the proposed 
work never makes a mistake of its own accord. This consists 
of techniques, such as inspection, whose intent is to 
eliminate the circumstances by which faults arise. In the 
concept of fusible data structures is to maintain fault-tolerant 
data in distributed programs. Given a fusible data structure it 
is possible to combine a set of such structures into a single 
fused structure that is smaller than the combined size of the 
original structures. When any of the original data structures 
is updated, the fused structure can be updated incrementally 
using local information about the update and does not need 
to be entirely recomputed 
 
Merits: 
• Avoid Replicas 
• Less Backups 
• Less Processing Time 
• Low Space is enough 
• Network Traffic is avoided 
• Low cost comparing with existing system 
• Router is used for boost up the network speed 

 
4. Methodology 
 
4.1 Fusion-Based Fault Tolerant Data Structures 
In the proposed work present fusible data structures for array 
and list-based primaries. In this section, we present a generic 
design of fused backups for most commonly used data 
structures such as lists, stacks, vectors, trees, hash tables, 
maps etc.  

 
Figure 1: Fused Backup 

 
Design Motivation: In the proposed work present a design to 
fuse primary linked lists to correct one crash fault. The fused 
structure is a linked list whose nodes contain the xor of the 
primary values.  
 
Each node contains a bit array of size n with each bit 
indicating the presence of a primary element in that node. A 
primary is element inserted in the correct position at the 
backup by iterating through the fused nodes using the bit 
array and a similar operation is performed for deletes. 
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An example is shown in fig.1with two primaries and one 
backup. After the delete of primary elements a1 and b3 
(shown in dotted lines), the first and third nodes of the fused 
backup are updated to b1 and a3 respectively (deleted 
elements in grey scale). After the deletes, while the primaries 
each contain only two nodes, the fused backup contains three 
nodes. If there are a series of inserts to the head of X1 and to 
the tail of X2 following this, the number of nodes in the fused 
backup will be very high.  
 
This brings us to the main design motivation of this section: 
Can we come up with a generic design for fused backups, for 
all types of data structures such that the fused backup 
contains only as many nodes as the largest primary (in this 
e.g. two nodes), while guaranteeing that updates are 
efficient? We present a solution for linked lists and then 
generalize it for complex data structures. 
 
4.2 Fused Backups for Linked Lists 
 
We use a combination of replication and erasure codes to 
implement fused backups each of which are identical in 
structure and differ only in the values of the data nodes. In 
our design of the fused backup, we maintain a stack of 
nodes, referred to as fused a node that contains the data 
elements of the primaries in the coded form. The fused nodes 
at the same position across the backups contain the same 
primary elements and correspond to the code words of those 
elements. The result shows two primary linked lists X1 and 
X2 and two fused backups F1 and F2 that can correct two 
faults among the primaries. The fused node in the 0th 
position at the backups contain the elements a1 and b1 with F1 
holding their sum and F2 their difference 
 
Along with the stack, at each fused backup, we also maintain 
auxiliary structures that replicate the index information of the 
primaries. The auxiliary structure corresponding to primary 
Xi at the fused backup is identical in structure to Xi, but 
while Xi consists data nodes, the auxiliary structure only 
contains pointers to the fused nodes. 
 
In the case of linked list based primaries, the auxiliary 
structures are simply linked lists. The savings in space are 
achieved because primary nodes are being fused, while 
updates are efficient since we maintain the”structure” of each 
primary at the backup. 
 
4.3 Fused Backups for Complex Data Structures 
 
The design of fused backup for linked lists can easily be 
generalized for all types of data structures. At each primary 
along with the primary data structure, we maintain an 
auxiliary list that tracks the order of elements at the backup 
stack. At each backup, we maintain auxiliary structures for 
each primary, which is identical to the corresponding 
primary except for the fact that it has pointers to the fused 
nodes rather than primary elements. For simplicity, we 
explain the design using just one backup. The auxiliary 
structure at F1 for X1 is a BBST containing a root and two 
children, identical in structure to X1. The algorithms for 
inserts and deletes at both primaries and backups remains 
identical to linked lists except for the fact that at the primary, 
we are inserting into a primary BBST and similarly at the 

backup we are inserting into an auxiliary BBST rather than 
an auxiliary linked list. 
 
As we maintain auxiliary structures at the backup that are 
identical to the primary data structures, it is not necessary 
that each container provide the semantics of insert (key, 
value) and delete (key). For example, we can also support the 
semantics insert (position, value) and delete (position, value) 
since the primary data structures and the auxiliary data 
structure being identical, support them. 
 
4.4 Fault Detection and Correction 
 
To correct crash faults, we need to obtain all the available 
data structures, both primaries and backups. The fused nodes 
at the same position at all the fused backups are the code 
words for the primary elements belonging to these nodes. To 
obtain the missing primary elements belonging to this node, 
we decode the code words of these nodes along with the data 
values of the available primary elements belonging to this 
node. We apply the standard erasure decoding algorithm for 
decoding each set of values. To recover the state of the failed 
primaries, we obtain F1 and F2 and iterate through their 
nodes. The 0th fused node of F1 contains the value a1 + b1, 
while the 0th node of F2 contains the value a1 − b1. Using 
these, we can obtain the values of a1 and b1. The value of all 
the primary nodes can be obtained this way and their order 
can be obtained using the index structure at each backup. 
 
To correct Byzantine faults, the only difference is that we 
decode the codes for errors rather than erasures. To detect 
Byzantine faults, we need to periodically encode the values 
of the primaries and compare it to the fused values at the 
backup. 
 
If these values do not match, this indicates a Byzantine error. 
In general, a code that can correct f erasures can detect f 
errors and correct f/2 errors. Hence, the fused backups that 
can correct f crash faults can also detect f Byzantine faults 
and correct f/2 Byzantine faults.  
 
4.5 File System in Grid 
 
File Systems for Grids Network file systems can 
substantially simplify using heterogeneous distributed 
storage resources in grid environments. They not only 
provide data sharing among multiple sites, but also allow the 
user to view multiple, distributed local file systems as a 
unified single file system. Below, we will discuss the major 
requirements for file systems on grid environments, 
including security and scalability.  
 
NFS or NFS based file systems combined with security 
mechanisms support secure data sharing in wide area 
networks. However, these systems basically consist of only a 
single- or a fixed array of file server node(s), which often 
become a performance bottlenecks for large datasets; 
therefore, NFS-based file systems are typically inappropriate 
for grid environments in terms of scalability. Striping 
parallel file systems, which exploit the efficiency of using 
multiple storage nodes simultaneously, are mainly used in 
HPC cluster environments to attain fast I/O performance. All 
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xi.tos++; 
y.push(i,newItem); 
end function 
function y:push(i; newItem) 
y.array[y.tos[i]] := y.array[y.tos[i]] - newItem; 
y.tos[i]++; 
end function 

Pop Operation 
function xi:pop() 
x.tos[i] --; 
y.pop(i, xi.array[xi.tos]); 
return xi.array[xi.tos] 
function y:pop(i; oldItem) 
y.tos[i] --; 
y.array[y.tos[i]] := y.array[y.tos[i]] - oldItem; 
end function 

 
When an element is pushed onto one of the source stacks, xi, 
the source stack is updated as usual and the request is 
forwarded to the fused stack. The fused stack does not 
require any additional information from xi, i.e., the push 
operation is independent. During a pop operation, we xor the 
corresponding value in y with the value that would be 
returned by xi:pop(). The number of elements, ny, in the array 
corresponding to the fused stack is the maximum of 
n1………. nk which is less than N. Therefore, the space 
constraint is satisfied. 
 
Recover Operation 

function y:recover(failedProcess) 
/*Assuming that all source stacks have the same size*/ 
recoveredArray := new Array[y.array.size]; 
for j = 0 to tos[failedProcess] ¡ 1 
recItem := y[j]; 
foreach process p != failedP rocess 
if (j < tos[p]) recItem := recItem - xp.array[j]; 
recoveredArray[j] := recItem; 
return recoveredArray, tos[failedProcess] 

 
From the algorithm, it is obvious that any stack xfailedProc can 
be recovered by simply xoring the corresponding elements of 
the other original stacks with the fused stack. 
 
5.1 Performance Comparison With The Existing System 
 

 
Figure 3 : Performance Comparisons with the Existing 

System 
 

To correct f crash faults among n primaries, fusion requires f 
backup data structures as compared to the nf backup data 

structures required by replication. For Byzantine faults, 
fusion requires nf + f backups as compared to the 2nf 
backups required by replication.For crash faults, the total 
space occupied by the fused backups in msf as compared to 
nmsf for replication (nf backups of size ms each). For 
Byzantine faults, since we maintain f copies of each primary 
along with f fused backups, the space complexity for fusion 
is nfms + msf as compared to 2nmsf for replication. 
 
5.2 Performance of Fused Backups 
 

 
Figure 4: Performances of Fused Backups 

This refers to the number of messages that need to be 
exchanged once a fault has been detected. When t crash 
faults are detected, in fusion, the client needs to acquire the 
state of all the remaining data structures. This requires n−t 
messages of size O(ms) each. In replication the client only 
needs to acquire the state of the failed copies requiring only t 
messages of size O(ms) each. For Byzantine faults, in fusion, 
the state of all n + nf + f data structures (primaries and 
backups) needs to be acquired. This requires nf + f messages 
of size O(ms) each. In replication, only the state of any 2t + 1 
copies of the faulty primary are needed, requiring just 2t + 1 
messages of size O(ms) each. 
 
5.3 Time Complexity of Fused Backups  
 

 
Figure 5: Time Complexity of Fused Backups 

 
It defines the number of backups move from the different 
servers to the client also analysis the faulted and corrected 

0
20
40
60
80

100
120

n Fused 
Backups 

with State 
Machines

n Fused 
Backups 
with Data 
Structures

No. of Data Files

Backup Needed

Paper ID: SEP14238 873



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

backup’s performance. The chart defines different backups 
and corrected data transfer to the client machine. 
 
6. Conclusion and Future Work 
 
A fusion-based technique for fault tolerance was that savings 
in space as compared to replication with almost no overhead 
during normal operation. This System provide a generic 
design of fused backups and their implementation for all the 
data structures in the Visual Studio framework that includes 
vectors, stacks, maps, trees, and most other commonly used 
data structures. This System compare the main features of 
work with replication, both theoretically and experimentally. 
This work confirms that fusion is extremely space efficient 
while replication is efficient in terms of recovery, load on the 
backups and the size of the messages that need to be sent to 
the backups. In our future, we investigate the other data 
structure concepts like Queue, and Tree methods to 
implement the current system. Also increase the system 
performance when we transfer the bulk data from the server 
to client. Utilize the Main memory to recover the faulted 
data. 
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