
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Fault Tolerance for Adaptive Replication in Grid
Using Fused Data Structures

J. Vengadasubramanikandan

Departmant of Computer Science, J.J. College of Arts and Science (Autonomous), Sivapuram, Pudukkottai, Tamilnadu, India

Abstract: This paper describes a technique to tolerate faults in large data structures hosted on distributed servers, based on the concept
of fused backups. The prevalent solution to this problem is replication. To tolerate the faults (dead/unresponsive data structures) among
the whole distinct data structures, replication requires replicas of each data structure, resulting in number of servers and the number of
fault for additional backups. This paper present a solution, referred to as fusion that uses a combination of erasure codes and selective
replication to tolerate f crash faults using just additional fused backups. This paper shows that the solution achieves savings in space
over replication. Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only backups
as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is only as much as
the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, the savings in space outweighs the
cost of recovery. This paper explores the theory of fused backups and provides a library of such backups for all the data structures in the
Visual Studio Collection Framework. The experimental evaluation confirms that fused backups are space-efficient as compared to
replication (approximately n times), while they cause very little overhead for updates. To illustrate the practical usefulness of fusion, this
work use fused backups for reliability in Amazon’s highly available key-value store, Dynamo. While the current replication based
solution uses 300 backup structures, we present a solution that only requires 120 backup structures. This results in savings in space as
well as other resources such as power.

Keywords: Fault Tolerance, Grid Computing, Data Structure, Adaptive Replication

1. Introduction

Distributed systems are often modeled as a set of
independent servers interacting with clients through the use
of messages. To efficiently store and manipulate data, these
servers typically maintain large instances of data structures
such as linked lists, queues and hash tables. These servers are
prone to faults in which the data structures may crash,
leading to a total loss in state (crash faults) or worse, they
may behave in an adversarial manner, reflecting any
arbitrary state, sending wrong conflicting messages to the
client or other data structures (Byzantine faults).

Active replication is the prevalent solution to this problem.
To tolerate f crash faults among n given data structures,
replication maintains f + 1 replicas of each data structure,
resulting in a total of nf backups. These replicas can also
tolerate [f/2] Byzantine faults, since there is always a
majority of correct copies available for each data structure.

In many large scale systems, such as Amazon’s Dynamo
key-value store, data is rarely maintained on disks due to
their slow access times. The active data structures in such
systems are usually maintained in main memory or RAM. In
fact, a recent proposal of ‘RAM Clouds’ suggests that online
storage of data must be held in a distributed RAM, to enable
fast access.

In these cases, a direct application of coding-theoretic
solutions, that are oblivious to the structure of data that they
encode, is often wasteful. In the example of the lock servers,
to tolerate faults among the queues, a simple coding-
theoretic solution will encode the memory blocks occupied
by the lock servers. Since the lock server is rarely maintained
contiguously in main memory, a structure-oblivious solution

will have to encode all memory blocks that are associated
with the implementation of this lock server in main memory.

This is not space efficient, since there could be a large
number of such blocks in the form of free lists and memory
book keeping information. Also, every small change to the
memory map associated with this lock has to be
communicated to the backup, rendering it expensive in terms
of communication and computation.

In this work, present a technique referred to as fusion which
combines the best of both these worlds to achieve the space
efficiency of coding and the minimal update overhead of
replication. Given a set of data structures, this system
maintain a set of fused backup data structures that can
tolerate f crash faults among the given the data structures.

In replication, the replicas for each data structure are
identical to the given data structure. In fusion, the backup
copies are not identical to the given data structures and
hence, it make a distinction between the given data
structures, referred to as primaries and the backup data
structures, referred to as backups.

Henceforth in this work, assume that it will give a set of
primary data structures among which this system need to
tolerate faults. Replication requires f additional copies of
each primary (f + 1 replicas), resulting in nf backups. Fusion
only requires f additional backups. The fused backups
maintain primary data in the coded form to save space, while
they replicate the index structure of each primary to enable
efficient updates. In Fault Tolerant Stacks show the fused
backup corresponding to two primary array-based stacks X1
and X2.

The backup is implemented as a stack whose nodes contain
the sum of the values of the nodes in the primaries. This

Paper ID: SEP14238 869

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

system replicates the index structure of the primaries (just
the top of stack pointers) at the fused stack. When an element
a3 is pushed on to X1, this element is sent to the fused stack
and the value of the second node (counting from zero) is
updated to a3 + b3. In case of a pop to X2, of say b3, the
second node is updated to a3. These set of data structures can
tolerate one crash fault. For example, if X1 crashes, the
values of its nodes can be computed by subtracting the
values of the nodes in X2 from the appropriate nodes of F1.

This system observes that in large practical systems, the size
of data far exceeds the size of the index structure. Hence
replicating the index structure at the fused backups is of
insignificant size overhead. The savings in space is achieved
by fusing the data nodes.

Crash faults in a synchronous system, such as the one
assumed in our model, can easily be detected using time
outs. Detecting Byzantine faults is more challenging, since
the states of the data structures need to be inspected on every
update to ensure that there are no liars in the system. In this
project, present a solution to tolerate f Byzantine faults
among n primary data structures using just (nf + f) backup
structures as compared to the 2nf backups required by
replication. This work uses a combination of replication and
fusion to ensure minimal overhead during normal operation.

2. Related Work

In [1], proposed that Reliability at massive scale is one of the
biggest challenges we face at Amazon.com, one of the
largest e-commerce operations in the world; even the
slightest outage has significant financial consequences and
impacts customer trust. The Amazon.com platform, which
provides services for many web sites worldwide, is
implemented on top of an infrastructure of tens of thousands
of servers and network components located in many
datacenters around the world.

In [2], proposed that Fusible Data Structures for Fault
Tolerance in this concept of fusible data structures to
maintain fault-tolerant data in distributed programs. Given a
fusible data structure it is possible to combine a set of such
structures into a single fused structure that is smaller than the
combined size of the original structures. When any of the
original data structures is updated, the fused structure can be
updated incrementally using local information about the
update and does not need to be entirely recomputed. In case
of a failure, the fused structure, along with the correct
original data structures, can be used to efficiently reconstruct
the failed structure.

In [3], proposed that Fusible Data Structures for Fault
Tolerance in this concept of fusible data structures to
maintain fault-tolerant data in distributed programs. Given a
fusible data structure it is possible to combine a set of such
structures into a single fused structure that is smaller than the
combined size of the original structures.

3. Proposed Work

The proposed work present a solution, referred to as fusion
that uses to avoid replication. It shows that the solution

achieves savings in space over replication. The fused
backups are space-efficient as compared to replication
(approximately n times), while they cause very little
overhead for updates. In our proposed work, the data loss
and time delay can be reduced when compared to the already
existing services. Computer can carry pit calculation in just
few seconds that would require months or perhaps even
years when carried out by hand. Practically, the proposed
work never makes a mistake of its own accord. This consists
of techniques, such as inspection, whose intent is to
eliminate the circumstances by which faults arise. In the
concept of fusible data structures is to maintain fault-tolerant
data in distributed programs. Given a fusible data structure it
is possible to combine a set of such structures into a single
fused structure that is smaller than the combined size of the
original structures. When any of the original data structures
is updated, the fused structure can be updated incrementally
using local information about the update and does not need
to be entirely recomputed

Merits:
• Avoid Replicas
• Less Backups
• Less Processing Time
• Low Space is enough
• Network Traffic is avoided
• Low cost comparing with existing system
• Router is used for boost up the network speed

4. Methodology

4.1 Fusion-Based Fault Tolerant Data Structures
In the proposed work present fusible data structures for array
and list-based primaries. In this section, we present a generic
design of fused backups for most commonly used data
structures such as lists, stacks, vectors, trees, hash tables,
maps etc.

Figure 1: Fused Backup

Design Motivation: In the proposed work present a design to
fuse primary linked lists to correct one crash fault. The fused
structure is a linked list whose nodes contain the xor of the
primary values.

Each node contains a bit array of size n with each bit
indicating the presence of a primary element in that node. A
primary is element inserted in the correct position at the
backup by iterating through the fused nodes using the bit
array and a similar operation is performed for deletes.

Paper ID: SEP14238 870

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

An example is shown in fig.1with two primaries and one
backup. After the delete of primary elements a1 and b3
(shown in dotted lines), the first and third nodes of the fused
backup are updated to b1 and a3 respectively (deleted
elements in grey scale). After the deletes, while the primaries
each contain only two nodes, the fused backup contains three
nodes. If there are a series of inserts to the head of X1 and to
the tail of X2 following this, the number of nodes in the fused
backup will be very high.

This brings us to the main design motivation of this section:
Can we come up with a generic design for fused backups, for
all types of data structures such that the fused backup
contains only as many nodes as the largest primary (in this
e.g. two nodes), while guaranteeing that updates are
efficient? We present a solution for linked lists and then
generalize it for complex data structures.

4.2 Fused Backups for Linked Lists

We use a combination of replication and erasure codes to
implement fused backups each of which are identical in
structure and differ only in the values of the data nodes. In
our design of the fused backup, we maintain a stack of
nodes, referred to as fused a node that contains the data
elements of the primaries in the coded form. The fused nodes
at the same position across the backups contain the same
primary elements and correspond to the code words of those
elements. The result shows two primary linked lists X1 and
X2 and two fused backups F1 and F2 that can correct two
faults among the primaries. The fused node in the 0th
position at the backups contain the elements a1 and b1 with F1
holding their sum and F2 their difference

Along with the stack, at each fused backup, we also maintain
auxiliary structures that replicate the index information of the
primaries. The auxiliary structure corresponding to primary
Xi at the fused backup is identical in structure to Xi, but
while Xi consists data nodes, the auxiliary structure only
contains pointers to the fused nodes.

In the case of linked list based primaries, the auxiliary
structures are simply linked lists. The savings in space are
achieved because primary nodes are being fused, while
updates are efficient since we maintain the”structure” of each
primary at the backup.

4.3 Fused Backups for Complex Data Structures

The design of fused backup for linked lists can easily be
generalized for all types of data structures. At each primary
along with the primary data structure, we maintain an
auxiliary list that tracks the order of elements at the backup
stack. At each backup, we maintain auxiliary structures for
each primary, which is identical to the corresponding
primary except for the fact that it has pointers to the fused
nodes rather than primary elements. For simplicity, we
explain the design using just one backup. The auxiliary
structure at F1 for X1 is a BBST containing a root and two
children, identical in structure to X1. The algorithms for
inserts and deletes at both primaries and backups remains
identical to linked lists except for the fact that at the primary,
we are inserting into a primary BBST and similarly at the

backup we are inserting into an auxiliary BBST rather than
an auxiliary linked list.

As we maintain auxiliary structures at the backup that are
identical to the primary data structures, it is not necessary
that each container provide the semantics of insert (key,
value) and delete (key). For example, we can also support the
semantics insert (position, value) and delete (position, value)
since the primary data structures and the auxiliary data
structure being identical, support them.

4.4 Fault Detection and Correction

To correct crash faults, we need to obtain all the available
data structures, both primaries and backups. The fused nodes
at the same position at all the fused backups are the code
words for the primary elements belonging to these nodes. To
obtain the missing primary elements belonging to this node,
we decode the code words of these nodes along with the data
values of the available primary elements belonging to this
node. We apply the standard erasure decoding algorithm for
decoding each set of values. To recover the state of the failed
primaries, we obtain F1 and F2 and iterate through their
nodes. The 0th fused node of F1 contains the value a1 + b1,
while the 0th node of F2 contains the value a1 − b1. Using
these, we can obtain the values of a1 and b1. The value of all
the primary nodes can be obtained this way and their order
can be obtained using the index structure at each backup.

To correct Byzantine faults, the only difference is that we
decode the codes for errors rather than erasures. To detect
Byzantine faults, we need to periodically encode the values
of the primaries and compare it to the fused values at the
backup.

If these values do not match, this indicates a Byzantine error.
In general, a code that can correct f erasures can detect f
errors and correct f/2 errors. Hence, the fused backups that
can correct f crash faults can also detect f Byzantine faults
and correct f/2 Byzantine faults.

4.5 File System in Grid

File Systems for Grids Network file systems can
substantially simplify using heterogeneous distributed
storage resources in grid environments. They not only
provide data sharing among multiple sites, but also allow the
user to view multiple, distributed local file systems as a
unified single file system. Below, we will discuss the major
requirements for file systems on grid environments,
including security and scalability.

NFS or NFS based file systems combined with security
mechanisms support secure data sharing in wide area
networks. However, these systems basically consist of only a
single- or a fixed array of file server node(s), which often
become a performance bottlenecks for large datasets;
therefore, NFS-based file systems are typically inappropriate
for grid environments in terms of scalability. Striping
parallel file systems, which exploit the efficiency of using
multiple storage nodes simultaneously, are mainly used in
HPC cluster environments to attain fast I/O performance. All

Paper ID: SEP14238 871

th
ca
H
li
ab
ar
sy
ar

G
in
pr
su
au
re
lo
he
ra
st
to
ar
sc
nu
fi
th
in
pe

4

4
T
pr
a
ne
pr
po
pr
va

E
co
re
th
fo
(p
ba
in
re
of
ef

A
•
•
•
•
•

4
It
pr
w

he files are di
an be placed o

However, the p
mited by th
bundant for lo
rea grid env
ystems do no
re required to

Grid Data farm
ntensive com
rovides data
upports file-
utomatically
equired files o
ocal storage.
euristics beca
ather than tra
torage nodes.
o improve I/O
re used. Mor
cheduling situ
umber of jobs
ile, causing
hereby degra
ntelligent da
erformance pr

.6 Algorithm

.6.1 Insert Fu
This algorithm

rimaries and t
primary Xi, i

ew node con
rimary linked
ointer to this
rimary sends
alue associate

Each fused b
ontains the
eceiving the in
he backup u
ollowing the
pointed to by
ackup inserts
nto the index
eceived. A ref
f elements in
fficient delete

Algorithm
Step 1: initia
Step 2: Inser
Step 3: If rep
Step 4: Get t
Step 5: Store

.6.2 Delete Fu
t shows the
rimaries and

with the key f

ivided into fix
on any storage
performance o
he available
ocal clusters b
ironments. F

ot support suf
operate over

m is file system
mputing on g

sharing on
-location-awar
scheduled to
or file segmen
Such schedu

ause it can
ansferring lar
However, use

O performance
reover, ineffic
uations could
s are being sim
substantial C

ading the ov
ata replicati
roblems.

m Description

used Backups
m is for the in
the backups. W
if the key is n
ntaining this

d list (denoted
node at the e
the key, the n

ed with the key

ackup mainta
primary elem
nsert from Xi,

updates the c
one contain

y tos[i]). To
 a pointer to

x structure (in
ference count
n the fused

es.

alize the linked
rt the backup i
plicas contains
top of the stac
ed into linked

used Backups
algorithms f
the backups.

from the prim

Internatio

V

Licens

xed-size chun
e node.
of such file sy
network ban

but often woul
urthermore, m

fficient securit
multiple admi

m architecture
grid environm
n grid enviro
re job sche

execute on
nts are alread
uling can be
exploit local

rge data betw
ers need to ma
e when heter
cient file acc
d easily arise
multaneously
CPU and I/O
verall system
ion techniqu

s
nsert of a ke
When the clien
not already p
key value,

primaryLinke
end of the aux
new value to b
y to all the fus

ains a stack
ments in the
, if the key is
code value o
ns the top-m
maintain ord
the newly u

ndexList[i]) fo
t (refCount) tr

node is ma

d list and Stac
into linked list
s, insert replic
k data
list element

s
for the delete
 Xi deletes t

mary and obta

onal Journa
ISSN

Impac

Volume 3 I

sed Under Cre

nks, and each

ystems can of
ndwidth, whi
ld be poor for
most of thes
ty mechanism
inistrative dom

 for peta-scale
ments. It not
onments, but
eduling—Job
nodes where

dy available in
often an ef

l I/O perform
ween comput
anually manag
rogeneous reso
esses and co
e, such as a
accessing the

O contention
m throughput
ue tackles

ey-value pair
nt sends an in
resent, Xi cre
inserts it int

edList) and in
x list (auxList
be added and t
sed backups.

(data Stack
e coded form
not already pr

of the fused
ost element

der informatio
updated fused
or Xi with th
racking the n

aintained to

ck
t
ca data into sta

e of a key
the node asso
ains its value

al of Scienc
N (Online): 23
ct Factor (201

Issue 9, Sep
www.ijsr.n

eative Commo

chunk

ften be
ich is

r wide-
se file

ms that
mains.

e data-
t only
t also
s are
e their
n their
fficient
mance,
te and
ge data
ources

ompute
large

e same
ns and
. Our

these

at the
nsert to
eates a
to the

nserts a
t). The
the old

k) that
m. On
resent,

node
of Xi

on, the
node,

he key
number
enable

ack

at the
ociated
which

nee
the
poin
the
requ
bac
fina
poin
elem

Alg
• S
• S
• S
• S
• S

5.

Our
incl
Fram
aga
curr
thre
tim

In t
spa
cau
che

The
such
fusi
enc
sup
stru
to t
and

We
stac
stac
add
mai
ope

Pus

ce and Rese
19-7064

12): 3.358

ptember 20
net
ons Attribution

ds to be sent
key k, the pr

nted by the ta
top-most elem

uired for the s
kup. After se

al node of th
nting to the de
ment at the ba

gorithm:
Step 1: Gather
Step 2: Move T
Step 3: Store L
Step 4: Clear S
Step 5: Set Sta

Experimen

r proposed w
ludes all data
mework. Fur

ainst replicatio
rent version o
ee counts: Bac
e taken for rec

terms of comp
ce as confirm

using too mu
aper in replica

F

e actual node
h cases instea
ion of those n
apsulate som
port differen

ucture maintai
the element in
d the usual pus

 assume that
ck consists of
cks. We keep
ditional O(k) a
intenance pr
erations satisfy

sh Operation
function
xi.array[

earch (IJSR

014

n CC BY

 to the backu
rimary also s
ail node of th
ment of Xi at
shift operation
ending these

he aux list to
eleted element
ackup.

Top of the St
TOS into linke
Linked list elem
Stack Element
ack is empty, N

ntal Results

work fusion-ba
a structures p
rther we hav
on and the

of fusion outpe
ckups space, u
covery.

parison with r
med by the
uch update o
ation.

Figure 2: Arra

s could be co
ad of bitwise x
nodes. We now

me additional
nt operations.
ins an array o
n the array rep
sh and pop op

t all stacks a
f the fusion o
all the stack

additional stor
roperty. The
y the efficient

n xi:push(newI
[xi.tos] := new

R)

ups. Along wi
sends the valu
he aux list. Th

the backup s
n that will be
values, the p
the position

t, to mimic th

tack
ed list
ment
ts
Null is TOS

s

ased data stru
provided by t
ve evaluated
older version
erforms the ol
update time a

replication, we
theoretical r

overhead. Re

ay Based Stack

omplex fusib
xoring, we me
w consider da

data beside
The array b

of data, an ind
presenting the
erations.

are initially e
of the arrays
pointers at y i

rage is require
 following
maintenance

Item)
wItem;

ith this value
ue of the elem
his correspond
stack and is he
e performed at
primary shifts

of the aux n
e shift of the f

ucture library
the Visual Stu
our performa

n of fusion.
lder version on
t the backups

e save O(n) ti
results while
ecovery is m

ks

le objects an
ean computing
ata structures

es the array
based stack
dex TOS poin
e top of the s

empty. The fu
from the so

individually.
ed for the effic

push and
property.

and
ment
ds to
ence
t the
s the
node
final

that
udio
ance
The
n all
 and

imes
not

much

nd in
g the
that
and
data

nting
stack

fused
urce
This
cient
pop

Paper ID: SEP14238 872

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

xi.tos++;
y.push(i,newItem);
end function
function y:push(i; newItem)
y.array[y.tos[i]] := y.array[y.tos[i]] - newItem;
y.tos[i]++;
end function

Pop Operation
function xi:pop()
x.tos[i] --;
y.pop(i, xi.array[xi.tos]);
return xi.array[xi.tos]
function y:pop(i; oldItem)
y.tos[i] --;
y.array[y.tos[i]] := y.array[y.tos[i]] - oldItem;
end function

When an element is pushed onto one of the source stacks, xi,
the source stack is updated as usual and the request is
forwarded to the fused stack. The fused stack does not
require any additional information from xi, i.e., the push
operation is independent. During a pop operation, we xor the
corresponding value in y with the value that would be
returned by xi:pop(). The number of elements, ny, in the array
corresponding to the fused stack is the maximum of
n1………. nk which is less than N. Therefore, the space
constraint is satisfied.

Recover Operation

function y:recover(failedProcess)
/*Assuming that all source stacks have the same size*/
recoveredArray := new Array[y.array.size];
for j = 0 to tos[failedProcess] ¡ 1
recItem := y[j];
foreach process p != failedP rocess
if (j < tos[p]) recItem := recItem - xp.array[j];
recoveredArray[j] := recItem;
return recoveredArray, tos[failedProcess]

From the algorithm, it is obvious that any stack xfailedProc can
be recovered by simply xoring the corresponding elements of
the other original stacks with the fused stack.

5.1 Performance Comparison With The Existing System

Figure 3 : Performance Comparisons with the Existing

System

To correct f crash faults among n primaries, fusion requires f
backup data structures as compared to the nf backup data

structures required by replication. For Byzantine faults,
fusion requires nf + f backups as compared to the 2nf
backups required by replication.For crash faults, the total
space occupied by the fused backups in msf as compared to
nmsf for replication (nf backups of size ms each). For
Byzantine faults, since we maintain f copies of each primary
along with f fused backups, the space complexity for fusion
is nfms + msf as compared to 2nmsf for replication.

5.2 Performance of Fused Backups

Figure 4: Performances of Fused Backups

This refers to the number of messages that need to be
exchanged once a fault has been detected. When t crash
faults are detected, in fusion, the client needs to acquire the
state of all the remaining data structures. This requires n−t
messages of size O(ms) each. In replication the client only
needs to acquire the state of the failed copies requiring only t
messages of size O(ms) each. For Byzantine faults, in fusion,
the state of all n + nf + f data structures (primaries and
backups) needs to be acquired. This requires nf + f messages
of size O(ms) each. In replication, only the state of any 2t + 1
copies of the faulty primary are needed, requiring just 2t + 1
messages of size O(ms) each.

5.3 Time Complexity of Fused Backups

Figure 5: Time Complexity of Fused Backups

It defines the number of backups move from the different
servers to the client also analysis the faulted and corrected

0
20
40
60
80

100
120

n Fused
Backups

with State
Machines

n Fused
Backups
with Data
Structures

No. of Data Files

Backup Needed

Paper ID: SEP14238 873

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

backup’s performance. The chart defines different backups
and corrected data transfer to the client machine.

6. Conclusion and Future Work

A fusion-based technique for fault tolerance was that savings
in space as compared to replication with almost no overhead
during normal operation. This System provide a generic
design of fused backups and their implementation for all the
data structures in the Visual Studio framework that includes
vectors, stacks, maps, trees, and most other commonly used
data structures. This System compare the main features of
work with replication, both theoretically and experimentally.
This work confirms that fusion is extremely space efficient
while replication is efficient in terms of recovery, load on the
backups and the size of the messages that need to be sent to
the backups. In our future, we investigate the other data
structure concepts like Queue, and Tree methods to
implement the current system. Also increase the system
performance when we transfer the bulk data from the server
to client. Utilize the Main memory to recover the faulted
data.

References

[1] Bharath Balasubramanian and Vijay K. Garg. Fused data

structure library (implemented in java 1.6). In Parallel
and Distributed Systems Laboratory,
http://maple.ece.utexas.edu, 2010.

[2] Bharath Balasubramanian and Vijay K. Garg. Fused data
structures for handling multiple faults in distributed
systems. In Proceedings of the 2011 31st International
Conference on Distributed Computing Systems, ICDCS
’11, pages 677–688, Washington, DC, USA, 2011. IEEE
Computer Society.

[3] Bharath Balasubramanian and Vijay K. Garg. Fused
state machines for fault tolerance in distributed systems.
In Principles of Distributed Systems - 15th International
Conference, OPODIS 2011, Toulouse, France,
December 13-16, 2011. Proceedings, volume 7109 of
Lecture Notes in Computer Science, pages 266–282.
Springer, 2011.

[4] Melliar-Smith P. M.,. Moser L. E, and Agrawala.v.
Broadcast protocols for distributed systems. IEEE Trans.
Parallel Distrib. Syst., 1(1):17–25, January 1990.

[5] Ousterhout J.K., Agrawal. P., Erickson . D., Kozyrakis.
C, Leverich .J, Mazie`res. D, Mitra. S, Narayanan A.,
Rosenblum M., Rumble. S.M., Stratmann. E., and
Stutsman. R., “The Case for RAMClouds: Scalable
High-Performance Storage Entirely in Dram,” ACM
SIGOPS Operating Systems Rev., vol. 43, pp. 92-105,
2009.

[6] Patterson. D.A., Gibson. G., and Katz. R.H., “A Case for
Redundant Arrays of Inexpensive Disks (RAID),” Proc.
ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’88), pp. 109-116, 1988.

[7] Peterson. W.W and Weldon E.J., Error-Correcting
Codes - Revised, second ed. The MIT Press, Mar. 1972.

[8] Plank. J.S., “A Tutorial on Reed-Solomon Coding for
Fault- Tolerance in RAID-Like Systems,” Software -
Practice and Experience, vol. 27, no. 9, pp. 995-1012,
Sept. 1997.

[9] Plank J.S., Simmerman. S., and Schuman. C.D.,
“Jerasure: A Library in C/C++ Facilitating Erasure
Coding for Storage Applications - Version 1.2,”
Technical Report CS-08-627, Univ. of Tennessee, Aug.
2008.

[10] Plank and Xu. L., “Optimizing Cauchy Reed-Solomon
Codes for Fault-Tolerant Network Storage
Applications,” Proc. IEEE Fifth Int’l Symp. Network
Computing and Applications, pp. 173-180, 2006.

[11] Rabin M.O., “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance,” J.
ACM, vol. 36, no. 2, pp. 335-348, 1989.

[12] Reed I.S. and G. Solomon, “Polynomial Codes over
Certain Finite Fields,” J. Soc. for Industrial and Applied
Math., vol. 8, no. 2, pp. 300-304, 1960.

[13] Schneider. F.B., “Byzantine Generals in Action:
Implementing Fail- Stop Processors,” ACM Trans.
Computer Systems, vol. 2, no. 2, pp. 145-154, 1984.

[14] Schneider. F.B., “Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial,” ACM
Computing Surveys, vol. 22, no. 4, pp. 299-319, 1990.

[15] Shannon. C.E., “A Mathematical Theory of
Communication,” Bell Systems Technical J., vol. 27, pp.
379-423 and 623-656, 1948.

[16] Vijay K. Garg. Implementing fault-tolerant services
using state machines:Beyond replication. In DISC,
pages 450–464, 2010.

Paper ID: SEP14238 874

