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Abstract: In this paper, analyses on the nuclear potential for heavy ion systems, namely 48Ti, 54Cr,and 64Ni + 208Pb systems, have been 
performed through large-angle quasi-elastic scattering at sub-barrier energies. At energies around the Coulomb barrier height, it has 
been well known that the effect of channel couplings, that is the coupling between the relative motion of the colliding nuclei and their 
intrinsic motions as well as transfer processes, plays an important role. Therefore, a coupled-channels procedure must be applied to take 
account of this effect. A modified version of a computer code ccfull has been employed in order to perform these complex calculations. 
The nuclear potential is assumed to have a Woods-Saxon form, which is characterized by the surface diffuseness parameter, the 
potential depth, and the radius parameter. In order to find the best fitted value of the diffuseness parameter in comparison with the 
experimental data, the chi square method χ2 is used. The best fitted value of the diffuseness parameter for studying systems obtained 
through a coupled-channel calculation with inert Target and vibrational Projectile. The calculated ratio of the quasi-elastic to the 
Rutherford cross sections for 48Ti, 54Cr and 64Ni + 208Pb systems give a good agreement using a = 0.44 fm, 0.67 fm and a= 0.67 fm, 
respectively. 
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1. Introduction 
 
The knowledge of the potential between two colliding nuclei 
is of fundamental importance in order to describe nucleus-
nucleus collisions. The nucleus-nucleus potential is the sum 
of a short range attractive nuclear potential VN(r) and a long 
range repulsive Coulomb potential VC(r). The Coulomb 
potential is well understood. This has been demonstrated by 
the accurate description of the Coulomb or Rutherford 
scattering, the scattering where only the long range Coulomb 
potential acts.  
 
The nuclear potential can be studied through fusion or quasi-
elastic scattering experimental data. Quasi-elastic scattering 
is the sum of elastic scattering, inelastic scattering and 
transfer reaction. Thus, quasi-elastic scattering and fusion are 
complementary to each other due to flux conservation. At 
zero impact parameter (i.e. head-on collision), quasi-elastic 
scattering is related to the reflection probability by the 
potential barrier, while fusion is related to the penetration 
probability [1,2]. The diffuseness parameter determines the 
characteristic at the surface region of the nuclear potential. 
Nuclear potential of the Woods-Saxon form, which is 
described by the potential depth V0, the radius parameter ��, 
and the diffuseness parameter a, is widely used in the 
analyses of nuclear collisions.  
 
In this study, we assume that the nuclear potential has a 
Woods-Saxon form. A diffuseness parameter of around 0.63 
fm is widely accepted [3]. This has been supported by recent 
studies such as by Gasques et al. [4] and Evers et al. [5], 
where both studies performed analyses on the diffuseness 

parameter using the experimental data of large-angle quasi-
elastic scattering. However, relatively higher diffuseness 
parameters are required in order to fit fusion data, as shown 
by Newton et al. [6] for example. The cause of the 
discrepancy is still not well understood. The aim of the 
present work is to analysis diffuseness parameters of 
Woods–Saxon potential for heavy-ion systems through large-
angle quasi-elastic scattering at sub-barrier. The chi square 
method �� is used to find the best fitted value of the 
diffuseness parameter in comparison with the experimental 
data. 
 
2. Theory 
 
2.1 The Nucleus-Nucleus Potential 
 
The nucleus-nucleus potential, which is the sum of a short 
range attractive nuclear potential �� and a long range 
repulsive Coulomb potential �� . The Coulomb potential 
between two spherical nuclei with uniform charge density 
distributions and when they do not overlap is given by [7]  

��(�) =
������

�
                               (1) 

where ��,��  , r, and eare the atomic number of the 
projectile ,the atomic number of the target, the distance 
between the centers of the colliding nuclei, and the 
elementary charge (Gaussian units),respectively. When the 
nuclei overlap, the Coulomb potential is given by [7]  

V�(r) =
������

���
�3 − � �

��
�
�
� ,                     (2)  
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where�� is the radius of the equivalent sphere of the target 
and projectile. For the nuclear potential, the Woods-Saxon 
form is widely used, and is given by [8] 

��(�) = − ��
������(����)� �

,               (3) 

whereV� is the potential depth, a is the surface diffuseness 

parameter, and R� = r��A�
�/� + A�

�/��, where r� is the 
radius parameter, while A� and A�are the mass numbers of 
the target and the projectile, respectively.  
 
2.2 Coupled-Channels Equation with Full Angular 
Momentum 
 
Let us consider a collision between two nuclei in the 
presence of the coupling between the relative motion of the 
center of mass of the colliding nuclei, �� = (�, ȓ) and the 
nuclear intrinsic motion ξ. We can say that Hamiltonian for 
the system is 

�(��, �) = − ћ�

��
∇� + �(�) + ��(�) + �����(��, �), (4) 

whereμ is the reduced mass of the system, V (r) is the bare 
potential in the absence of the coupling which consists of the 
nuclear and Coulomb parts ��(�) = ��(�) +
��(�)�,��(�)is the Hamiltonian for the intrinsic motion, and 
����� is the mentioned coupling. The Schrödinger equation 
for the total wave function then becomes 

�− ћ�

��
∇� + �(�) + ��(�) + �����(��, �)����, ��������� =

 ��(�,��� �). (5) 
The internal degree of freedom ξ basically has a finite spin. 
We can write the coupling Hamiltonian in multipoles as 

�����(�,��� �) = ∑  �����,� (�)���(�̑).���(�), (6) 
where ���(ȓ)is the spherical harmonics and ���(�) is the 
spherical tensors built from the internal coordinate. The dot 
means a scalar product. The sum is taken over all values of λ 
except for λ = 0 since it is already considered in V (r). The 
expansion basis for the wave function in Eq. (5) for a fixed 
total angular momentum J and its z-component M is defined 
as 

����|(���)��� = ∑ �������|�����,�� ����(ȓ)�����(�),(7) 
where l and I are the orbital and the internal angular 
momenta, respectively. 
�����(�) is the wave function for the internal motion 
which fulfills. 

��(�)�����(�) = �������(�).                (8) 
The total wave function Ψ(��, �) is expanded with this basis 
as 

Ψ(��, �) = ∑ ����
� (�)
��,�,� �� ����|(���)���       (9) 

 
The Schrödinger equation [Eq. (2)] can then be written as a 
set of coupled equations for����

� (�) 

�−
ћ�

2�
��

���
+ �(�) +

�(� + 1)ћ�

2���
− � + ��� ����

� (�) 

 +∑ �
���;�ʹ,�ʹ ,�ʹ
�

�ʹ,�ʹ,�ʹ (�)�
�ʹ,�ʹ ,�ʹ
� (�) = 0,(10)  

where the coupling matrix elements �
���;�ʹ ,�ʹ ,�ʹ
� are given 

as 

����;�ʹ,�ʹ,�ʹ
� (�) = ���(���)������(��, �)�(�ʹ, �ʹ, �ʹ)��� =

∑ (−1)���ʹ��ʹ����� (�)〈�‖��‖�ʹ〉〈��‖��‖�ʹ�ʹ〉 ×
�(2� + 1)(2� + 1) ��ʹ �ʹ �

� � ��. (11) 

The reduced matrix elements in Eq. (8) are defined by 
 

���ı������ʹ�ıʹ � = ��ʹ�ıʹ��|��ı�           .(12)‘ 

Since ����;�ʹ,�ʹ,�ʹ
� (�) are independent of the index M, the 

index has been suppressed as seen in Eq. (11). Equation (10) 
is called coupled-channels equations. For heavy-ion fusion 
reactions, these equations are usually solved using the 
incoming wave boundary conditions 

����
� (�) ~ ����

� exp �−� � ������ʹ �
�
����

��ʹ � , � ≤ ���� (13) 

→
�
�
���

(�)(����)��,����,����,�� +

�
����
���

���
���

(�)(����)� , � → ∞(14) 

Where ��� = �2�(� − ���) ћ�⁄ , ���� = �2�� ћ�⁄  and the 
local wave number ���� is defined as  

����(�) = ���
ћ�
�� − ��� −

�(���)ћ�

����
− �(�) − ����;���

� (�)� .(15) 

Once we get the transmission coefficients ����
� , the 

penetrability through the Coulomb barrier is given by 
�����(�) = ∑ ����(����)

�
�����

� �
�

,�,�,� (16) 

where� = ����� is the wave number for the entrance 
channel. The fusion cross section for unpolarized target is 
given by 

����(�) =
�
��
∑ ����

�����
���� �����

� (�). (17) 

The initial angular momentum ��is J when the initial intrinsic 
spin ��is zero.With the indexes �� and �� are suppressed in 
the penetrability, Eq. (17) then reads 

����(�) =
�
��
∑ (2� + 1)� ��(�), (18) 

��(�)is the penetrability is now affected by the channel 
couplings. 

Contrary to the calculation of fusion cross sections, 
the calculation of quasi elastic cross sections often requires a 
large value of angular momentum in order to obtain 
converged results. The potential pocket at � = ���� 
becomes shallow or even disappears for such large angular 
momentum. Hence, the incoming flux in Eq. (13) cannot be 
properly identified. Therefore, the quasi-elastic problem 
usually employs the regular boundary conditions at the origin 
rather than using the incoming wave boundary conditions. 
When using the regular boundary conditions, a complex 
potential, ��(�) =  ���(�) + ��(�), is required to simulate 
the fusion reaction. Once the nuclear S-matrix in Eq. (11) is 
obtained, the scattering amplitude can then be calculated as 

���
�(�,�) =

� ∑ �
�

������ ���������(�)���(�����)��2� + 1 ���(�)����
� −

 ��,����,��� + ��(�,�)��������  ,(19) 
where ��the Coulomb phase is shift and �� is the Coulomb 
scattering amplitude. The phase shift is given by 

�� = ���Γ(� + 1 + ��),                (20) 
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where� = ������ ћ�⁄  is the Sommerfeld parameter, while 
the scattering amplitude is given by 

��(�,�) = �
������(� �⁄ )

����−�� ln�����(� 2⁄ )� +
2���(�)�.(21) 

Using Eq. (16), the differential cross section is evaluated as 
�����(�)

��
= ∑ ���

�
����

�(�,�)�
�

��� , (22)  
and from Eq. (18), the Rutherford cross section is given by 

���(�,�)
��

= |��(�,�)|� = ��

���
����(� 2⁄ )(23) 

 
3. Results 
 
The coupled channeled calculations were performed using a 
modified version of the computer code ccfull [9]. The chi 
square method �� is used to find the best fitted value of the 
diffuseness parameter in comparison with the experimental 
data. The experimental data are taken from ref. [10].The data 
with dσqel/dσR>1 are excluded from the fitting procedures, 
but included in the figures for completeness. This is because 
theoretically, it is clear that dσqel/dσRcannot be larger than 
unity. 
 
In our calculations, the nuclear potential has a real and an 
imaginary component. Both components are assumed to have 
Woods-Saxon forms. The purpose of the imaginary 
component is to simulate the compound nucleus formation. 
We use an imaginary potential with a potential depth of 30 
MeV, a radius parameter of 1.0 fm, and a diffuseness 
parameter of 0.3 fm. The calculations are insensitive to the 
imaginary parameters provided that the imaginary potential 
is confined inside the Coulomb barrier. For the real part of 
the nuclear potential, the radius parameter r0 is taken to be 
1.22 fm. The value of potential depth V0 depends on the 
diffuseness parameter such that the Coulomb barrier height 
VBfor each system is reproduced. The calculations are carried 
out at scattering angle of θc.m.= 170◦. The radii of the target 
and projectile are taken as �� = rTA1/3 T andRP= rPA1/3, 
respectively, where rTand rPare taken to be 1.2 fm in order to 
be consistent with the deformation parameters taken from 
ref.[11] and[12]. In order to ensure that the calculations are 
properly scaled according to the available experimental data, 
the calculated ratio of the quasi-elastic to the Rutherford 
cross sections are analyzed and plotted as functions of 
effective energies [1, 13]. We carry out a study on the 
nuclear potential, particularly on the surface diffuseness 
parameter, for 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn +208Pb systems 
through large angle quasi-elastic scattering at sub-barrier 
energies.  
 
A. ���� + �����  system  
 
In this system, we consider inert and vibrational coupling to 
the state 2+ (0.983 MeV) for the projectile 48Ti nucleus with 
β=0.269 [14].The target 208Pb nucleus is considered to be 
inert and vibrational coupling with β=0.11 to the state 3- 
(2.614 MeV). We use single-quadrupole and third-octupole 
phonon excitation in the projectile and target nucleus, 
respectively. 
 
 Channel couplings start to play an important role at energies 
above the sub-barrier region and therefore should be taken 
into account in our analyses here. Fig. 1 (a) shows the 

calculated ratio of the quasi-elastic to the Rutherford cross 
sections for a = 0.43 fm (as the solid line) using a coupled-
channel calculation at sub-barrier energies, where in this 
system, we are considered the projectile as inert with 
vibrational coupling for target nucleus. The best fitted 
diffuseness parameter is 0.43 fm, with �� = 1.75 and the 
potential depth V0 = 230.5 MeV. The best fitted diffuseness 
parameter is less than the standard value of around 0.63 fm.  
 
The single phonon state of the quadrupole excitations into 
account, the best fitted diffuseness parameter obtained 
through a coupled-channels calculation is 0.44 fm. This is 
shown by the solid line in Fig. 2 (b). The χ2 value in 
comparison with the experimental data is 1.6, and the 
required potential depth V0 is 233.5 MeV. The deduced 
diffuseness parameter is considerably lower than the 
standard value (0.63 fm). However, from the resulting χ2 
values, the best fitted diffuseness parameter obtained using a 
coupled-channels calculation (Projectile is vibrational 
channel and Target is an inert) fits the experimental data 
better than the one obtained through a coupled-channel 
calculation, where the target is vibrational channels and the 
Projectile is inert. Coupled–channels calculations using 
a=0.45 and 0.44 fm, respectively, are shown for comparison. 
 

 
Figure 1: The ratio of the quasi-elastic to the Rutherford 
cross sections for Ti�� + Pb���  system at sub-barrier 
energies. The analyses in the upper panel (a) are performed 
using coupled-channel with inert Projectile and vibrational 
channels, and the analyses in the lower panel (b) are 
performed using coupled-channels calculations with inert 
Target and vibrational Projectile channels. The experimental 
data are taken from Ref. [10]. The single-channel and 
coupled–channels calculations using a=0.45 and 0.46 fm, 
respectively, are shown for comparison.  
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B. ���� + �����  system 
 
In this system, we consider inert and vibrational coupling to 
the state 2+ (0.834 MeV) for the projectile 48Ti nucleus with 
β=0.250 [14]. The target 208Pb nucleus is considered to be 
inert and vibrational coupling with β=0.11 to the state 3- 
(2.614 MeV). We use double-quadrupole phonon excitation 
in the projectile nucleus. 
 
For 54Cr + 208Pb system, the best fitted diffuseness parameter 
obtained using a coupled-channel calculation with inert 
Projectile (P) is 0.63 fm, with χ2 = 4.46 and �� = 91.7 MeV. 
The best fitted diffuseness parameter is in agreement with 
the standard value. The calculated ratio of the quasi-elastic to 
the Rutherford cross sections for using a coupled-channel 
calculation with inert P is shown by the solid line in Fig. 1 
(a). 
 
When a coupled-channel calculation with inert T and 
vibrational P is used, the best fitted diffuseness parameter is 
0.67 fm, with χ2 = 1.89 and V0 = 91.7 MeV. The best fitted 
diffuseness parameter, which is shown by the solid line in 
Fig. 4.2(b), is higher than the standard value. Furthermore, 
the resulting χ2 values show that the best fitted diffuseness 
parameter obtained through a coupled-channels calculation 
with vibrational P and inert T fits the experimental data 
better than the one obtained through a coupled-channel 
calculation with inert T and vibrational T. The coupled-
channels calculations using a=o.65 and 0.7 fm are shown in 
Fig. 2 (a and b) for comparison. 
 

 
Figure 1: The ratio of the quasi-elastic to the Rutherford 

cross sections for Cr�� + Pb���  system at sub-barrier 
energies. The analyses in the upper panel (a) are performed 
using coupled-channel with inert P and vibrational T. And 

the analyses in the lower panel (b) are performed using 
coupled-channels calculations with inert T and vibrational P 
channels. The experimental data are taken from Ref. [10]. 
Coupled–channels calculations using a=0.65 and 0. 70 fm, 

respectively, are shown for comparison. 
 
C. 64Ni + 208Pb system 
 In this system, we consider inert and vibrational coupling to 
the state 2+ (0.846 MeV) for the projectile 64Ni nucleus with 
β=0.239 [14]. The target 208Pb nucleus is considered to be 
inert and vibrational coupling with β=0.11 to the state 3- 
(2.614 MeV). We use triple-quadrupole phonon excitation in 
the projectile nucleus. 
 
 For 64Ni + 208Pb system, the best fitted diffuseness parameter 
obtained using a coupled-channel calculation with inert 
Projectile (P) is 0.63 fm, with χ2 = 6.33 and V0 = 74.9 MeV. 
The best fitted diffuseness parameter is in agreement with 
the standard value. The calculated ratio of the quasi-elastic to 
the Rutherford cross sections for a = 0.63 fm using a 
coupled-channel calculation with inert P and vibrational T is 
shown by the solid line in Fig. 3 (a). 
 
When a coupled-channel calculation with vibrational P and 
T, the best fitted diffuseness parameter is 0.67 fm, with χ2 = 
3.9 and V0 = 89.05 MeV. The best fitted diffuseness 
parameter, which is shown by the solid line in Fig. 4.3(b), is 
higher than the standard value. Furthermore, the resulting χ2 
values show that the best fitted diffuseness parameter 
obtained through a coupled-channels calculation fits the 
experimental data better than the one obtained through a 
coupled-channel calculation with inert P and vibrational T. 
The calculations using a=0.63 and 0.6 fm, are shown in Fig. 
3 (a and b) for comparison. Also, a coupled-channel 
calculation inert T, the best fitted diffuseness parameter is 
0.7 fm, with χ2 = 6.33 and V0 = 89.05 MeV. 
 

 
Figure 1: The ratio of the quasi-elastic to the Rutherford 
cross sections for Ni�� + Pb���  system at sub-barrier 
energies. The analyses in the upper panel (a) are performed 
using coupled-channel with inert Projectile and vibrational 
channels. And the analyses in the lower panel (b) are 
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performed using coupled-channels calculations with inert 
Target and vibrational Projectile channels. The experimental 
data are taken from Ref. [10] Coupled–channels calculations 
using a=0.63 and 0.60 fm, respectively, are shown for 
comparison. 
 
4. Conclusions 
 
The nuclear potentials for some heavy-ion reactions have 
been studied through large-angle quasi-elastic scattering at 
sub-barrier energies of the 48Ti, 54Cr, and 56Fe+ 208Pb 
systems. We have found that large-angle quasi-elastic 
scattering is a suitable method to study the diffuseness 
parameters of the nuclear potential.  
 
The best fitted diffuseness parameters for 48Ti+ 208Pb 
systems are significantly low compared to the standard value 
of 0.63 fm. But the best fitted diffuseness parameters for 
54Cr+ 208Pb systems are higher compared to the standard 
value of 0.63 fm. The calculated ratio of the quasi-elastic to 
the Rutherford cross sections for 48Ti and 54Cr + 208Pb 
systems give a good agreement using a = 0.44 fm and a= 
0.67 fm, respectively. 
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