
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Likelihood Based Estimation of the Parameters of a 
Log-Linear Nonhomogeneous Poisson Process 

 
Kariuki Veronica1, Luke Akong’o Orawo2, Ali Salim Islam3 

 
1, 2, 3Egerton University, Mathematics (Statistics), P.O. BOX 536- Egerton, Kenya 

 
Abstract: Non-homogeneous Poisson process (NHPP) has widely been used over decades to model random processes that are time 
dependent (e.g. occurrences of serious road accidents). After the times of occurrence of a particular event have been observed, the 
problem of estimating the intensity function arises. In this paper, we consider maximum likelihood estimation of the parameters of a 
NHPP with log-linear intensity function. The maximum likelihood estimates of the unknown parameters of the intensity function are 
obtained numerically and the confidence intervals and regions are constructed from the respective graphs of the maximized and joint 
relative likelihood functions. We present simulation results which demonstrate the good performance of our confidence intervals and 
regions as compared to those based on large sample approaches. The large sample confidence intervals may be inaccurate in the sense 
that they exclude plausible parameter values and include values that are very implausible. Our approach is optimal for small sample 
inferences on the parameters of a log-linear NHPP. 
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1. Introduction 
 
Many random processes that arise naturally in daily life 
situations (e.g. number of patients arriving at a kidney-
transplant centre) can be identified as Poisson processes 
[1]. The processes that are time dependent are often 
modelled as NHPP as illustrated by [2] and [3]. These 
processes have widely been used in various applied fields 
such as genomics, biology, imaging, meteorology, 
seismology, transport, communication among others [4]. A 
good example in meteorology was used to model the 
cyclone arrival times in the arctic sea using NHPP with 
intensity function having cyclic behaviour by [5]. The 
intensity function and hence the mean value function of a 
NHPP is usually assumed to be positive and continuous 
[6]. This function is parameterized in different forms of 
which the power law and log-linear forms are the most 
popular. In this paper, we consider a NHPP with log-linear 
intensity function which was first introduced by [7]. A 
NHPP �N�t�; t > 0� is said to be log-linear if its intensity 
function is of the form:  
 

( ) tt eα βλ +=
                                  (1)  

 
whereα  and β  are the unknown parameters. The log-
linear NHPP has been used mostly to model systems in 
transport and telecommunication [8]. The fundamental 
problem that has attracted a lot of attention over decades in 
modelling systems using log-linear NHPP is estimation of 
the intensity function. This estimation is believed to aid in 
determination of whether the rate of occurrence of events 
increases or decreases with time. Over the years, various 
researchers have derived point estimates for this model, 
particularly, the ML estimates derived by [8] and also 
interval estimates based on large sample approximation 
were constructed. In large sample approach of constructing 
interval estimates, the sampling distribution of the 
estimators (usually the ML estimators) is assumed to be 
asymptotically normal. However, for small sample sizes, 
interval estimates based on this approach may be 
inaccurate and may include values that are very 

implausible and may also exclude those that are plausible 
[9]. Interval estimation is considered as a measure of 
accuracy to point estimators as one can attach a degree of 
confidence that the true parameter value lies within a given 
interval. The use of RLF to obtain interval estimates is one 
of the best approaches to interval estimation as discussed 
by [9]. The RLF approach is known to yield better interval 
estimates than the large sample approximation approach, 
leading to better inference for the case of small sample 
sizes. Therefore, an attempt has been made in this paper to 
obtain the maximum likelihood estimates and to construct 
approximate confidence intervals and regions using the 
relative likelihood function approach.  
 
The rest of the paper is organized as follows. We describe 
the maximum likelihood estimation for the parameters of 
the log-linear NHPP in section 2. In section 3, we give the 
simulation results. Section 4 contains the discussion of the 
results.  
 
2. Parametric Estimation 
 
2.1 Maximum Likelihood Method 
 
Suppose that a NHPP with intensity function ( )tλ given 

in equation 1 is observed over a fixed interval ( )T,0 . Let 
n  denotes the total number of events occurring during this 
time interval. If these events occur at the epochs

1 20 ... nt t t T< < < < ≤ , then the likelihood function is 
given by; 
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Therefore, the log-likelihood function, obtained by taking 
the natural logarithm of the likelihood function, will be 
given by; 
 

( ) ( )
1

1
, log( )
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i
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e e
l L n t

α β

αβ α β
β=

−
= = + −∑                    (3)  

 
The maximum likelihood estimators α̂  and β̂  are the 

respective values of α  and β  that maximize ( )βα ,l . 
By partially differentiating (3) with respect to α and β  
we obtain the score functions which when equated to zero 
yields the following system of equations: 
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Equations (4) and (5) are solved simultaneously to obtain 
the maximum likelihood estimators for α and β . Since 
explicit solution for equation (5) does not exist, it may be 
solved numerically using the Newton Raphson method. 
 
2.2 Likelihood Confidence Region for α  and β  
 
One of the main objectives of this paper was to construct 
approximate confidence region for the parameters of the 
intensity function given in (1). This is achieved by using 
the joint relative likelihood function of α and β . The 
joint relative likelihood function (RLF) of α and β  

denoted by ( ),R α β , is defined as the ratio of the 

likelihood function ( ),L α β  to its maximum value    

( )ˆˆ,L α β [9]. This is given by; 
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The 100 %p likelihood region is the set of all parameter 

values ( ),α β  such that ( ),R pα β ≥  and the closed 

curve ( ),R pα β =  which forms the boundary of this 

region is the 100 %p  likelihood contour. The 100 %p  

likelihood region for α and β  is an approximate 
100(1 )%p−  confidence region. 
 
2.3 Likelihood Confidence Intervals  
 
The significance of interval estimates is to confirm the 
accuracy of the point estimates. We approximate separate 
confidence intervals of α and β  were obtained using 

their maximized relative likelihood functions ( )maxR α  

and ( )maxR β  respectively. The maximized likelihood 

function of α ( )maxR α  is obtained by maximizing 

( ),R α β  over β  with α  fixed. That is 
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The 100 %p  maximized likelihood interval estimate for 

β  will be the set of all values for which ( )maxR pβ ≥ . 
The endpoints of this interval estimate are obtained as the 
solution of the equation, ( ) ( )max log 0r pβ − =  which 
can be solved numerically. The likelihood interval contains 
β  values such that, for some α , the pair ( ),α β are 

contained in the 100 %p likelihood region. 
 

Similarly, ( ) ( )max
ˆ,R Rα α β=  
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and the 100 %p  maximized likelihood interval for α  

will be the set of all values for which ( )maxR pα ≥ . This 

interval contains α  values such that, for some β , the pair 

( ),α β are contained in the 100 %p likelihood region. 
To obtain the desired approximate confidence interval, the 
100 %p likelihood interval is computed and the value of 
p that gives the desired coverage probability is selected. 
For instance, the14.7%  likelihood interval corresponds 
approximately to 95%confidence interval. 
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3. Simulation Results 
 
Simulated data sets from log-linear NHPP with parameter 
set ( ) ( ), 0.5,0.1α β =  for different small sample sizes 
were utilised to illustrate both point and interval estimation 
procedures described in section 2. The data were simulated 
using the thinning algorithm. The ML estimates for 

( ),α β for varying sample sizes are given in table 1 and 
the likelihood intervals for the two parameters are given in 
table 2. 
 

Table 1: The ML estimates for different values of n. 
n α̂  β̂  
21 0.5467 0.0638 
23 0.5440 0.0825 
24 0.5945 0.0810 
28 0.4611 0.1360 
30 0.4895 0.1435 

 
Table 2: The 95% approximate confidence intervals for 

different values of n 
  RLF approach 

n α  β  
21 0.0866, 0.9492 0.0000, 0.1345 
23 0.1059, 0.9325 0.0035, 0.1491 
24 0.1663, 0.9700 0.0049, 0.1463 
28 0.0667, 0.8100 0.0700, 0.1940 
30 0.1094, 0.8240 0.0776, 0.1993 

 
Based on the same five datasets, the interval estimates for 
β  obtained using the large sample approximation 
procedure are given in table3. 
 

Table 3: The 95% approximate confidence intervals for 
different values of n. 

N β  
21 0.0136, 0.2289 
23 0.0316, 0.2394 
24 0.0302, 0.2344 
28 0.0790, 0.2821 
30 0.0852, 0.2853 

 
The interval estimates for β (obtained using both 
approaches) corresponding to the sample size n=23 are 
plotted on the likelihood function to illustrate the 
plausibility of an interval estimate for the case of small 
sample sizes. This plot is presented in figure 1. 
 

 
Figure 1: Plots of maximized relative likelihood function 

of β  for n=23 
 

A separate data set was simulated for different large 
sample sizes and parameter set ( ) ( ), 0.5,0.1α β = . 
Using this data set, the maximum likelihood estimates for 
the two parameters and the 95% approximate confidence 
intervals were computed and are given in tables 4 and 5 
respectively. 
 

Table 4: The ML estimates for different values of n 
n α̂  β̂  
56 0.4502 0.1027 
69 0.4705 0.0861 
77 0.5156 0.1025 
82 0.5453 0.1056 
93 0.4530 0.1032 

 
Table 5: The 95% approximate confidence intervals for 

different values of n 
n α  β  
56 0.1756, 0.6995 0.0757, 0.1273 
69 0.2251, 0.6983 0.0660, 0.1045 
77 0.2835, 0.7311 0.0821, 0.1207 
82 0.3211, 0.7545 0.0860, 0.1231 
93 0.2428, 0.6496 0.0874, 0.1177 

 
Based on the large sample data, the 95% approximate 
confidence intervals for β  were also computed using the 
large sample approximation approach and the results are 
presented in table 6. 
 

Table 6: The 95% approximate confidence intervals for 
different values of n 

n β  
56 0.0749, 0.1663 
69 0.0630, 0.1338 
77 0.0759, 0.1514 
82 0.0785, 0.1530 
93 0.0769, 0.1435 
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As in the case of small samples, the interval estimates for 
β (obtained using both approaches) corresponding to the 
sample size 69n = are plotted on the likelihood function 
to illustrate the plausibility of an interval estimate for the 
case of large sample sizes. This plot is presented in figure 
2. 

 
Figure 2: Plots of maximized relative likelihood function 

of β  for n=69 
 
Using an additional data set that was simulated for 

26n =  and parameter set ( ) ( ), 0.5,0.1α β =  , the log 
linear intensity function parameters were estimated as 

( )ˆˆ 0.5302, 0.1091α β= =  and the 95% approximate 

confidence intervals were ( )0.1199,0.8911  and 

( )0.0372,0.1704  for α and β , respectively. Further, 

the joint estimation for the two parameters was done using 
the joint relative likelihood function in which, the 75%, 
50% and 10% contour likelihood regions for appropriate 
values of α and β were plotted as shown in figure 3. 

 
Figure 3: The contour likelihood regions for α and β 

 
One thousand data sets were then simulated for the 
determination of coverage probability for the 14.7% 
likelihood intervals (approximate 95% confidence interval) 

and the 5% likelihood region ( 95% approximate 
confidence region). The coverage probability for the 
approximate interval for α was estimated to be 0.944 
while the coverage probability for the confidence interval 
for β  was estimated to be 0.945. For the joint estimation, 
the coverage probability was estimated to be 0.947. 
 
4. Discussion 
 
In this paper, we have considered interval estimation for 
the parameters of a log-linear NHPP based on the 
likelihood approach. We have used the relative likelihood 
function to construct the likelihood intervals of specified 
levels and used them to approximate the desired 
confidence intervals for the parameters of the intensity 
function. Our simulation results in tables 2, 3,5 and 6 
demonstrate that the relative likelihood function approach 
yields narrower interval estimates than the large sample 
approximation approach for both small and large samples. 
For instance, when the sample size is 21n =  the width of 
the interval estimate obtained using the relative likelihood 
function is 0.1345 while the width under the large sample 
approximation approach is 0.2153. It is evident in figures 1 
and 2 that interval estimates obtained, for both small and 
large sample sizes, using the large sample approximation 
approach may be imprecise and may include values that 
are very implausible and exclude those that are plausible. 
Employment of the RLF approach to interval estimation is 
thus convenient in that it is applicable to both small and 
large samples. The technique applied in this paper can also 
be applied to other NHPP with other forms of intensity 
functions such as the weibull process and the linear rate. 
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