
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

 

Efficient and Secure Data Sharing By Applying 
AES Algorithm with Anonymous Id Assignment 

 
Barla Rakesh1, Veladanda RamaKrishna2 

 
1M.tech student, Department of CSE, Anurag Group of Institutions, Hyderabad, India 

 
2Assistant Professor, Department of CSE, Anurag Group of Institutions, Hyderabad, India 

 
 

Abstract: Security is a basic requirement of an organization in the world to keep their information secure from their competitors. 
Various techniques and algorithms were developed by research in order to achieve secure data sharing. We propose a technique for 
anonymous sharing of private data between N parties is developed. This technique is used to allocate these node ID numbers ranging 
from 1 to N and also apply encryption on private data. These assignments are anonymous in that the identities received are unknown to 
the other members of the group. Animosity between other members is verified in an information theoretic sense when private 
communication channels are used. This type of serial numbers assignment allows more complex data to be shared and has applications 
to other problems in privacy preserving data mining, animosity avoidance in communications and distributed database access. The 
prescribed computations are distributed without using a trusted third party central authority. Existing and new techniques for assigning 
anonymous IDs are examined with respect to trade-offs between communication and computational requirements. The proposed 
technique also finds distributed environment with minimal communication among parties and ensures higher degree of privacy with 
Advanced Encryption Standard (AES). It generates more secured item sets among multiple parties without affecting mining 
performance and optimal communication among parties with high privacy and zero percentage of data leakage. The new techniques are 
built on top of a secure sum data mining operation using Newton’s identities and Sturm’s theorem.  
 
Keywords: Anonymization and deanonymization, multiparty computation, privacy preserving data mining, secure sum algorithm, 
Advanced Encryption Standard (AES). 
 
1. Introduction 
 
Privacy is essential to trusted collaboration and interactions 
to protect against malicious users and falsified activities. 
Privacy is much needed to protect source of information, 
destination of information, route of information transmission 
and the information content itself. Security is a basic 
requirement of an organization in the world to keep their 
information secure from their competitors. A variety of 
techniques and algorithms were developed by research in 
order to achieve secure data sharing. Main aim is to protect 
the data from hacker during data sharing. Popularity of 
internet as a communication medium whether for personal or 
business use depends in part on its support for anonymous 
communication. Businesses also have lawful reasons to 
engage in anonymous communication and avoid the 
consequences of identity exposure. For example, to allow 
dissemination of summary data without revealing the identity 
of the entity the underlying data is associated with, to protect 
whistle-blower’s right to be anonymous and free from 
political or economic retributions [1]. Cloud-based website 
management tools [2] provide capabilities for a server to 
anonymously capture the visitor’s web actions. The major 
problem of sharing privately held data so that the individuals 
who are the subjects of the data cannot be identified has been 
researched extensively [3]. Researchers have also 
investigated the relevance of anonymity and/or privacy in 
various application domains: patient medical records, e-mail, 
social networking [8], etc. 
 
A different form of anonymity, as used in secure multiparty 
computation, allows multiple parties on a network to jointly 
carry out a global computation that mainly depends on data 
from each party while the data held by each party remains 
anonymous to the other parties [3]. The secure computation 

function widely used in the literature is secure sum that 
allows parties to compute the sum of their individual inputs 
without disclosing the inputs to one another. This type of 
function‘s are popular in data mining applications and also 
helps characterize the complexities of the secure multiparty 
computation [3].  
 
This work deals with efficient techniques for assigning 
identifiers (IDs) [10] to the nodes of a network in such a way 
that the IDs are anonymous using a distributed computation 
without using a trusted third party central authority. Given N 
nodes, this assignment is basically an incarnation of the 
integers {1……N} with each ID being known only to the 
node to which it is assigned. Proposed main technique is 
based on a method for anonymously sharing simple data and 
resulting methods for efficient sharing of complex data. We 
are having so many applications that require dynamic 
unique IDs for network nodes. Those IDs can be used as 
part of schemes for sharing/dividing data storage, 
communications bandwidth, and other resources 
anonymously and without inconsistency. These IDs are 
needed in sensor networks for security or for 
administrative tasks requiring consistency, such as 
configuration and monitoring of s ingle and individual 
nodes, and download of binary code to these nodes. 
Differentiate anonymous ID assignment from anonymous 
communication; consider a situation where N parties wish to 
display their data in the form of cipher text collectively, but 
anonymously, in N slots on a trusted central authority third 
party site. These IDs can be used to assign the N slots to 
users [10], while anonymous communication can allow the 
parties to cover their identities from the third party. 
 
 

Paper ID: SEP14195 445



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

2. Literature Survey 
 
Bruce Schneier [11] proposed an algorithm based upon 
permutations and substitutions. That algorithm supports 
fixed key size approach to secure the data. It is Specification 
for Advanced encryption standard [12] provides the whole 
mechanism for encryption algorithm for which Rijmen 
provided the concept of AES. It mainly specifies the Rijndael 
algorithm a symmetric block cipher that can process data 
blocks of 128 bits, by using cipher keys. However, the 
lengths of Rijndael, which are required to handle additional 
key lengths and block sizes, are not adopted in this following 
standard. 
 
This Algorithm provides flexibility to user to choose 
different key sizes. By using this algorithm throughput 
increases with increase in frequency level but the processing 
time is reduced at high frequency level. In this algorithm 
round time is the function of processing time so with 
frequency it also reduces. In this Rijndael provides a security 
equivalent to RSA of 3072 bit key and also overcome the 
drawbacks of DES and TDES. It is also concluded that if the 
throughput is increased then the same algorithm can be 
implemented on optical networks. 
 
3. Secure Multiparty Computation  
 
3.1 Motivation and Highlights 
 
The Distributed computing considers has the scenario where 
a number of distinct, yet connected, computing parties wish 
to carry out a joint computation of some function. For 
example, these parties may be servers can who hold a 
distributed database system, and the function should to be 
computed may be a database update of some kind. The aim 
of secure multiparty computation [3] is to enable parties to 
carry that distributed computing tasks in a secure manner. at 
the same time as distributed computing classically deals with 
questions of computing under the threat of machine crashes 
and other accidental faults, for that secure multiparty 
computation is concerned with the possibility of cautiously 
malicious behavior by some adversarial entity. It is assumed 
that a protocol execution may come under "attack" by an 
external entity of the participating parties.  
 
3.2 Security in Multiparty Computation 
 
The parties under the control of the adversary are called 
corrupted, and follow the adversary's instructions. Here 
secure protocols should withstand any adversarial attack. In 
order to formally claim and prove that a protocol is secure, 
for that a precise definition of security for multiparty 
computation is required. A number of dissimilar definitions 
have been proposed and these definitions aim to ensure a 
number of important security properties that are general 
enough to capture most multiparty computation tasks. We 
now express the most central of these properties: 
 
1) Privacy: None of any party should learn anything more 

than its prescribed output. In exacting, the only 
information that should be learned about other parties' 
inputs is what can be derived from the output itself. 

2) Correctness: Each and every party is guaranteed that the 
output that it receives is correct.  

3) Independence of Inputs: In this Corrupted parties must 
choose their inputs independently of the honest parties' 
inputs. Here we note that independence of inputs is not 
implied by privacy. For example, may be possible to 
generate a higher bid without knowing the value of the 
original one.  

4) Guaranteed Output Delivery: Here corrupted parties 
should not be able to prevent honest parties from receiving 
their output. In other words, an adversary should not be 
able to disrupt the computation by carrying out a "denial of 
service" attack. 

5) Fairness: In this corrupted parties should receive their 
outputs if and only if the honest parties also receive their 
outputs.  

 
Adversarial Power:  
 
Above informal definition of security omits one very 
important issue: the power of the adversary [2] can attack a 
protocol execution. Already we have mentioned, the 
adversary controls a subset of the participating parties in the 
protocol. On the other hand, we have not described the 
corruption strategy (i.e., How or when parties come under 
the "control" of the adversary), the allowed adversarial 
behavior (i.e., adversary does the passively gather 
information or can it instruct the corrupted parties to act 
maliciously), and the complexity of adversary is assumed to 
be (i.e., is it polynomial-time or computationally 
unbounded).Now we describe the main types of adversaries 
that have been considered: 
1. Corruption strategy: Mainly corruption strategy [2] 

deals with the question of when and how parties are 
corrupted. We have two main models: 

(a) Static corruption model: In this model, the adversary 
is given a fixed set of wanted parties .Here honest 
parties remain honest throughout, while corrupted 
parties remain corrupted. 

(b) Adaptive corruption model: Quite than having a fixed 
set of corrupted parties, adaptive adversaries are given 
the capability of corrupting parties during the com-
putation. If the choice of who to corrupt and when can 
be arbitrarily decided by the adversary and may depend 
on its view of the execution; for this reason, it is called 
adaptive. This type of strategy models the threat of an 
external "hacker" breaking into a machine during an 
execution. Here we note that in this model, one time a 
party is corrupted, it leftovers corrupted from that point 
on. 

2. Allowed adversarial behavior: Another limitation that 
must be defined relates to the actions that corrupted parties 
are allowed to take. Again there are two main types of 
adversaries: 

(a) Semi-honest adversaries: Semi-honest [2] adversarial 
model, even corrupted parties correctly follow the 
protocol specification. On the other hand, the adversary 
obtains the internal state of all the corrupted parties 
(including the transcript of all the messages received), 
and attempts to use this to learn information that should 
remain private. It is a rather weak adversarial model. 
Yet, there are some settings where it can realistically 
model threats to the system. The Semi-honest 

Paper ID: SEP14195 446



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

adversaries are also called "honest-but-curious" and 
"passive". 

(b) Malicious adversaries: In this model, the corrupted 
parties can arbitrarily deviate from the protocol 
specification, according to the adversary's directions. 
The common, providing security in the presence of 
malicious adversaries is ideal; it ensures that no 
adversarial attack can succeed. In this malicious 
adversaries are also called "active". 

 
The above distinction regarding the complexity of the 
adversary yields two very different models for secure 
computation: the information-theoretic [9] model and the 
computational model. The information-theoretic setting, 
Here the adversary is not bound to any other complexity 
class (and in particular, isn’t assumed to run in polynomial 
time). Thus, results in this model hold unconditionally and 
do not rely on any complexity or cryptographic hypothesis. 
The only hypothesis used is that parties are connected via 
ideally private channels (i.e., it is assumed that the adversary 
cannot eavesdrop or interfere with the communication 
between honest parties). 
 
A. Shamir, [5] proposed a scheme to” How to share a secret” 
is called as Shamir’s secret key sharing it is not secure 
against cheating. He do a small modification to his scheme 
retains the security and competence of the original, secure at 
the side of cheating, and preserves the property that its 
security does not depend on any unproven assumptions such 
as the intractability of computing number theoretic functions. 
 
Here we concentrate on a particular example scheme that 
will be sufficient for our purposes in this chapter, namely 
Shamir’s secret sharing scheme. This Shamir’s scheme is 
based on polynomials [8] over a finite field F. The only 
necessary restriction on F is that |F| > n, however we will 
assume for concreteness and simplicity that F = Zp for some 
prime p > n. A value s ∈ F is shared by choosing a random 
polynomial fs(X) ∈ F[X] of degree at most t such that fs(0) = 
s. Then sending privately to player Pj the share sj = fs(j). The 
basic facts about this method are that any set of t or fewer 
shares contain no information on s, whereas it can easily be 
reconstructed from any t+1 or more shares 
 
A Review of Secure Sum 
 
Secure sum is frequently given as a simple example for 
secure multiparty computation. It here because of its 
applicability to data mining and because it demonstrates the 
difficulty and nicety involved in making and proving a 
protocol secure [10]. Distributed data mining algorithms 
often calculate the sum of values from individual sites. 
Imagining three or more parties and no collusion, the 
following scheme securely computes such a sum. 
 

Assume that the value  vl to be computed is 
known to lie in the range [0..n]. One site is chosen as the 
master site, numbered 1. The remaining all other sites are 
numbered 2..s. Site 1 generates a random number R, 
uniformly chosen from [0..n]. Sites 1 adds this to its local 
value v1 and immediately apply encryption on that value v1, 
and sends the sum R + v1 mod n to site 2. Since the value R 

is chosen uniformly from [1...n], the number R + v1 mod n is 
also distributed uniformly across this region, so site 2 has not 
learns anything about the actual value of v1. 

 
Figure 1: Secure computation of a sum 

 
For the remaining sites l= 2..s — 1, the algorithm is as 
follows. Site I receives 

 
Since this value is uniformly distributed across [1...n], i 
learns nothing. Site i then compute and passes it to site l + 1. 
 

 
Site s performs the above step, and then sends the result to 
site 1. Site 1, knowing R, can subtract R and Apply 
decryption to get the actual result. Reminder that site 1 can 
also determine  by subtracting vi. It is possible from 
the global result regardless of how it is computed, so site 1 
has not learned or not gets anything from this computation. 
Figure 1 depicts how this scheme operates. This scheme 
faces an noticeable problem if sites collude. Sites l — 1 and l 
+ 1 can evaluate the values they send/receive to determine 
the exact value for vi. This scheme can be extended to work 
for an honest majority. Each site divides vi into shares. The 
sum for each share is computed individually[10]. However, 
the path used is permuted for every share, such that there is 
no site has the same neighbor twice. To compute vl, the 
neighbors of l from each iteration would have to collude. 
Varying the number of shares varies the number of dishonest 
(colluding) parties required to violate security. 
 
4. Sharing Complex Data with AIDA 
 
Now see the chance of more complex data is to be shared 
amongst the participating nodes. Each node n i  has a data 
item d i  of length b-bits which it wishes to make public 
unknowingly to the other participants. 
 
As the number of bits per data item and the number of nodes 
becomes larger. To complete this sharing, we will utilize an 
indexing of the nodes. Techniques for finding such an 
indexing are developed in consequent sections. Suppose that 
each node n i  has a unique identification (ID) or serial 

number si  { 1 , 2 , ..., N } .  Further, understand that no 
node has knowledge of the ID number si of any other node, 

Paper ID: SEP14195 447



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

and that s 1 , . . . , s N  are a random permutation of 1 , . . . , N . 
This, yet again, is termed an Anonymous ID Assignment 
(AIDA)[7]. 
 
This AIDA may be used to allot slots with respect to time or 
space for communications or storage. It may be possible to 
simply have a database with central storage locations Ci such 
that each node simply stores its data there setting C S i  :=di. 
This could occur if there was a trusted central authority, or if 
the storage operation C S i  : =  d i  was untraceable [14]. 
 
We already given that there is no third party central authority 
(the situation for which secure sum was designed), secure 
sum can be used to finish the desired data sharing. Let 0 be a 
vector of b-bits. Each node creates a data item D i  of N b-
bits. To numbering each of the N, b-bit components 1 ,  
2 , . . . , N  we have: 

 

 
The secure sum algorithm, given earlier in this paper, may 
now be used to collect the data items D1 ,...., DN. The group 
operation is bitwise exclusive-or, and each node ni will 
choose N - 1  random entries r i , j  ,  each composed of N .  b 
randomly chosen bits while calculating one entry, e.g., ri,i to 
ensure sum (by XOR) equal to D i .  
 
5. Finding an AIDA 
 
Here we present a simple algorithm for finding an AIDA 
which has several variants depending on the choice of the 
data sharing method at step (3) below. According to step one, 
random integers or "slots" between 1 and S  are chosen by 
each node. Now node’s position will be determined by its 
position among the chosen slots, but necessities must be 
made for collisions. The parameter 5 should be chosen so 
that S  ≥N .  

 
Algorithm (Find AIDA): Following nodes n 1 , . . . , n N  , u s e  
distributed computation (without any central authority) to 
find an anonymous indexing permutation s : { 1 , . . . , N }  →  
{ 1 , . . . , N } .  
1) First we allocate the number of assigned nodes as A  = 0. 
2) We make each unassigned node ni chooses a random 

number ri in the range 1 to S .  Then a node assigned in a 
previous round chooses r i  = 0. 

3) Now the generated random numbers are shared 
anonymously shared values by q 1 , … … . , q N  . 

4) Here Let q 1 , . . . ,  q k  denote a revised list of shared values 
with duplicated and zero values entirely removed where k  
is the number of distinctive or unique random values. Then 
nodes ni which drew distinctive random numbers then 
determine their index S i  from the position of their random 
number in the revised list as it would appear after being 
sorted: 

S i  =  A  +  C a r d { q j  :  q j  < =  n }  
5) Here update the number of nodes assigned: A = A + k. 
6) If A  <  N then return to step (2). 
 

Example (Execution of Algorithm to Find an AIDA): 
Assume that four nodes participate in searching for an 
AIDA. For example S =  10 and random number choices 6, 
10, 6, 2 again in the first round. The choices of n1 and n3 are 
5 and 6 respectively in the second round while n2 and n4 
choose 0 as they will already have indexes assigned at that 
point. Now because of that a trace of critical steps in the 
procedure is shown in Table I. The final AIDA result is then 
s1 = 3 for node m, s2 = 2 for node n2, s3 = 4 for node n3,and s4 
= 1 for node n4.  

 
Table 1: Trace of an AIDA Algorithm Execution 

 
The number of rounds this algorithm takes is modeled by a 
Markov chain [13]. Although there is no absolute upper 
bound is possible, we will see in later Section’s that the 
performance is very good, as one might expect, when S  is 
much larger than N. The various methods for sharing the 
random numbers at step (3). 
 
The complicity resistance of AIDA depends upon the under-
lying secure sum algorithm used and the complicity 
resistance of that algorithm for a particular set of colluding 
nodes C. The strongest result possible can be obtained by 
using our simple, but inefficient, secure sum Algorithm 1: 
 
Theorem (AIDA is N -Private): This Algorithm is resistant 
to the conspiracy of any subset of the participating nodes 
when the secure sum method of Algorithm is used. 
 
Proof: Here we outline the essential step of the proof by 
viewing the AIDA algorithm at its final termination. Assume 
that there are M iterations of steps (2)-(6). Let r m

1 , . . . , rm
N 

denote the random values chosen by nodes n1,..., nN at step 
(2) in iteration m. Denote by i→  s ( i  )  i s  the final 
permutation s ( i )  =  s i  produced by AIDA. 
 
Here t ( i )  denote any permutation of [N]. Suppose that the 
random choices by node ni at iteration m  during execution 

had been  rather than rm
i . The choice of 

random numbers would be similarly likely and would have 
resulted in the final assignment n i→  s ( t ( i ) ) .  Here C  
denote the alliance of colluding nodes and D  =  [ N ]  \  C  
the remaining nodes. Given any desired permutation p :  
D→D ,define 

p ' ( i )  =  p ( i )  \ i  D ;  p ' ( i )  =  i \ i  C .  
The selection t  ( i )  =  s - 1 ( p ' ( i ) )  yields 

n i→ s ( s - 1 ( p ' ( i ) )  = p ' ( i ) .  

Thus all permutations of the values {s(i)|i  D }  are 
similarly likely and this is independent of the number of 
iterations.  
Corollary (AIDA Produces Random Permutations): From 
the above algorithm results in a permutation of the 

Paper ID: SEP14195 448



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

participating nodes chosen from the uniform distribution (all 
assignments are similarly likely) when the secure sum 
method of Algorithm is used. 
 
6. AES Algorithm 
 
AES is similar to the Rijndael cipher proposed by two 
Belgian cryptographers, Vincent Rijmen and Joan Daemen 
by whom submitted a proposal to NIST during the AES 
selection process. Although  Rijndael is a family of ciphers 
with different key and block sizes. For NIST,AES 
selected[11],[12] three members of the Rijndael family, has 
each every with a block size of 128 bits, but we have three 
different key lengths like 128 bits, 192 bits and 256 bits. 

 
AES Algorithm mainly consists of two parts: The 
Computational flow of AES includes various steps to 
complete its operation. Those steps are briefly described 
given below and are shown in Figure. Four basic steps are 
involved in operations of AES computation flow: Add 
Round Key, Shift Rows and Mix Columns, Sub Bytes. 
Following step one Add Round Key means plaintext is 
updated with the result of XOR operation of each individual 
Byte of round key and element of plaintext. Then followed 
by Substitute Byte is a non-linear byte substitution, it uses 
substitution table (S-Box) which is built by composing of 
two transformations, first, the polynomial m(x) ('11B') is 
ported, followed by an affine transformation [11]. Let see in 
Shift Rows the rows of the plaintext block are cyclically 
shifted to generate another matrix. Finally the Mix Columns 
means transformation of four elements of each column of the 
plaintext by a polynomial multiplication. This type of 
multiplication is simple multiplication. This routine step is 
final step for encryption process. The Numbers of rounds are 
possible to encrypt the data. This varies from 10, 12, and 14 
for different key sizes of 128,192,256 bits respectively.  
 
Behind the scenes, the encryption routine takes the key array 
and uses it to generate a "key schedule" Expand this key 
stream by (4r+4) i.e. 32 bit words where r represents rounds 
{10, 12, 14}, Nk number of key segments {4, 6, 8}.It 
generates ith (32) bit word by XORing the (i - Nk)th word 
either with (i-1)th word or conditionally generated (i-1) 
word. 

 
Figure 6.1: AES flow chart 

 
Nk ≤ i ≤ (4r+3)  
Rcon [i /Nk] = [02i/Nk, 00, 00,00]  
 
Rcon represents the round contants. The round functions are 
generated from original key value (0x00 through 0x17). The 
variable Nk represents the size of the seed key in 32-bit 
words. The point is that there are now many keys to use 
instead of using once. These new keys are called the round 
keys to distinguish them from the original seed key. The 
main loop of the AES encryption algorithm performs four 
different operations on the state matrix, which are named as 
Sub Bytes, Shift Rows, Mix Columns, and Add Round Key 
in the specification [11],[12]. The Following Add Round 
Key operation is the same as the preliminary Add Round 
Key except that each time Add Round Key is called; the next 
four rows of the key schedule are used. The Sub Bytes 
routine is a substitution operation that takes each byte in the 
State matrix and substitutes a new byte determined by the S-
box table. Shift Rows is a permutation operation that rotates 
bytes in the state matrix to the left. Row 0 of State is rotated 
0 positions to the left, first row 1 is rotated 1 position left, 
then row 2 is rotated 2 positions left and similarly row 3 is 
rotated 3 positions left. The addition and multiplication are 
special mathematical field operations, are not the common 
addition and multiplication on integers.  
 
Theory  
 
The Processing time can be deliberate by fly technique and 
are as follows:  

T (processing) = K+ V/F (1)  
V= N × P+ offset (2)  

Paper ID: SEP14195 449



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

K1: Constant part of the execution Time.  
V: Variable part of the execution time.  
F: System clock frequency.  
N: Number of programmed bytes  
P: Multiplication factor  
Offset: Additive value  
As per INFINEON [14] the values of factors P, K, 

offset are  
K1= 4.48  
P= 0.06  
Offset = 0.27  
Clock frequency = 16 MHz  
Round Time = T (pr) × (Number of rounds+1) (3)  

We observe the processing time of different key sizes and 
observed that processing time of 256 bit key is more as 
compared to 192 and 128 bit streams at each frequency level. 
Figure 3 shows the encryption time for different key lengths, 
and is observed that encryption through higher order key 
requires more time as compared to low order key. Encryption 
time of AES depends upon of key length. Different 
algorithms take different times to manage the different keys 
but in AES case encryption and decryption is independent of 
key length. 
 
7. Conclusion 
 
Ideas contributed by Dr. W. E. Clark play major role in this 
research. All non-cryptographic algorithms have been exten-
sively simulated, and evaluated that the present work does 
offer a basis upon which implementations can be 
constructed. The communications requirements of the 
algorithms depend heavily on the underlying implementation 
of the chosen secure sum algorithm along with AES. On the 
other hand, merging the two layers could result in reduced 
overhead. 
 
References 

 
[1] http://en.wikipedia.org/wiki/Wikipedia 
[2] Yehuda , Lindell and Benny Pinkas “Secure Multiparty 

Computation for Privacy-Preserving Data Mining” The 
Journal of Privacy and Confidentiality (2009) 1, Number 
1, pp. 59 -98 

[3] Zhu Han and Yan Lindsay Sun Electrical and Computer 
Engineering Department, University of Rhode Island 
“Securing Cooperative Transmission in Wireless 
Communications” . 

[4] Salik Makda†, Ankur Choudhary_, Naveen Raman†, 
Thanasis Korakis†, Zhifeng Tao_, Shivendra Panwar 
“Security Implications of Cooperative Communications 
in Wireless Networks”. 

[5] A. Shamir, "How to share a secret," Commun. ACM, vol. 
22, no. 11, pp. 612-613, 1979. 

[6] A. Yao, "Protocols for secure computations," in Proc. 
23rdAnn. IEEE Symp. Foundations ofComputer Science, 
1982, pp. 160-164, IEEE Computer Society 

[7] S. S. Shepard, R. Dong, R. Kresman, and L. Dunning, 
“Anonymous id assignment and opt-out,” in Lecture 
Notes in Electrical Engineering, S. Ao and L. Gleman, 
Eds. New York: Springer, 2010,  

[8] D. Jana, A. Chaudhuri, and B. B. Bhaumik, "Privacy and 
anonymity protection in computational grid services," 

Int. J. Comput. Sci. Ap-plicat., vol. 6, no. 1, pp. 98-107, 
Jan. 2009. 

[9] J. Castella-Roca, V. Daza, J. Domingo-Ferrer, and F. 
Sebe, "Privacy homomorphisms for e-gambling and 
mental poker," in Proc. IEEEInt. Conf. Granular 
Computing, 2006, pp. 788-791. 

[10] The Journal of Privacy and Congeniality (2009) 1, 
Number 1, pp.Secure Multiparty Computation for 
Privacy-Preserving Data Mining  

[11] Federal Information Processing Standards, 
“Specification for advanced encryption standard” 
Publication 197, pp.1-47, 2001.  

[12] Guido Bertoni; Aril Bircan; Luca Breveglieri; 
Pasqualina Fragneto; Marco Macchetti. Vittorio 
Zaccaria; “Performances of the Advanced Encryption 
Standard in embedded Systems with Cache Memory” 
IEEE transactions, 2003.  

[13] C. M. Grinstead and J. L. Snell, "Chapter 11: Markov 
chains," in Introduction to Probability, 2nd ed. 
Providence, RI: Amer. Math. Society, 1997, pp. 510-
510. 

[14] D. M. Goldschlag,M. G. Reed, and P. F. Syverson, 
“Hiding routing information,” in Proc. Information 
Hiding, 1996, pp. 137–150, Springer-Verlag. 

 

Author Profile 
 

Barla Rakesh received his B.Tech degree in computer 
science and Engineering from JNTUH in 2012 and 
pursuing M.Tech. Degree in Computer science and 
Engineering from JNTU Hyderabad. His subjects of 
interest include Computer Networking, Theory of 

Computer Science, cloud computing , Secure Computing, Design of 
Algorithms. 
 

Veladanda RamaKrishna is working as an assistant 
professor in the Department of Computer Science 
Engineering, ANURAG GROUP OF INSTITUTIONS 
Venkatapur(V),Ghatkesar(M), Ranga Reddy District, 
Hyderabad-500088, Telangana State. His subjects of 

interest include Computer Networking, Theory of Computer 
Science, and Design of Algorithms. 
 

Paper ID: SEP14195 450




