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Crystal FCC Imposed Deformation: Active Systems
in the New Representation Projective Plane for
General Test «Purposes: Test Biaxial Extensiony.
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Abstract: In this work, we studied the behavior of a single crystal plane FCCP2 rigid plastic deformation imposed in the plane of
symmetry (110).We are interested in testing mixed stress-strain. And we deduced the activity state systems are based on the study of the
trajectory of the curve representing the general test in the new representation projective plane. We have introduced the dependence on
speed, considering the viscoplastic Bingham. And we determined crystallographic perfectly glides stabilize deformation and stabilization

of the crystal rotations.
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1. Introduction

The study of the single crystal with compulsory deformation
gave rise to numerous research works, in particular the works
of [1], [2]. This study bases essentially on the knowledge of
the state of activity of the various systems cristallographic
which are responsible for the deformation of materials. The
main problem in the study of the behavior of the single
crystal, in compulsory deformation, is the knowledge of the
states of activity for the various systems. The works of [3]-
[4] have surmounted this difficulty for single crystals plans
by using the representation projective plan. The objective of
this work is the study the state of activity of the various
systems. In particular the study of the rotations
cristallographic for essay biaxial extension, en base itself on
the new representation projective plane, thus the evolution of
the rotations will be obtained thus easily. To do it, the used
basic model is the one of the cubic single crystals with
centered faces stiff (FCC) [5] with isotropic strain hardening,
by considering the viscoplastic law of Bingham.

2. The FCCP2 Plane Single Crystal

The f.c.c.P2 model is the plane single crystal corresponding
to a plane stress and strain state in the (110) planes. In this

case the crystallographic frame (X;,X,,X;) is chosen
X; =[001] , X, =[110], X3 =[110]

The corresponding pseudo-slip systems are summarized in
Table 1. This table is obtained by noting that, under plane
stress and strain, two true systems disappear (because the
corresponding resolved shear stress vanishes) and ten

remaining true systems can be symmetrized into five plane
pseudo-slip systems. For further details, the reader is referred

to [6] - [7].

Table 1: f.c.c.P2 single crystal

Pseudo system Resolved sheart® Pseudo-slipN s
(s)
S=1 T, s _ 1100
! :ﬁ VAP

§=2 R S Y o —o_ 1 [-v2 0
s V21 N@t;{l 0}
5=3 s_ 1= l FO__L[V2 0
TR O N EAE 3[1 0}
S=4 P 7
=5 5 Tt V20 - ) “uﬁ[f 5]
S=35 5 1 = T 7 —, 1 *\/E 2
=——(T,, +2(T;, - T. ¢ _ L
@ 2\/5( 2 V2T, - Ty)) 2\/§|: L1

2.1. Analyse cinématique plan

The plane single crystal which is defined by the kinematical
equations:
F =RP 1
PP~! = yNa* NS )
Where F, P and R respectively denote the deformation
gradient, the plastic transformation and the lattice rotation
tensors, while NS is the plane pseudo-slip system, defined in
the crystallographic (isoclinic) configuration, which
represents the symmetric contribution of two systems
symmetric to PP~ ([4]-[5]). The velocity gradient L, strain
rate D = (L)Sand rotation rate

w = (L)A 3)
L=FF1 )
L=RTLR 5)
D=RDR = (L)® = Y&’ (N®)° (6)
W =RTWR = RTR + YN a® (N$A (7)
@° = X o° (N9)A )

Where suffix ()Sand ()Arespectively denote the symmetric
and skew-symmetric part of any tensor, and where a
superimposed bar denotes tensors rotated in the
crystallographic configuration.

In this plane case, the lattice rotation R and RTR are given
by:
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cos 0 sin26 0
R=|—sin20 cos26 Ol 9)
0 0 1
0 1 0
RTR=6|-1 0 0] (10)
0 0 O

Finally, for this model the kinematical relations (6) and (7)
become

Dy = = (6 +6* —o° — a?)

Dy, = \/_((1 —a ) (11)
Dy = ;5 (26" + & +6° + 6" +a°)
_ 1 1 2 . .
oP = m(—Zal —a? - + 30" +36°) (12)

which gives ¢° in terms of D and two indeterminate

quantities £ and @P.
ot = g@ﬁlz —oP -9
o = g (i - \/7(511 + B22))
J3 _ _
= 73 (é +v2(Dy; + Dzz))
- \/7522)

=5 (D,, +@P + V2Dy,)

These kinematic equations (6) and (7), are completed by N
slip laws relating, on each slip system, the slip rate ¢°to the
resolved shear stress 1°. Two cases will be considered in the
following:

{g3

(13)

4 =3 (p @P
o= 2(D12+0)

Schmid’s slip law:
@ = 0ifts =1¢

a® = 0if |t5] < ¢ (14)
< 0ifts = —1°
Viscoplastic law of Bingham type:
™ = (z° + pla®sgn(a®) (15)

With the same critical shear stress 1€ for all systems.

3. Strain Rate Representation

The CFCP2 rigid plastic model case has been analysed in [7]
for a rate-independent behaviour. An appropriate geometric
representation of the strain rate is obtained by starting from
the three-dimensional space (Y1, Y2, Y3) defined as:

Y; =Dy;;Y, =Dyp5 Y5 = \/7512
3.1. Representation Projective Plane for General Test

Now we shall focus our attention on the general test which is

defined as:
1T 0
L= [0 p 0 € (16)
0 0 —(1+p)
Where € is the stretching rate.
1T 0
Strain rate tensor: D = % I p 0 e(17)
0 0 —(1+p)
0 r o
rotation rate tensor:W = > [—F 0 O0fe 18)
0 0 0

Using (6) and (9), strain rate tensor rotated in the
crystallographic configuration:
D, = (H—p+ —Pcos26 —Esmze)
11 2
1+p 1-p r
D,, = (T——c0529+251n26) (19)

Dy, = (%sm 20 + Ecos 20 ) €
These relations (19) can be rewritten under the following
(u cos 26 — Ssin 26)) €
A

shape:
1+p é
= (52505
A
2

<1+p — (1A—p cos 20 — %sin 29)) €

UI

(20)

UI
||

D, = %(TsiHZG +£c0526)e

With: A= /(1 — p)? + I'? and cos 2a = 1;Ap et sin2a = E

a is orientation principal reference of deformation relative
reference in eulerien.
Then:

Dy, = (1+p +-(cos 2a cos 20 — sin 2a sin 29))

D,, = (%——(cos 20 cos 20 — sin 2asin 29)) (21)
Dy, = %(cos 2asin 20 + sin 2a cos 20 )e
Then:
D, = (1+p + gcos(Z(a + G)))
= 1+p A
D,, = (— —Zcos(2(a + e))) (22)

D, = Esm(Z (a+0))e
The strain rate D in the three-dimensional space (Y1, Y2, Y3)
is defined as:

[1+p + %cos(Z(a + 9))] €
Y, = [ﬂ — 2 cos(2(a + e))] (23)

Y, = i\/_[zsm(Z(a + 6))] €

With Y, = B11 Y, = ﬁ22 ;Y; = \/7512

According to (23), general test is given in the projective
geometric representationY; = +1, described above, by the
following equations:

Y, = +‘/—[A( r
¥, =+2[aG,T)

With: B=a+6; tan2a =T,
14p

A(p, F)——

SmZB taHZB

(24

sin ZB tan 2[3

(1-p)2+T? and

For each value of A(p, '), we can thus determine the state of
activity of the various systems (figure 1 and 2), active
systems in the new representation projective plane for
general test, thus the evolution of the rotations will be
obtained thus easily This applies to any plane kinematics
imposed.
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Figure 1: Diagram projective plan for general essay Y; =
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Figure 2: Dlagram projective plan for general essay Y3 =

-1

It would thus be necessary for every value of A(p, I')to make
a precise analysis the active systems following the value of
angle of rotationf3 and also study the rotation which will be
determined for the concerned system. To do it, we are going

|
2

to handle the case biaxial extensionl’ = 0

3.1.1. Active systems case0 < A(p,0) <

1
vit*©
To deduct the state of activity of the systems, it is enough to

. \V2ZA 2v2A+/9-A2
With : tan 20, = ——;tan 20, = —
17 J12az’ 27 _as2vzo-az’
1-A2 2V2A+/1-A2 —\2A
tan20; = ——;tan 20, = ————; tan 20 =
3 A * 7 A-2vZV1-AZ 57 Jiszaz

Or: A = A(p, 0). Active systems are grouped in Table2.

Table 2: Active systems and Condition of sliding

The Active
; interval Svstemms Condition of sliding
MG == of 4
V11 i
. —a+gte- T
_ AN =0 0:0, 2737475 <1,4*°<0;a3>0;d*>0;d° <
3 [ ) e [Tt <1;|e3<1;8¢3>0; a*
G 37475 >0;d°<0
2 5 1 -3
) ot A+ [T’ <15 <1;at=20;a
8::0 1734 >0;d° >0
2 5 1 -3
. +o+c+ [T/l <15 <1;d4'>0; a
2l . 8184 1787 >0;d5>0
Y _ |T1|<1 |T2|< a320;d4
Ap.D) =3 04: 05 3*4-5* <0:a5>0
v 0T e |t
Alp.I) 5 + +
AKP‘T)'::i; — 05 2737475 <1;d%°<0;ad3>0;d*<0;d°>
'A(p,r)=é 1'[—65:1'[ -+ |T1|S1,| |S1 dZSO;d4
V11 —64 27475 SO'dSZO
A(pl‘) 0 T 64:1'[ 194 |’E3| <1; |’E5| <1 (11 <0; dZ
— 03 <0;4*<0
mT—03m 1-2-5- [P <1;|t*<1;a' <0; a?
-0, SO;OZS <0
mT—0,:m 9-4tc- [T <1;1% <1;d%<0; a*
-0 >0;d5<0
m—0;m | 2-3tats- | T
v <Ld%2<0;d3>0;d*>0;d5 <

According to the equations (11) and (12) we can calculate &°

and ®Y,. (Table3)

Table 3: ¢° and @!,

- ) Active slip rates &° plastic
study the trajectory of the representative curve of the essay Systems rotation
biaxial extension in the new representation projective plan @,
(figure 3 and 4). V3

@2 = = (2Dy; =V2(Dy; + Dz»))
': L T ya=a | . \/§ B
2-304-5+ L = i a3 = _( D \/—(Dll + Dzz)) oP — 5
& —tgte— 2 Wy, 12
.1 ] 273*4%5 R
2 B a - (2 D12 \/5522)
m::::“\-\ s N @ =— (2D12 + \/5522)
o ‘\_\\ s u__ \/g -
‘é;\' 53 - _
k] "’Ri\&_\ a \/_ 2 (Zﬁ(Dll + DZZ)) DI\Z/_
g 5 3 n 2 0 2 p 5 5 10 — 3 - 2(5
. . o .. . 3t4%5 y4 = = e
Figure 3: Diagram projective plan of biaxial extension a 2 (4D12 V2(Dy, + DZZ)) + Dy,)
Y; = +1 V3, - -
10 = T T e ds = 7(4D12 - \/EDII)
:i k‘q“:ﬁ*__ \\\\ 230450 B %) i 1 \/g _ _
i e, N Y ] al = 7(4D12 —+2Dy,)
Al 2+3-4-5 \\\‘ N . | \/§ B B 4512
B 1+3*4* 3= = _
: TS " - @ = (2V20u +D22)) | _y3p,,
of 3 V3 —
4l 243445 4 = 7 (—2\/§D11)
Figure 4: Diagram projective plan of biaxial extension
Y3 =-1
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V3, _ _ _
al = 7(4])12 - \/E(Dll + ZDZZ))
) V3 _ _ -Dy,
1+3+5+ @3 = 7(2\/§(D11 + Dzz)) +v2D,,
V3 _
= (2\/5])11)
\/_
ad = 7(2‘/_([)11 + Dzz)) _
\/_ 3Dy, 3
3t4-5% —_ (45 \/5(511 + 522)) - \/E(Dll
2 73 +Dy2)
@ = 7( —V2Dy;)
RE I
(12 7 (2D12 \/E(Dll + DZZ))
V3
a3 = 7 (2D12 + \/_(Dll + DZZ)) _
273%475% 7 D1z
d‘l- = 7(2512 - \/Eﬁzz)
V3. _
= 7(2])12 + \/EDzz)
B
a? = 7(—2\/5(]311 + Dzz)) _
V3 3Dy, 3
2-475* @ = == (4Dy +V2Dyy) +v2(Dyy
7 + D32)
=5 (4D12 +vV2(Dyy + ﬁ22))
V3 _ _
7( 2 +V2(Dyy + Dzz))
e | oA Dy,
1-2-4 a2 = 7(_2\/5([)11 +D2)) | _ V2B,
V3 _
= 7 (—2\/5[)22)
al = ?(4512 ++2Dy;)
-D
172°5- @ = ?(—zﬁ(ﬁn +D22)) + \/152522
@’ = ﬁ(zﬁﬁzz)
V3
@’ = 7( 2\/_(D11+D22)) 3512
2-4+5" it = ?(41}12 +V2D,;) +V2(D;y
+D,,)
d4 g(‘“)lz + \/—(Dll + DZZ)) “
dz ?(ZD“ \/2(511 + DZZ))
3
— @ = g(zmz +V2(Dy; +Dyy)) 5
~3%4%5- 12
it = 7(2]312 - \/21322)
a® = ?(2512 +2Dy,)

3.1.2. System activity for every value of A(p,0) (Table
4,5,6 , 7and 8)

Table 4: Lattice rotation rate in terms of the system
< _—
activity — \/_ < A(p,0) <5

The interval of 6 Zone Rotatlon ratef
0:0, 273%4%5- -D,,
08:0, 2734+ D,, +V2D,,
0,: 05 1+3+4* D;, +V2D,,
B3:0, 1+3+5+ D,, — V2D,
0,: 05 3*475% | —3D,;, + V2(Dy; + Dyp)
O5: 1 — Og 273%4°5% -Dy,

™ — 65: ™ — 64 27475% —3512 - \/5(511 + 522)
1'[_64:1'[_63 17274~ 512 +\/Eﬁzz
T—0;:m—0, 1-275- D,, —V2D,,
T—0,:m— 0, 273%5" D,, — V2D,
T—0.:T 27374'5" -D,,
—A2
Or: tan 20, = ZVZARBA® 41 0g, = 2Y2ATVO-A?
A+\/6— A2 —A+2+/2y/9-A2
_ 2V2A+V1-A2
tan 20; = —— ; tan 20
3 A * T A vaiar
V2A
tan 20 =
5 V1-2A2

Table 5: Lattice rotation rate in terms of the system

act1v1ty 5= <A< %
The interval of 0 Zone Rotation rated
0:0, 273%4%5- —D,,
08::6, 273747 Dy, +V2D,,
0,: 63 1*3%4* Dy, +V2D,,
05:0, 1+3+5+ D,, — V2D,
0,: 05 3*475% | —3D,, + V2(Dy; + Dyy)
Og:im—0; | 2°3'475" -D,
T—0s5:— 6, 27475% | —3D;, —V2(Dyq + Dyy)
T—0,umT—0; | 17274 Dy, +V2D,,
mT—05:m—0, 17275~ D,, —V2D,,
T—0m—0; | 273*5” — 2Dy,
mT—0,:T 273%4*5- -Dy,

) _ —VZA+V3-AZ 0, — 2VZ2A+V9-A2
Or:tan 264 —m,tanz 2 Taiavavo Az
b

tan 205 = A tan 20, = 2\/EAJr—l_AZ;
A-212V1-A2
VIA VIR
tan 205y = ——————
“Vo—im

Table 6: Lattice rotation rate in terms of the system

act1v1ty$ <A1

Volume 3 Issue 9, September 2014

Paper ID: SEP14145

L’intervalle de ® | Systémes de glissement | vitesse de Rotation
0: 6, 273%4+5- —Dy,
0,:0, 273%4% D, +V2D,,
0,:05 273%5* Dy, —V2D,,
05:0, 1¥3+5+ —2Dy;
0,: 05 273%5* —+/2D,,
B5: 1 — 05 2-3%4°5* —-D,,
T—05:TT— 0, 273%4" Dy, +V2D,,
T— 0,1 — 05 17274~ D,, + V2D,,
T—0;:m—6, 273%4" D12 +2D,,
mT—0,:m—0,; 273%5- —+/2D,,
m—0.:T 273%4%5- —D12
Or :tan 26, = VZARSBA2 . o og, — V142,
A+/6-2A2 A
tan 20, = 2AIAE o, = PANIAZ,
A+2ﬁm’ T ava/iaz’
can 26 V2A + V3 — A?
s N Ve —2m
902
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Table 7: Lattice rotation rate in terms of the system
activityl < A <3

The interval of 6 Zone Rotation ratef
0:0, 2-3t4-5* —D,,
0,:0, 273*5* | Dy, —V2Dy
0,:m—0, 2-3+4-5* —D,,
m—0,m—0; | 273'4~ | D, +v2D,,
mT—0,:T 27374757 -Dy,
—v/3—-A2 /3—A2
Or: tan 20, = V2A—Vs-A* ;tan 20, = \ELSAERTY
A+V6—2A2 A—V6-2A2

Table 8: Lattice rotation rate in terms of the system
activityA > V3
The interval of 6 Zone
0:m 273%4-5%

Rotation rated
=Dz

3.1.3. Analysis of rotation @

Using the Tables (5 ,6 and 7 ) , we obtain easily the value of
0= %in each zone. The results are plotted in Figure (4), (5)
and (6). This shows that the rotation stabilizes at three
orientation limits: @; , 0 et T — @, , with tan 8, = 2v/2.

W poant de stabati

. n &0 1] . &0 100 l.\i 140 '.ff\l 180
. = —_—< -
Figure 5: curved = f(0) or =S A< N

wpoint de stabilite

] [ & o [ [E] 140 160 T80
V2

. . - 1
Figure 6: curve 6 = f(0) or 7= <AL NG

& point de stabilite

Figure 7: curve 6 = f(0) or% <A<1

The corresponding rate 6 = %is plotted in Figure (8). In
this case the rotation stabilizes at two orientation limits
8, and T — 6, , with tan 8; = 2v/2.

0s

®point de stabiiite

04}
oaf
o2t
ot

0
a1t
a2
LEIS

0af

05,

L L L L L L L
20 El a0 o 60 T

Figure 8: curve § = f(6)or1 < A <3

Finally, to complete the illustrative example, we analyse the
case of strain test with A > /3 (Figure 9) In this case, when
0 goes from 0 to =, solely the regime 27347 5% (Table 8) is
potentially active and corresponds to one orientation limit 6 =
0.

wpoint de stabilib:

L
&0 120

4l I L L L I L L
] 1] 0 w0 1] ] 12 [

Figure 9: curve 6 = f(0) or A > /3

4. Conclusion

In this paper, our analysis is focused on the determination the
slip systems activity of a plane single crystal FCCP2, in the
new representation projective plane for general test. Based on
the plane single crystal model and Bingham slip law, as
illustration, the biaxial extension is studied and the complete
analytical solution of single crystal behavior is obtained. In
particular, the analytical description of the plastic spin is
introduced. The lattice orientation and the straining path have
an important influence on the plastic spin evolution.
Different situations may be encountered, according to the
strain path and the initial lattice orientation value. But in any
case, this lattice rotation always stabilizes at a limit value
resulting in a stabilized behavior for the crystal. All of these
calculations, which are performed in the framework of
simple plane model FCCP2, remain valid in the three-
dimensional case. The plane single crystal model represents a
reasonable compromise between the mathematical simplicity
and the physical relevance for the analysis of some basic
problems in the mechanics of single crystal.
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