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Abstract: A new interpolative approximation method is devised for obtaining the eigenvalues and eigenfunctions of anharmonic 
oscillators. The method is applied to the one-dimensional quartic anharmonic oscillator. The eigenvalues and eigenfunctions are 
obtained explicitly in the lowest order of approximation. The results are compared with those from other methods. The eigenvalues are 
found to deviate from the exact values by less than 0.5% for large values of the anharmonic coefficient. Further possible generalisations 
and higher levels of approximations are also discussed. 
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1. Introduction 
 
The quantum anharmonic oscillators (AHO) have been 
extensively studied by a variety of methods. It plays an 
important role as a simple field theory in zero space 
dimension for which the perturbation series diverges[1,2]. The 
AHO potential is also employed in nuclear structure, 
quantum chemistry and quark confinement studies. Among 
the wide range of methods used for its study mention may be 
made of WKB method[3], action angle technique [4], Hill 
determinant method[5], continued fraction method[6], scaled 
basis method[7], Chebyshev polynomial method[8], 
variational method[9,10,11], the residue squaring method[12], 
interpolative perturbation scheme[13], Pade approximants 
method[14], Uniform asymptotic method[15], Kinetic 
potentials method[16], the fixed point method[17] and the 
hepervirial method[18]. The eigenvalues have been obtained 
to high orders of accuracy by numerical techniques[19,20]. 
Some others[8,16], have tried to obtain the functional 
dependence on the anharmonic co-efficient at the cost of 
numerical accuracy. In the present article, a simple new 
method that can be easily applied to several types of 
anharmonic oscillators is presented. The method is applied 
to the quartic AHO. The method of improving the accuracy 
is also pointed out. The usefulness of the new method lies 
not so much in giving better numerical values but in the 
wide range of applicability and relative simplicity of the 
techniques involved. The new method is similar in spirit to 
that of Ginsberg and Montroll[13], but very different in detail. 
 
2. The New Method  
 
We discuss the new method specifically for quartic AHO, 
though it can be extended to more general AHO’s.  
 
The Hamiltonian under consideration is 
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The Schrodinger equation for the wave function ψ (�) and 
the eigenvalues � is  
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= 0      … … … . . (3) 
To start with, we consider the ground state of AHO. The 
wave function ψ �(�) for small |�| is easily found to be 

ψ �(�)> ����η����Ο ���� �               … … … . (4) 
For large |�| the asymptotic solution to equation (3) is  

ψ �(�)> ����|�|��Ο |�|�    … … … … … … (5) 
Where �� = �λ

�
. 

Hence we postulate the following interpolative function that 
has the correct behaviour for small and large |�| to represent 
the ground state: 

ψ �(�) = �
���η����(λ)�����(λ)����
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    … … . (6) 
Where �(λ)  and �(λ)  are some functions of λ  to be 
determined.  
Now we demand that ψ �(�)  of equation (6) satisfy the 
equation (3) in the large |�| region. 
For large |�|, we can put 
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Substituting equation (9) into equation (3) and equating the 
coefficients of ��, �� and ��  to zero we find the following 
equations: 
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= η … … … … … … … … … … … … . (12)  
The terms that are dropped are Ο(���) and smaller and are 
negligible for |�|� ≫ λ��

� . Hence the method works best for 
large λ.  
 Solving equations (10), (11) and (12) we find 

� = 4λ�

81� , � = 4λ
27�  

and the characteristic equation for η ∶ 
27η� − 8λη − 5 = 0 … … … … … … . (13)  

This equation may be compared with that of Ginsberg and 
Montroll [13] who derive it by matching the coefficients near 
the origin. In the lowest order, they get 
 

 
 η

�
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�
= 0. 

The positive roots of equation (13) will provide the energy 
values for a given λ. It is now quite straightforward to 
generalize the new method to other AHO’s.  
 
3. Results and Discussion 
 
Equation (3) can be solved[20] in a decreasing power series 
for large λ as: 

η = ��λ
�
� + ��λ��

� + ��λ�� + … … … 
Substituting such a series in (13) and comparing coefficients 
of λ

�
�� , λ

�
�� , λ� etc, we find that 
η> 0.66667λ

�
�� + 0.20833λ�� +  … … 

which can be compared with exact result (Hioe, 1975): 
η> 0.667986λ

�
�� + 0.14367λ��

�� +  … … 
 
Hence the lowest order approximation of our method leads 
to energies that deviate by less than 0.4% from exact values 
for λ ≥ 1000. The positive roots of the equation (13) have 
been calculated using Newton-Raphson method for several 
values of λ. The results are listed and compared with those 
from other methods in table-1. It can be seen that our 
method gives energies in far better agreement with the exact 
values than that of the Ginsberg and Montroll in the first 
approximation[13] for all values of λ ≥ 1.0. By postulating 
ψ �(�)  that includes three, four and more number of 
functions of λ instead of just two, in the following forms: 

ψ�
(�)(�)>  

����η������(λ)�����(λ)�����(λ)����
� ��

� 
and  
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� 
it is clearly possible to improve the accuracy for smaller λ .  

By considering the products of ψ �(�)  with various 
polynomials of �  the excited states can be worked out. 
These and other applications of the method are under study 
and will be reported in due course. 
 

Table 1: Ground state energies of a quartic AHO: 
 

λ 
η Our method Ginsberg and Montroll[13] 

in first approximation 
Exact values 

[20] 
0.05 0.66455 0.531 0.53264 
0.1 0.67298 0.557 0.55915 
0.5 0.73654 0.699 0.69618 
1.0 0.80709 0.813 0.80337 
2.0 0.92548 0.969 0.95157 
50.0 2.46017 2.568 2.4997 

200.0 3.89973 4.075 3.9209 
1000.0 6.66687 6.946 6.6942 
8000.0 13.3334 13.873 13.3669 

20000.0 18.0961 18.825 18.1372 
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