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Abstract: An n-gram is a sub-sequence of n items from a given sequence. Various areas of statistical natural language processing and 
genetic sequence analysis are using N-gram Analysis. In which sequence analysis is the process of comparing the sequence or series of 
attributes in order to find the similarity. Malicious software that is designed by attackers for disturbing computers is called as malware. 
The principal belong to the same family of malware eventhough Malware variants will have distinct byte level representations. The byte 
level content is different because small changes to the malware source code can result in significantly different compiled object code. In 
which programs are used as operational code (opcode) density histograms obtained through dynamic analysis. The process of testing 
and evaluation of application or a program during running time is called as dynamic analysis. A SVM is used for classification or 
regression problems. Kernel trick is a technique by SVM to transform your data and then based on these transformations it finds an 
optimal boundary between the possible outputs. We employ static analysis to classify malware  which is identified a prefilter stage using 
hex values of files, that can reduce the feature set and therefore reduce the training effort. The result shows that the relationships 
between features are complex and simple statistics filtering approaches do not provide a Practical approach. One of the approaches, hex 
decimal based produces a suitable filter. The entire system will be implemented in WEKA tool. 
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1. Introduction 
 
Recent years malware has been growing rapidly, with 
signature detection and monitoring suspected code for 
known security vulnerabilities becoming ineffective and 
intractable. In response, researchers need to adopt new 
detection approaches that out manoeuvre the different attack 
vectors and obfuscation methods employed by the malware 
writers. Detection approaches that use the host 
environment’s native opcodes at run-time will circumvent 
many of the malware writers’ attempts to evade detection. 
One such approach, as proposed in this paper, is the analysis 
of opcode density features using supervised learning 
machines performed on features obtained from run-time 
traces. In future research we intend to expand the detection 
methods by investigating N-gram size, which will 
dramatically increase the number of features. With this 
anticipated explosion of features we have chosen to 
investigate methods to prune irrelevant features. While 
Principle Component Analysis (PCA) is a popular method to 
reduce features in subspace, this paper aims to identify 
feature reduction in the original dataset space. For large 
datasets, or costly (computation) distance functions, the 
training process associated with learning machines can 
become immense. Thus, the feature explosion that occurs 
with N-grams for large values of N needs to be addressed. 
This paper investigates three approaches to filtering out 
irrelevant features and starts, in Section II, with a discussion 
on related research. In Section III, the experiments are 
placed into context with an overview of the experimental 
approach. Section IV specifies the environment used to 
capture the dataset and introduces anti-analysis approaches 
taken by malware writers. This is followed, in Section V, 
with an explanation of how the dataset is created. The 
Support Vector Machine (SVM) is introduced in Section VI 
and describes the creation of a reference model that is used 

to validate the successfulness of the subsequent filter 
experiments. Three filters: Firstly, a simple hypotheses test 
is considered to determine the likelihood that the benign and 
malicious dataset do not belong to the same distribution; 
secondly, an in-depth look at the distribution by calculating 
the area of intersect between the benign and malicious 
distributions; and finally, a look at the projection of the 
dataset into a subspace using eigen values. The results and 
key characteristics recorded during these experiments. 
Finally, the paper by comparing the results with other 
research and details future work that will be carried out as 
part of this research. 

  
2. Literature Survey 
 
Extensive research has been undertaken into the detection of 
malicious code using both static and dynamic analysis. 
Malware research can be categorized, not only in terms of 
static and dynamic analysis, but also in how the information 
is processed after it is captured. Popular research methods 
include: Control Flow Graphs (CFG) for both course and 
fine grain analysis, state machines to model system 
behavior, the mapping of stack operations and N-gram 
analysis. Bilar [2] used static analysis to obtain opcode 
distributions from PE files that could be used to identify 
polymorphic and metaphoric malware. Bilar’s findings show 
that many prevalent opcodes (mov, push, call, etc.) did not 
make good indicators of malware. Lesser frequent opcodes 
such ja, adc, sub, inc and add proved to be better indicators 
of malware. In other research, Bilar [3] compared the 
statically generated CFG of benign and malicious code. 
Their findings showed a difference in the basic block count 
for benign and malicious code. Bilar concluded that 
malicious code has a lower basic block count, and implying 
a simpler structure: Less interaction, fewer branches and less 
functionality. N-grams are based on a signature approach 
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that relies on small sequences of strings or byte codes that 
are used to detect malware. Santos et al. [4] demonstrated 
that n-gram signatures could be used to detect unknown 
malware. The experiment extracted code and text fragments 
from a large database of program executions to form 
signatures that are classified using machine learning 
methods. 

 
Figure 1: Experiment overview. 

 
The motivation for this research is to reduce the 
computational overhead required when N-gram analysis is 
performed on low-level fine grain data. Therefore, 
developing a lightweight filter that will reduce the number 
of features to be processed will in turn reduce the 
computational overhead; thus making the training phase of 
the SVM approach a viable solution for N-gram analysis 
where large feature sets are generated. Fig. 1 illustrates an 
overview of the experimental approach taken in this paper. 
The programs under investigation are run in a test 
environment with a debug tool monitoring the runtime 
opcodes. After completion, the data is parsed into opcode 
histograms and after some conditioning the dataset is passed 
to the SVM to construct a reference model. It is constructed 
by configuring the SVM to perform an exhaustive search by 
traversing through all the features, searching for those 
opcodes that have a positive impact on the classification of 
benign and malicious software. To evaluate the various 
filtering algorithms, each filter processes the original dataset 
in an attempt to reproduce the same reference model 
produced by the SVM. 

 
3. System Overview 
 
The motivation for this research is to reduce the 
computational overhead required when N-gram analysis is 
performed on low-level fine grain data. Therefore, 
developing a lightweight filter that will reduce the number 
of features to be processed will in turn reduce the 
computational overhead; thus making the training phase of 
the SVM approach a viable solution for N-gram analysis 
where large feature sets are generated. Fig. 1 illustrates an 
overview of the experimental approach taken in this paper. 
The programs under investigation are run in a test 
environment with a debug tool monitoring the runtime 
opcodes. After completion, the data is parsed into opcode 
histograms and after some conditioning the dataset is passed 
to the SVM to construct a reference model. The reference 
model is constructed by configuring the SVM to perform an 
exhaustive search by traversing through all the features, 
searching for those opcodes that have a positive impact on 
the classification of benign and malicious software. To 
evaluate the various filtering algorithms, each filter 
processes the original dataset in an attempt to reproduce the 
same reference model produced by the SVM. 

4. Dataset Creation  
 
Operational Codes (Opcodes) are machine language 
instructions that perform CPU operations on operands such 
as arithmetic, memory/data manipulation, logical operations 
and program flow control. There are 15 opcodes directly 
referred to in this paper, which are grouped as follows:  
1) Arithmetic operations—add , adc (add with carry flag), 

inc, sub;               
2) Memory manipulation—lea (load effective address), 

mov, pop, push (retrieve and place data onto a stack);
             

3) Logical operations—xor (exclusive OR);            
4) Program flow control—call (jump to a function), ret 

(return from function) cmp (compare data), ja, je (jump if 
a condition is met); rep (a prefix that repeats the 
specified operation). 

 
The dataset is constructed by representing each executable 
file as a set of opcode density histograms obtained from 
runtime traces. Note that the operands associated with each 
opcode are omitted and that only the opcodes are recorded. 
Classification tasks involve separating data into training and 
test data. Each training-set instance is assigned a target 
value/label i.e., benign or malicious. The goal of the SVM is 
to construct a model that predicts the target values of the test 
data. There are 260 benign Windows XP files taken from the 
‘Program Files’ directory (training files 230, validation files 
30). There are 350 malware files (training files 310, 
validation files 40) which are malicious windows executable 
files downloaded from Vxheaven website (this website is no 
longer available) and consists of a range of malicious 
activities such as: back-door downloaders, system attack, 
fake alert/warnings, Ad-Aware, information stealer. To 
ensure that Ollydbg correctly unpacked and ran the 
malware, samples were restricted to programs that ollydbg 
correctly identified as packed or encrypted. The malware 
samples were run for 3 minutes ensuring that not only the 
loading and unpacking phases were recorded but 

 
Figure 2: Histogram: Opcode percentage 

 
also that malicious activity occurred, i.e., pop-up, writing to 
the disk or registry files. While there are 344 Intel opcodes, 
only 149 different opcodes are recorded during the captured 
datasets for all programs traced during this experiment. The 
dataset is normalized by calculating the percentage density 
of opcodes rather than the absolute opcode count to remove 
time variance introduced by different run lengths of the 
various programs. The dataset is sorted into most commonly 
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occurring opcodes as illustrated in Fig. 2. An initial 
assessment of the data shows two key properties a) The 
distribution of the various opcodes does not conform to any 
consistent distribution shape; rather opcode distribution 
varies greatly as illustrated by the difference between the 
mov and ret opcodes: ’Area of Intersect’. Therefore, no one 
data shape could be assumed and hence a nonparametric 
method should be used. b) The data values are a percentage 
of the opcodes within a particular program. For example, 0 
means that the opcode does not occur within that program 
trace or 0.25 means that 25% of the program trace comprises 
of that opcode. To improve the performance of the SVM the 
data is linearly scaled. 
 
5. Support Vector Machine 
 
Support Vector Machine (SVM) is a technique used for data 
classification and was introduced by Boser et al. in 1992 
[16] and is categorized as a kernel method. The kernel 
method algorithm depends on dot-products function, which 
can be replaced by other kernel functions that map the data 
into a higher dimensional feature space. This has two 
advantages: Firstly, the ability to generate a nonlinear 
decision plane and secondly, allows the user to apply a 
classification to data that does not have an intuitive 
approach i.e., SVM training when the data has a non regular 
or unknown distribution [17]. The dataset consists of 149 
different opcodes, each having their own unique distribution 
characteristics and therefore a SVM is an appropriate 
choice. As mentioned earlier, the data is linearly scaled to 
improve the performance of the SVM. The main advantages 
of scaling are a) it avoids attributes with greater numeric 
ranges dominating those with smaller numeric ranges and b) 
it avoids numerical difficulties during the calculation as 
kernel values usually depend on the inner products of 
feature vectors, e.g., in the case of the linear kernel and the 
polynomial kernel, very large attribute values might cause 
numerical problems [18]. 
 

 
Figure 3: SVM opcode sensitivity 

 
Table 1: Statistics for ADD AND SUB 

 
 
The RBF (Radial Basis Function) kernel is used as it is 

considered a reasonable first choice in that it provides a 
nonlinear mapping of samples into a higher dimensional 
space. This caters for instances where the relationship 
between the class label and attributes are nonlinear. SVM is 
used to create a reference model to validate the filter 
experiments that are presented in the subsequence sections. 
The SVM is configured to traverse through the dataset 
searching for opcodes that have a positive impact on the 
classification of benign and malicious software. The search 
starts with six opcodes scanning across the complete data 
sequence for all unique permutations for that number of 
opcodes. The search is repeated for five opcodes and then 
four opcodes. An average of these results is sorted by most 
occurrences as illustrated in Fig. 3, which show the most 
important opcodes as chosen by the SVM. Only unique 
opcodes are selected for eachSVM classification test and no 
duplicates of repeated opcode patterns are processed.  
 
Key points to note are:  
1) The 6 opcodes ja, adc, sub, inc, add and rep, each having 
an importance rating of more than 20% of the peak detection 
rate, are selected as the most important indicators for 
classifying benign and malicious software.  
2) mov has a negative impact on the classification and 
identification of software. i.e., when mov is part of the 
analysis data the output/classification is always incorrect. 
The mov has a high density (30% [2] and 40% in the 
presented dataset) in both benign and malicious software.         
3) Packing and encrypting malware is fundamentally a loop 
that performs fetch, compute and store. The compute, in this 
context, is the act of encrypting or deciphering the code and 
is commonly performed by opcodes such as: xor, add/sub or 
rol/ror. Despite the fact that xor is found at the heart of 
many of these loops, it is not highlighted as an indicator of 
malware. The xor opcode is a versatile operation and we 
assume that either a) it is used in equal measures in   benign 
programs or b) that insufficient malware programs use the 
xor opcode to produce a reliable feature. However, opcodes 
add/sub, which work in tandem are highlighted by the SVM. 
The low order statistics in Table I show little 
 

 
(a) 
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(b) 

Fig. 4. (a) Ideal characteristics. (b) Benign and 
malicious area of interest. 

 
difference between the population density and variance of 
malicious and benign software and therefore it would be 
highly speculative to infer any meaning to add and sub. 

 
6. Conclusion 
 
This paper, proposes the use of SVM as a means of 
identifying malware. It shows that malware, that is 
packed/encrypted, can be detected using SVMs and by using 
the opcodes chosen by the SVM as a benchmark, 
determined a prefilter stage using eigenvectors that can 
reduce the feature set and therefore reduce the training 
effort. The results presented in this paper exposed three key 
points. Firstly, the identification of a high population 
opcode: mov that is not only is a poor indicator of 
benign/malicious software, but inhibits the ability to 
correctly classify software when used with other opcodes 
such as ja, adc, sub, inc, add and rep. Secondly, a subset of 
opcodes can be used to detect malware. However, the SVM 
analysis demonstrates that ja, adc and sub are strong 
indicators of malware as they are four times more likely to 
be used in the correct classification of malware than the next 
most significant opcodes (inc). Several opcodes have been 
identified as potential indicators of malware, which provides 
the basis for an improvement in detection techniques beyond 
current state of the art [22]. Finally, using the ‘eigenvector’ 
prefilter, irrelevant features are safely removed by dataset. 
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