
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

N-Gram Analysis in SVM Training Phase Reduction
Using Dataset Feature Filtering for Malware Detection

Pagidimarri Venu1, Dasu Vaman Ravi Prasad2

1Computer science, CVSR College of Engineering, Venkatapur, RR dist, India

2Computer Science and Engineering, CVSR College Of Engineering, Venkatapur, RR dist, India

Abstract: An n-gram is a sub-sequence of n items from a given sequence. Various areas of statistical natural language processing and
genetic sequence analysis are using N-gram Analysis. In which sequence analysis is the process of comparing the sequence or series of
attributes in order to find the similarity. Malicious software that is designed by attackers for disturbing computers is called as malware.
The principal belong to the same family of malware eventhough Malware variants will have distinct byte level representations. The byte
level content is different because small changes to the malware source code can result in significantly different compiled object code. In
which programs are used as operational code (opcode) density histograms obtained through dynamic analysis. The process of testing
and evaluation of application or a program during running time is called as dynamic analysis. A SVM is used for classification or
regression problems. Kernel trick is a technique by SVM to transform your data and then based on these transformations it finds an
optimal boundary between the possible outputs. We employ static analysis to classify malware which is identified a prefilter stage using
hex values of files, that can reduce the feature set and therefore reduce the training effort. The result shows that the relationships
between features are complex and simple statistics filtering approaches do not provide a Practical approach. One of the approaches, hex
decimal based produces a suitable filter. The entire system will be implemented in WEKA tool.

Keywords: n-gram analysis, malware variants, kernel trick, SVM, WEKA tool.

1. Introduction

Recent years malware has been growing rapidly, with
signature detection and monitoring suspected code for
known security vulnerabilities becoming ineffective and
intractable. In response, researchers need to adopt new
detection approaches that out manoeuvre the different attack
vectors and obfuscation methods employed by the malware
writers. Detection approaches that use the host
environment’s native opcodes at run-time will circumvent
many of the malware writers’ attempts to evade detection.
One such approach, as proposed in this paper, is the analysis
of opcode density features using supervised learning
machines performed on features obtained from run-time
traces. In future research we intend to expand the detection
methods by investigating N-gram size, which will
dramatically increase the number of features. With this
anticipated explosion of features we have chosen to
investigate methods to prune irrelevant features. While
Principle Component Analysis (PCA) is a popular method to
reduce features in subspace, this paper aims to identify
feature reduction in the original dataset space. For large
datasets, or costly (computation) distance functions, the
training process associated with learning machines can
become immense. Thus, the feature explosion that occurs
with N-grams for large values of N needs to be addressed.
This paper investigates three approaches to filtering out
irrelevant features and starts, in Section II, with a discussion
on related research. In Section III, the experiments are
placed into context with an overview of the experimental
approach. Section IV specifies the environment used to
capture the dataset and introduces anti-analysis approaches
taken by malware writers. This is followed, in Section V,
with an explanation of how the dataset is created. The
Support Vector Machine (SVM) is introduced in Section VI
and describes the creation of a reference model that is used

to validate the successfulness of the subsequent filter
experiments. Three filters: Firstly, a simple hypotheses test
is considered to determine the likelihood that the benign and
malicious dataset do not belong to the same distribution;
secondly, an in-depth look at the distribution by calculating
the area of intersect between the benign and malicious
distributions; and finally, a look at the projection of the
dataset into a subspace using eigen values. The results and
key characteristics recorded during these experiments.
Finally, the paper by comparing the results with other
research and details future work that will be carried out as
part of this research.

2. Literature Survey

Extensive research has been undertaken into the detection of
malicious code using both static and dynamic analysis.
Malware research can be categorized, not only in terms of
static and dynamic analysis, but also in how the information
is processed after it is captured. Popular research methods
include: Control Flow Graphs (CFG) for both course and
fine grain analysis, state machines to model system
behavior, the mapping of stack operations and N-gram
analysis. Bilar [2] used static analysis to obtain opcode
distributions from PE files that could be used to identify
polymorphic and metaphoric malware. Bilar’s findings show
that many prevalent opcodes (mov, push, call, etc.) did not
make good indicators of malware. Lesser frequent opcodes
such ja, adc, sub, inc and add proved to be better indicators
of malware. In other research, Bilar [3] compared the
statically generated CFG of benign and malicious code.
Their findings showed a difference in the basic block count
for benign and malicious code. Bilar concluded that
malicious code has a lower basic block count, and implying
a simpler structure: Less interaction, fewer branches and less
functionality. N-grams are based on a signature approach

Paper ID: SEP14107 550

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

that relies on small sequences of strings or byte codes that
are used to detect malware. Santos et al. [4] demonstrated
that n-gram signatures could be used to detect unknown
malware. The experiment extracted code and text fragments
from a large database of program executions to form
signatures that are classified using machine learning
methods.

Figure 1: Experiment overview.

The motivation for this research is to reduce the
computational overhead required when N-gram analysis is
performed on low-level fine grain data. Therefore,
developing a lightweight filter that will reduce the number
of features to be processed will in turn reduce the
computational overhead; thus making the training phase of
the SVM approach a viable solution for N-gram analysis
where large feature sets are generated. Fig. 1 illustrates an
overview of the experimental approach taken in this paper.
The programs under investigation are run in a test
environment with a debug tool monitoring the runtime
opcodes. After completion, the data is parsed into opcode
histograms and after some conditioning the dataset is passed
to the SVM to construct a reference model. It is constructed
by configuring the SVM to perform an exhaustive search by
traversing through all the features, searching for those
opcodes that have a positive impact on the classification of
benign and malicious software. To evaluate the various
filtering algorithms, each filter processes the original dataset
in an attempt to reproduce the same reference model
produced by the SVM.

3. System Overview

The motivation for this research is to reduce the
computational overhead required when N-gram analysis is
performed on low-level fine grain data. Therefore,
developing a lightweight filter that will reduce the number
of features to be processed will in turn reduce the
computational overhead; thus making the training phase of
the SVM approach a viable solution for N-gram analysis
where large feature sets are generated. Fig. 1 illustrates an
overview of the experimental approach taken in this paper.
The programs under investigation are run in a test
environment with a debug tool monitoring the runtime
opcodes. After completion, the data is parsed into opcode
histograms and after some conditioning the dataset is passed
to the SVM to construct a reference model. The reference
model is constructed by configuring the SVM to perform an
exhaustive search by traversing through all the features,
searching for those opcodes that have a positive impact on
the classification of benign and malicious software. To
evaluate the various filtering algorithms, each filter
processes the original dataset in an attempt to reproduce the
same reference model produced by the SVM.

4. Dataset Creation

Operational Codes (Opcodes) are machine language
instructions that perform CPU operations on operands such
as arithmetic, memory/data manipulation, logical operations
and program flow control. There are 15 opcodes directly
referred to in this paper, which are grouped as follows:
1) Arithmetic operations—add , adc (add with carry flag),

inc, sub;
2) Memory manipulation—lea (load effective address),

mov, pop, push (retrieve and place data onto a stack);

3) Logical operations—xor (exclusive OR);
4) Program flow control—call (jump to a function), ret

(return from function) cmp (compare data), ja, je (jump if
a condition is met); rep (a prefix that repeats the
specified operation).

The dataset is constructed by representing each executable
file as a set of opcode density histograms obtained from
runtime traces. Note that the operands associated with each
opcode are omitted and that only the opcodes are recorded.
Classification tasks involve separating data into training and
test data. Each training-set instance is assigned a target
value/label i.e., benign or malicious. The goal of the SVM is
to construct a model that predicts the target values of the test
data. There are 260 benign Windows XP files taken from the
‘Program Files’ directory (training files 230, validation files
30). There are 350 malware files (training files 310,
validation files 40) which are malicious windows executable
files downloaded from Vxheaven website (this website is no
longer available) and consists of a range of malicious
activities such as: back-door downloaders, system attack,
fake alert/warnings, Ad-Aware, information stealer. To
ensure that Ollydbg correctly unpacked and ran the
malware, samples were restricted to programs that ollydbg
correctly identified as packed or encrypted. The malware
samples were run for 3 minutes ensuring that not only the
loading and unpacking phases were recorded but

Figure 2: Histogram: Opcode percentage

also that malicious activity occurred, i.e., pop-up, writing to
the disk or registry files. While there are 344 Intel opcodes,
only 149 different opcodes are recorded during the captured
datasets for all programs traced during this experiment. The
dataset is normalized by calculating the percentage density
of opcodes rather than the absolute opcode count to remove
time variance introduced by different run lengths of the
various programs. The dataset is sorted into most commonly

Paper ID: SEP14107 551

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

occurring opcodes as illustrated in Fig. 2. An initial
assessment of the data shows two key properties a) The
distribution of the various opcodes does not conform to any
consistent distribution shape; rather opcode distribution
varies greatly as illustrated by the difference between the
mov and ret opcodes: ’Area of Intersect’. Therefore, no one
data shape could be assumed and hence a nonparametric
method should be used. b) The data values are a percentage
of the opcodes within a particular program. For example, 0
means that the opcode does not occur within that program
trace or 0.25 means that 25% of the program trace comprises
of that opcode. To improve the performance of the SVM the
data is linearly scaled.

5. Support Vector Machine

Support Vector Machine (SVM) is a technique used for data
classification and was introduced by Boser et al. in 1992
[16] and is categorized as a kernel method. The kernel
method algorithm depends on dot-products function, which
can be replaced by other kernel functions that map the data
into a higher dimensional feature space. This has two
advantages: Firstly, the ability to generate a nonlinear
decision plane and secondly, allows the user to apply a
classification to data that does not have an intuitive
approach i.e., SVM training when the data has a non regular
or unknown distribution [17]. The dataset consists of 149
different opcodes, each having their own unique distribution
characteristics and therefore a SVM is an appropriate
choice. As mentioned earlier, the data is linearly scaled to
improve the performance of the SVM. The main advantages
of scaling are a) it avoids attributes with greater numeric
ranges dominating those with smaller numeric ranges and b)
it avoids numerical difficulties during the calculation as
kernel values usually depend on the inner products of
feature vectors, e.g., in the case of the linear kernel and the
polynomial kernel, very large attribute values might cause
numerical problems [18].

Figure 3: SVM opcode sensitivity

Table 1: Statistics for ADD AND SUB

The RBF (Radial Basis Function) kernel is used as it is

considered a reasonable first choice in that it provides a
nonlinear mapping of samples into a higher dimensional
space. This caters for instances where the relationship
between the class label and attributes are nonlinear. SVM is
used to create a reference model to validate the filter
experiments that are presented in the subsequence sections.
The SVM is configured to traverse through the dataset
searching for opcodes that have a positive impact on the
classification of benign and malicious software. The search
starts with six opcodes scanning across the complete data
sequence for all unique permutations for that number of
opcodes. The search is repeated for five opcodes and then
four opcodes. An average of these results is sorted by most
occurrences as illustrated in Fig. 3, which show the most
important opcodes as chosen by the SVM. Only unique
opcodes are selected for eachSVM classification test and no
duplicates of repeated opcode patterns are processed.

Key points to note are:
1) The 6 opcodes ja, adc, sub, inc, add and rep, each having
an importance rating of more than 20% of the peak detection
rate, are selected as the most important indicators for
classifying benign and malicious software.
2) mov has a negative impact on the classification and
identification of software. i.e., when mov is part of the
analysis data the output/classification is always incorrect.
The mov has a high density (30% [2] and 40% in the
presented dataset) in both benign and malicious software.
3) Packing and encrypting malware is fundamentally a loop
that performs fetch, compute and store. The compute, in this
context, is the act of encrypting or deciphering the code and
is commonly performed by opcodes such as: xor, add/sub or
rol/ror. Despite the fact that xor is found at the heart of
many of these loops, it is not highlighted as an indicator of
malware. The xor opcode is a versatile operation and we
assume that either a) it is used in equal measures in benign
programs or b) that insufficient malware programs use the
xor opcode to produce a reliable feature. However, opcodes
add/sub, which work in tandem are highlighted by the SVM.
The low order statistics in Table I show little

(a)

Paper ID: SEP14107 552

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

(b)

Fig. 4. (a) Ideal characteristics. (b) Benign and
malicious area of interest.

difference between the population density and variance of
malicious and benign software and therefore it would be
highly speculative to infer any meaning to add and sub.

6. Conclusion

This paper, proposes the use of SVM as a means of
identifying malware. It shows that malware, that is
packed/encrypted, can be detected using SVMs and by using
the opcodes chosen by the SVM as a benchmark,
determined a prefilter stage using eigenvectors that can
reduce the feature set and therefore reduce the training
effort. The results presented in this paper exposed three key
points. Firstly, the identification of a high population
opcode: mov that is not only is a poor indicator of
benign/malicious software, but inhibits the ability to
correctly classify software when used with other opcodes
such as ja, adc, sub, inc, add and rep. Secondly, a subset of
opcodes can be used to detect malware. However, the SVM
analysis demonstrates that ja, adc and sub are strong
indicators of malware as they are four times more likely to
be used in the correct classification of malware than the next
most significant opcodes (inc). Several opcodes have been
identified as potential indicators of malware, which provides
the basis for an improvement in detection techniques beyond
current state of the art [22]. Finally, using the ‘eigenvector’
prefilter, irrelevant features are safely removed by dataset.

References

[1] A. Lakhotia, E. U. Kumar, and M. Venable, “A

method for detecting obfuscated calls in malicious
binaries,” IEEE Trans. Software Eng., vol. 31, no. 11,
pp. 955–968, Nov. 2005.

[2] D. Bilar, “Opcodes as predictor for malware,” Int. J.
Electron. Security Digital Forensics, vol. 1, no. 2, pp.
156–168, 2007.

[3] D. Bilar, “Callgraph properties of executables and
generative mechanisms,” AI Commun., Special Issue
on Network Anal. in Natural Sci. and Eng., vol. 20, no.
4, pp. 231–243, 2007. [4] I. Santos, Y. K. Penya, J.
Devesa, and P. G. Garcia, “N-grams-based file
signatures for malware detection,” S3Lab, Deusto
Technological Found., 2009[Online].

[4] Available: pgbg@technologico.deusto.es
[5] R. Sekar, M. Bendre, D. Bollineni, and Bollineni, R.

Needham and M. Abadi, Eds., “A fast automaton-
based method for detecting anomalous program
behaviors,” in Proc. 2001 IEEE Symp. Security and
Privacy, IEEE Comput. Soc., Los Alamitos, CA, USA,
2001, pp. 144–155.

[6] W. L. K. Wang, S. Stolfo, and B. Herzog, “Fileprints:
Identifying file types by n-gram analysis,” in Proc. 6th
IEEE Inform. Assurance Workshop, Jun. 2005, pp. :
64–71.

[7] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C.
Laorden, and P. G. Bringas, “Opcode-sequence-based
malware detection,” in Proc. 2nd Int. Symp. Eng.
Secure Software and Syst. (ESSoS), Pisa, Italy, Feb. 3–
4, 2010, vol. LNCS 5965, pp. 35–43.

[8] I. Santos, F. Brezo, B. Sanz, C. Laorden, and Y. P. G.
Bringas, “Using opcode sequences in single-class
learning to detect unknown malware,” IET Inform.
Security, vol. 5, no. 4, pp. 220–227, 2011.

[9] I. Santos, F. Brezo, X. Ugarte-Pedrero, and Y. P. G.
Bringas, “Opcode sequences as representation of
executables for data-mining-based unknown malware
detection,” Inform. Sci., 2011 [Online]. Available:
http://dx.doi.org/10.1016/j.ins.2011.08.020

[10] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y.
Elovici, “Detecting unknown malicious code by
applying classification techniques on opcode patterns,”
Security Informatics, vol. 1, pp. 1–22, 2012.

[11] R. Moskovitch, C. Feher, N. Tzachar, E.
Berger,M.Gitelman, S.Dolev, and Y. Elovici,
“Unknown malcode detection using opcode
representation,” in Proc. 1st Eur Conf. Intell. and
Security Informatics (EuroISI08), 2008, pp. 204–215.

[12] Y. Song, M. Locasto, and A. Stavro, “On the
infeasibility of modeling polymorphic shellcode,” in
Proc. ACM Conf. Computer and Commun. Security,
2007, pp. 541–551.

[13] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang, “Effective and efficient
malware detection at the end host,” in Proc. 18th
Usenix Security Symp., 2009, pp. 351–366.

[14] P. Ferrie, The ultimate anti debugge reference May
2011 [Online]. Available:
http://pferrie.host22.com/papers/antidebug.pdf

[15] X. Chen, “Towards an understanding of anti-
virtualization and anti debugging behavior in modern
malware,” ICDSN Proc., pp. 177–186, 2008.

[16] B. E. Bernhard, G. M. Isabelle, and V. N. Vladimir, H.
Haussler, Ed., “A training algorithm for optimal
margin classifiers,” in Proc. 5th Ann. ACM Workshop
on COLT ACM Press, Pittsburgh, PA, USA, 1992, pp.
144–152.

[17] C. Ko, M. Ruschitzka, and K. Levitt, “Execution
monitoring of security- critical programs in distributed
systems: A specification-based approach,” in Proc.
1997 IEEE Symp. Security and Privacy, Oakland, CA,
USA, May 1997, p. 175-1 87.

[18] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, A ractical
Guide to Support Vector Classification, Department of
Computer Science National Taiwan University, Taipei,
Taiwan, Apr. 15, 2010 [Online]. Available:
http://www.csie.ntu.edu.tw/

[19] R. Vanderbei, Linear Programming: Foundations and
Extensions Pub. New York, NY, USA: Springer, 2000,

Paper ID: SEP14107 553

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISBN: 0792373421.
[20] Matlab Statistics Toolbox Oct. 2011 [Online].

Available: http://www.mathworks.co.uk/help/toolbo
x/stats/

Author Profile

Mr. Dasu Vaman Ravi Prasad is working as
associate professor in Computer Science Engineering
from CVSR College of Engineering from Anurag
Group of Institutions Venkatapur (V), Ghatkesar(M),

Ranga Reddy District, Hyderabad-500088, Telangana State.

Mr. Pagidimarri Venu received the B.Tech degree in
Computer Science of Engineering from JNTU
Anantapur in 2011 and now pursuing M.Tech. degree
in Computer science from CVSR College of
Engineering in JNTU Hyderabad

Paper ID: SEP14107 554

