
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Gauss-PSO Parameter Identification Algorithm for 
Single-Phase Induction Motors 

 
Duy C. Huynh 

 
Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam 

 
 

Abstract: This paper proposes a new parameter identification approach for a single-phase induction motor (SPIM) whose parameters 
are usually obtained using several traditional techniques such as the DC, no-load, load and locked-rotor tests. It can be realized that the 
traditional techniques are complicated and require a higher cost with extra equipment. The proposal is based on using a Gauss particle 
swarm optimization (Gauss-PSO) algorithm. The Gauss-PSO algorithm modifies the algorithm parameters to improve the performance 
of the standard PSO algorithm. The algorithms use the experimental measurements of the currents and active powers in the SPIM main 
and auxiliary windings as the inputs to the parameter estimator. The experimental results obtained compare the identified SPIM 
parameters with the SPIM parameters achieved using the traditional tests. There is also a comparison of the solution quality between 
the standard PSO and Gauss-PSO algorithms. The results show that the Gauss-PSO algorithm is better than the standard PSO 
algorithm for parameter identification of the SPIM. 
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1. Introduction 
 
Single-phase induction motors (SPIM) are very popular in 
the fractional horsepower range, especially in home 
appliances. This is due to the widespread availability of 
single-phase power supplies and the advantages of the SPIM 
such as the simple electrical and mechanical structures, 
ruggedness, high reliability and low cost. In most high 
performance SPIM applications, accurate knowledge of the 
SPIM parameters is necessary. These parameters are usually 
provided by the manufacturer. However, manufacturers 
usually do not supply all the parameter information. Thus, 
research about how to obtain the parameters of the SPIM is 
an important topic. In [1]-[3], the parameters of the SPIM 
are achieved through tests such as the DC, no-load and 
locked-rotor tests.  
 
This paper proposes a new approach for parameter 
identification of the SPIM using stochastic optimization 
techniques. A Gauss particle swarm optimization (Gauss-
PSO) algorithm is an advanced variant of the standard PSO 
algorithm which is one of the relatively new stochastic 
optimization techniques. It can be realized that the PSO 
algorithm does not have genetic operators such as selection, 
crossover between particles and mutation. This means that it 
is simpler and easier to implement than other evolutionary 
algorithms such as a genetic algorithm (GA) and evolution 
programming (EP) [4], as it only has a few parameters to 
adjust. Obviously, the PSO algorithm is suitable for this 
parameter identification application. The magnitudes of the 
complex currents and active powers in the SPIM main and 
auxiliary windings are the inputs of the estimator which can 
be easily measured.  
 
The experimental results of the identified parameters using 
the Gauss-PSO algorithm is compared with the parameters 
obtained from the standard PSO algorithm and the load 
tests.  
 
 

The remainder of this paper is organized as follows. The 
mathematical model for parameter identification of the 
SPIM is described in Section 2. A new proposal using the 
Gauss-PSO algorithm for parameter identification of a SPIM 
is presented in Section 3. The experimental results then 
follow to confirm the validity of the proposed application in 
Section 4. Finally, the advantages of the new application are 
summarized through comparison with related existing 
approaches. 
 
2. Parameter Identification of a Single-Phase 

Induction Motor 
 

2.1. Single-Phase Induction Motor Model 
 
The equivalent circuit model of the SPIM using the double-
revolving-field theory under steady-state conditions is given 
in Figure 1 [5]. The main winding voltages of the forward- 
and backward-rotating fields from Figure 1 are: 
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Simpler forms of (1) and (2) are as follows: 

mbmfmf IZIZV 
1211                               (3) 

mbmfmb IZIZV 
2212                             (4) 
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mV  and aV  are the complex voltages of the main and 

auxiliary windings. 

mfV , mbV , mfI , and mbI  are the forward and backward 

complex voltage and current components of the main 
winding. 

mR1 , mX1 , aR1 , and aX1  are the stator resistance and 

reactance of the main and auxiliary windings. 

2R  and 2X  are the rotor resistance and reactance, referred 

to the stator.  

mX  is the magnetizing reactance, referred to the stator.  

a  is the ratio between the number of turns of the auxiliary 
winding, Na, and the number of turns of the main winding, 
Nm.  
s  is the slip with respect to the forward-rotating filed 
component. 
By using (3) and (4), the forward- and backward-rotating 
field components of the main winding complex current are: 
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Then, the main and auxiliary winding complex currents are: 
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where 

mI , mI , aI , and aI  are the complex and magnitude 

components of the main and auxiliary winding currents. 

mfI , mbI , afI , and abI  are the magnitudes of the 

forward- and backward-rotating field components of the 
main and auxiliary winding currents. 

m  and a  are the phase angles of the main and auxiliary 

winding complex currents. 
The active powers of the main and auxiliary windings are: 

 mmm IVP Re                           (11) 

 aaa IVP Re                            (12) 

where 

mP  and aP  are the active powers of the main and auxiliary 

windings. 
 

2.2. Parameter Identification 
 

The parameter identification technique used in this paper is 
based on the output error method [6] which compares the 
response between the real system and an identified 
parameter model using the same inputs. The real system 
vectors are defined for parameter identification of the SPIM 
as follows:  

 amam PPII y                     (13) 

  aXXRXX mam 2211             (14) 

            am VV u                              (15) 

 

where 

mI , aI , mP , and aP  are the variables sampled and 

recorded from the SPIM. 

mX1 , aX1 , 2R , 2X , mX , and a  are the actual parameters 

of the SPIM. 

mV  and aV  are the input variables in both the real system 

and the identified parameter model.  
The identified system vectors are defined as follows:  

 



 amam PPII ˆˆˆˆˆ y                           (16) 

 aXXRXX mam ˆˆˆˆˆˆˆ
2211                     (17) 

where 

mÎ , aÎ , mP̂ , and aP̂  are the variables which are 

calculated using (9)-(12).  

mX1
ˆ , aX1

ˆ , 2R̂ , 2X̂ , mX̂ , and â  are the identified 

parameters of the SPIM. 
Eventually, the fitness function for parameter 

identification of the SPIM is then defined as follows: 
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where N is the series of measurement samples. 
 

The fitness function  ̂F  depends on ̂  and obtains its 

minimum, when  ˆ . In this case, the parameter 
identification problem is considered as the following 
optimization problem: 

 


ˆ
ˆ

FMin                                          (19) 

In this application, it is assumed that the stator resistances of 
the main and auxiliary windings, R1m and R1a, are obtained 
by using the DC test. 

 
3. Gauss Particle Swarm Optimization 

Parameter Identification Algorithm 
 

It can be realized that the fitness function (18) of the 
parameter identification problem is non-linear and has many 
local optima. In order to determine the global optimum for 
parameter identification, stochastic optimization techniques, 
known as the standard PSO and Gauss-PSO algorithms are 
proposed to solve this problem.  
 
The PSO algorithm is a population-based stochastic 
optimization method which was developed by Eberhart and 
Kennedy in 1995 [7]. The algorithm was inspired by the 
social behaviors of bird flocks, colonies of insects, schools 
of fishes and herds of animals. The algorithm starts by 
initializing a population of random solutions called particles 
and searches for optima by updating generations through the 
following velocity and position update equations.  
 
However, for local optima problems, the particles sometimes 
become trapped in undesired states during the evolution 
process which leads to the loss of the exploration abilities. 
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Because of this disadvantage, premature convergence can 
happen in the standard PSO algorithm which affects the 
performance of the evolution process. This is one of the 
major drawbacks of the standard PSO algorithm. In order to 
improve the evolution process performance and solution 
quality for parameter identification of the SPIM, the Gauss-
PSO algorithm is proposed for this application 
 
The Gauss-PSO algorithm is a combination between the 
standard PSO algorithm and Gauss map which was 
presented in [8]-[12], where the Gauss map is described as a 
stochastic and unpredictable process in a deterministic non-
linear system. 
A Gauss map is given by [8]: 
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1
mod (1) is described as follows [8].  
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where 

 z  is the largest integer less than z and acts as a shift on the 

continued fractional representation of numbers.  
 
Xk is the kth chaotic number, Xk(0, 1) with the following 
initial condition: X1 is a random number in the interval of 
(0,1). 
The sequences are generated by using the Gauss map. These 
sequences have the characteristics of randomness, ergodicity 
and regularity, so that no state is repeated. The Gauss map 
sequences are recently considered as sources of random 
sequences which can be adopted instead of normally 
generated random sequences.  
 
For the standard PSO algorithm, one of its main 
disadvantages is premature convergence, especially in local 
optima problems. Thus, in order to overcome this, the 
algorithm parameter sequences with a randomness-based 
choice are substituted by the Gauss map. In this case, the 
Gauss map sequences are obviously an appropriate tool to 
support the standard PSO algorithm so that it avoids getting 
stuck in a local optimum during the search process and 
overcomes the premature convergence phenomenon present 
in the standard PSO algorithm.  
 
For the Gauss-PSO algorithm, the position and velocity 
update equation is written as follows: 
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Mi 1  and nk 1  
where 

kw , 1
kr  and 2

kr  are the Gauss maps. 

In this case, the acceleration coefficients, c1 and c2 are set to 
2. 
In this parameter identification application, there are six 
parameters, mX1 , aX1 , 2R , 2X , mX  and a  which need to 

be identified. Each particle is treated as a point in a 6-
dimensional space. The magnitudes of the complex currents 

in the main and auxiliary windings, mÎ  and aÎ , as well as 

the active powers in the main and auxiliary windings, mP̂  

and aP̂ , in the identified parameter model are then 

calculated using (9)-(12), whereas the magnitudes of the 

complex currents in the main and auxiliary windings, mI  

and aI , as well as the active powers in the main and 

auxiliary windings, mP  and aP , are sampled and recorded 

from the real SPIM. The fitness function (18) is then used 

together with mÎ , aÎ , mP̂ , aP̂ , mI , aI , mP  and aP  to 

search for the best position for the ith particle and the best 
position of the swarm. This search process is repeated until 
the user-defined end criterion is satisfied. In this parameter 
identification problem, the end criterion is that the kth 
current iteration number reaches the maximum iteration 
number, nth. 
The solution of the parameter identification is eventually: 

      ngbestngbestaX aXi1mi 1m
...ˆ...ˆ        (24) 

 
In this application, the inertia weight, w, is set to 0.9; the 
two independent random sequences, r1 and r2, are uniformly 
distributed in U(0, 1). 

 
4. Experimental Results 
 
The practical experiments are implemented with a capacitor-
start SPIM. The stator resistances of the main and auxiliary 
windings are obtained using the DC test, R1m = 0.382 p.u 
and R1a = 0.248 p.u. The data acquisition process for the 
inputs of the estimator is based on four tests. The first two 
tests were made with a capacitor of 40 F and voltages of 80 
V and 100 V. The remaining two tests were made with a 
capacitor of 20 F and voltages of 80 V and 100 V. The 
input values of the capacitors and voltages are the same for 
the real system and the identified parameter model. Then, 
the outputs of the real system, including the currents and 
active powers of the main and auxiliary windings, are 
sampled and recorded. The measurement data processing 
and parameter identification are performed in MATLAB. In 
all algorithms, the particle number of a generation is 70 and 
the maximum iteration number is set to 300. Each algorithm 
is run 50 times. 
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There are several differences which exist between the 
standard PSO and Gauss-PSO algorithms such as the 
initialization of the particles’ positions and velocities, the 
inertia weight and the two independent random sequences in 
the velocity update equation of the Gauss-PSO algorithm. 
These enhance both the convergence speed and value of the 
Gauss-PSO algorithm. The convergence value of the 
standard PSO algorithm is 0.011402 whereas the 
convergence value of the Gauss-PSO algorithm is 0.00178 
in Table 1. The standard PSO and Gauss-PSO algorithms 
are converged by the 39th and 17th iteration steps in Table 1 
respectively. This means that both the convergence speed 
and value of the Gauss-PSO algorithm are better than the 
standard PSO algorithm. All features in the Gauss-PSO 
algorithm have improved the performance as well as 
avoiding premature convergence in the standard PSO 
algorithm. Table 2 shows the experimental results of the 
identified parameters when using the standard PSO and 
Gauss-PSO algorithms whereas Table 3 shows the error 
percentages of the identified parameters by using the two 
algorithms. Additionally, it can be realized that the errors 
produced by the Gauss-PSO algorithm is always less than 
5% and less than the errors achieved when using the 
standard PSO algorithm. This shows that the Gauss-PSO 
algorithm is better than the standard PSO algorithm for 
parameter identification of the SPIM. 

 
5. Conclusion 
 
In this paper, the Gauss-PSO algorithm has been proposed 
for parameter identification of the SPIM. The experimental 
results of the identified parameters obtained were compared 
with the SPIM parameters achieved using the load tests. The 
experimental results of the identified parameters obtained 
were compared with the SPIM parameters achieved using 
the load tests. Additionally, the results of the identified 
parameters using the standard PSO and Gauss-PSO 
algorithms were also compared. The results confirm the 
benefits of the Gauss-PSO algorithm. The errors produced 
by the new algorithm are always less than 5% and less than 
the errors obtained when using the standard PSO algorithm 
for parameter identification of the SPIM. 

 
6. Future Works 
 
It can be realized that this proposal has been developed 
assuming steady-state operation of the single-phase IM. 
Therefore, it would be useful to further extend the research 
for transient conditions. Furthermore, it is assumed that no 
measurement noise is available in the parameter 
identification application. Thus, it would be also useful to 
examine this effect in future research.  

 
Figure 1: Equivalent circuit model of a SPIM 

 
Table 1: Convergence value and converged iteration step 

number of the standard PSO and Gauss-PSO algorithms for 
parameter identification of the SPIM 

Index Standard PSO Gauss-PSO 
Convergence value 0.011402 0.00178 
Iteration step number 39 17 

 
Table 2: Identified parameter values for parameter 

identification of the SPIM 
Parameter 

(p.u) 
Load tests Standard 

PSO 
Gauss-PSO

X1m 0.439 0.425 0.436 
X1a 0.230 0.223 0.229 
R2 0.070 0.086 0.068 
X2 0.279 0.285 0.276 
Xm 1.848 1.855 1.862 
A 0.409 0.399 0.417 

 
Table 3: Percentage errors of the identified parameters 

for parameter identification of the SPIM 
Error percentage (%) Standard 

PSO 
Gauss-PSO

Error percentage of X1m (%) 3.19 0.68 
Error percentage of X1a (%) 3.04 0.43 
Error percentage of R2 (%) 22.86 2.86 
Error percentage of X2 (%) 2.15 1.08 
Error percentage of Xm (%) 0.38 0.76 
Error percentage of a (%) 2.44 1.96 
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