Using Bacterial Recombinants for Heavy Metals Uptake from Liquid Industrial Wastes Resulted from Chemical Fertilizer Industry

Zaied¹ K. A., A. I. El -Sayed², A. S. El - Sanosy²

¹Genetic Department, Faculty of Agriculture, Mansoura University, Egypt

²Microbiology Department, Soil, Water and Environmental Institute, Agriculture Research Center, Giza, Egypt

Abstract: This study aimed to use bacterial recombinants for removing heavy metals from wastewaters in contaminated industrial sites which resulted from chemical fertilizer manufactures in Egypt, as a unique process. The significance of this study was due to heavy metals pollution which become one of the most serious environmental problems suffering society today. Ten bacterial strains belong to four genera were used in conjugation process conducted in this study, as well as, 22 transconjugants resulted from 11 mating were used in biosorption of heavy metals from factory effluents. The results appeared that some of transconjugants appeared positive hybrid efficiency in heavy metals uptake than their mid-parents, as well as, the better parent. This efficiency was exceeded one hundred percentage in relation to mid-parents, as well as, the better parent. The results indicated the higher effectiveness of bacterial recombinants than their parents in reducing the toxicity of heavy metals from factory effluents to be used as a good biosorpant agents in bioremediation experiments.

Keywords: bacterial recombinants, bioremediation, factory effluents, heavy metals, hybrid effectiveness.

1. Introduction

Water is not only a resource, it is a life source. It is well established that water is important for life. Water is useful for several purposes including agricultural, industrial, household, recreational and environmental activities. Despite its extensive use, in most parts of the world water is a scarce resource. Ninety percent of the water on earth is seawater in the oceans, only three percent is fresh water and just over two thirds of this is frozen in glaciers and polar ice caps.

The contamination of water resources with environmentally harmful chemicals represents a problem of great concern not only in relation to the biota in the receiving environment, but also to humans. The continuing growth in industrialization and urbanization has led to the natural environment being exposed to ever increasing levels of toxic elements, such as heavy metals. Approximately 10% of the wastes produced by developed countries contain heavy metals. (Duffus, 2002). The contamination of the environment by heavy metals is an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain, leads to serious ecological and health problems. Common sources of metal polluted wastes include electroplating plants, metal finishing operations, as well as, many mining, nuclear and electronics industries. All of these contribute to anomalously high concentrations of metals in the environment relative to the normal background levels (Neytzell-De Wildes, 1991). Metal causes genotoxicity as they affect the DNA and immunotoxicity as they are major irritants to the body. The genomic instability by these metals induces cancer (Leonard, et al. 2004).

The contaminated wastewater cannot be treated by traditional methods, like active sludge, the treated water still contains higher concentrations of heavy metals that are allowed by the environment laws. Traditional technologies of treating contaminated wastewater, including precipitation, ion exchange or reverse osmosis still generate too large costs. Moreover, metals are still insufficiently removed from the equipment, especially after a long term of usage what is mostly seen in case of ion exchange and reversal osmosis (**Kita and Skoblewski, 2010**).

Biological methods such as biosorption or bioaccumulation strategies for the removal of metals ions may provide an attractive alternative to existing technologies (Preetha and Viruthagiri, 2005). Microorganisms have evolved coping strategies to either transform the element to a less-harmful form or bind the metal intra- or extracellularly, thereby preventing any harmful interactions in the host cell. Microbial species, have been shown to be relatively efficient in bioaccumulation of uranium, copper, lead, and other metal ions from polluted effluents (Gupta et al., 2001). The uptake of heavy metals, present in industrial wastes, and detoxification of metal ions by bacteria provide an additional mechanism of environmental bioremediation. Surprisingly, little information is available regarding the incidence and distribution of plasmids in contaminated subsurface environments. Such studies will provide greater knowledge on the ecology of plasmids and their contributions to the genetic adaptation of naturally occurring subsurface microbial communities (Coombs and Barkay, 2004).

Gene change and exchange are mechanisms that promote physiological diversity. The potential to alter metabolic functions is advantageous, because most microbes in nature live in changing environments. Hybrids arise from the mating between different strains, varieties, or species, resulted partial polyploids through some genome duplication events. Heterosis is defined as greater biomass, fertility or other traits in heterozygotes, polyploids or hybrids compared

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

to their genetically divergent (often homozygous) parents. Despite the importance of heterosis, its molecular bases are still enigmatic. Several genetic models have been proposed but fail to give mechanistic insights (**Veitia and Vaiman**, **2011**). A specific problem associated with heavy metals polluted the liquid industrial wastes resulted from these industry in the environment is the accumulation of metals in the food chain and persistence in the environment. This study aimed to evaluate hybrid effectiveness of bacterial recombinants in removing the toxicity of heavy metals from factory effluents resulted from chemical fertilizer industry.

2. Materials and Methods

Genetic Material

Organism and culture conditions:-

Ten bacterial strains (Table 1) belong to four genera were used in this study. They are kindly obtained from National Center for Agriculture Utilization Research, USA. All strains used in this investigation are wild type strains.

Table 1: Bacterial	strains	used in	n this	study
--------------------	---------	---------	--------	-------

Strains	Designation
Citrobacter amalonaticus	NRRL B-41228
Citrobacter freundii	NRRL B-2643
Bacillus subtilis var niger	NRRL NRS-213
Bacillus subtilis	NRRL B-642
Bacillus licheniformis	NRRL B-571
Bacillus licheniformis	NRRL B-1584
Bacillus licheniformis	NRRL NRS-1264
Bacillus licheniformis	NRRL B-358
Micrococcus luteus	NRRL B-287
Kocuria rhizophila	NRRL B-4375

Factory effluents: The present study was undertaken using wastewaters resulted from the ammonia unit of Chemical Fertilizer Industry (CFI) located in Dakahlia Governorate. Polluted water was collected from the main pipe of the factory before being mixed with the water in the river.

3. Methodology

Antibiotic susceptibility assays: Antibiotic susceptibility was measured by a plate diffusion method according to Collins and Lyne (1985) with cultures grown to logarithmic growth phase in nutrient agar medium for each microbe. Antibiotics designation was listed in Table 2. All antibiotics were used at a concentration of 100 μ g/ml according to Roth and Sonti (1989). Genetic selectable markers were identified as antibiotic resistance and or sensitive as listed in Table 3.

 Table 2: Designation of antibiotics used for genetic marking

 against bacterial strains used in this study

against bacterial strains t	ised in this study.
Antibiotics	Designation
Flucamox	flu
Streptomycin	Str
Tetracycline	Тс
Neomycinsulphate	Nm
Ampicillin	Ap
Erythromycin	Erth
Amoxycillin and flucloxacillin	Am-Fluc

Cephalexim	Ср
Ibiamox	Ibim
Amoxycillin	Amoxy
Ibidroxil	Ibid
Haiconcil	Hico
Velosef	Velo
Epicocillin	Epico
Nystatin	Nyst
Erythrocin	Ery
Duricef	Duri
pencillin	pen

4. Conjugation

Nutrient broth cultures, in the late of exponential growth phase were used in conjugation process. Qualitative spot of conjugal transfer were carried out according to Lessel *et al.* (1993) by inoculating 10 μ l of the donor culture onto the surface of selective medium, previously seeded with 100 μ l of recipient culture. A single colony of transconjugants appeared on selective medium was picked up and transferred to slant nutrient agar medium. Conjugation was carried out between strains carrying the opposite genetic markers as shown in Table 3. Two different isolates were selected from each mating to be used in heavy metals uptake tests.

 Table 3: Mating between bacterial strains carrying the opposite genetic markers.

No. of mating Mating NRRL B-571 X Revelant geneotype of mating $Erth^*, Ap^*, Ibim^*, Amoxy^+, Hico+, Amoxy^+, Hico+, Amoxy^+, Hico^+, Amoxy^+, Hico^+, Cp^- X Erth^+, Amoxy^+, Hico^+, Cp^- X Erth^-, Amoxy, Hico^-, Cp^- X Erth^-, Amoxy, Hico^-, Cp^- X Erth^-, Amoxy, Hico^-, Cp^- X Erth^-, Ibid^-, Epico^-, Cp^+ X Erth^+, flu^+, Epico^+, Velo^-, Duri^-, Cp^-, Ibid^+ 2 NRRL B-571 X Erth^+, flu^+, Hico+ Epico^+, Cp^- X Erth^-, Ibid^-, Epico^-, Cp+ 3 NRRL B-571 X Erth^+, flu^+, Epico^+, Velo^-, Duri^-, Cp^-, Ibid^+ 4 NRRL B-571 X Erth^+, flu^+, Epico^+, Velo^-, Duri^-, Cp^-, Ibid^+ 4 NRRL B-571 X Erth^+, flu^+, Epico^+, Velo^-, Duri^-, Cp^-, Duri^+, Cp^+, Ibid^+, Cp^+, Ibid^+, Cp^+, Ibid^+, Moxy^+ X 4 NRRL B-571 X Erth^+, flu^-, Epico^-, Velo^-, Duri^-, Cp^-, Amoxy X 5 NRRL B-1584 X Ap^+, Cp^+, Am-Fluc^-, pen^+, Amoxy^+ X 6 NRRL NRS-1264 Erth^+, Tc^+, Ibim^+, flu^+, Ibid^-, Velo^-, Duri^-, Velo^+, Duri^+, Epico^-, Amoxy^+, Hico^-, Epico^- X Ap^-, Cp^-, Am-Fluc^-, pen^-, Ibim^+, Amoxy^+, Hico^+, Epico^+, Amoxy^+, Hico^+, Epico^-, Amoxy^+, Hico^+, Epico^-, Amoxy^+, Hico^+, Epico^-, Amoxy^+, Hico^+, Pen^+, Ibim^+, Amoxy^+, Epico^-, X Ap^-, Cp^-, Am-Fluc^-, pen^-, Ibim^-, Amoxy^+, Ibid^-, Velo^-, Duri^-, Epico^+, Amoxy^+, Ibim^-, Amoxy^+, Epico^-, Amoxy^+, Ibid^-, Pen^+, Amoxy^-, X Hico-, Epico^-, Amoxy^+ $		opposite	
mating NRRL B-571 X $Erth^+$, Ap^+ , $Ibim^+$, $Amoxy^+$, $Hico+$, NRRL B-1584 1 NRRL B-1584 $Epico^+$, $Cp^- X Erth^-$, Ap^+ , $Ibim^+$, $Amoxy^-$, $Hico^-$, $Epico^-$, Cp^+ 2 NRRL B-571 X $Erth^+$, flu^+ , $Hico+ Epico^+$, $Cp^- X Erth^-$, NRRL B-358 3 NRRL B-571 X $Erth^+$, flu^+ , $Epico^+$, $Velo^-$, $Duri^-$, Cp^- , NRRL B-358 3 NRRL B-571 X $Erth^+$, flu^- , $Epico^+$, $Velo^-$, $Duri^-$, Cp^- , NRRL B-2643 4 NRRL B-571 X $Erth^+$, flu^- , $Epico^+$, $Velo^-$, $Duri^-$, Cp^- , $Duri^+$, Cp^+ , $Ibid^+$ 4 NRRL B-571 X $Erth^+$, flu^- , $Epico^-$, $Velo^-$, $Duri^-$, Cp^- , $Duri^+$, Cp^+ , $Ibid^+$ 5 NRRL B-2643 Ap^+ , Cp^+ , $Am-Fluc^+$, pen^+ , $Amoxy^+$ 6 NRRL B-358 X Ap^+ , Cp^+ , $Am-Fluc^+$, pen^+ , $Ibim^+$, $Velo^+$, $Duri^+$ 6 NRRL B-642 Ap^+ , Cp^+ , $Am-Fluc^+$, pen^+ , $Ibim^+$, $Amoxy^+$, $Ibid^-$, $Velo^-$, $Duri^-$, $Epico^-$ 7 NRRL B-642 Ap^+ , Cp^+ , $Am-Fluc^+$, pen^+ , $Ibim^+$, $Amoxy^+$, $Bico^-$, $Epico^+$, $Am-Fluc^-$, pen^- , $Ibim^-$, $Amoxy^+$, $Bicd^-$, Pen^- , $Ibim^-$, $Amoxy^+$, $RRL B-642 X$ Ap^+ , Cp^- , $Am-Fluc^+$, pen^+ , $Ibim^+$, $Amoxy^+$, $Amoxy Epico^+$ 9 NRRL B-642 X NRRL B-642 X Hico+, Epico^+, Am-Fluc^-	No. of	Mating	Revelant geneotype of mating
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mating		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		NRRL B-571 X	$Erth^+$, Ap^+ , $Ibim^+$, $Amoxy^+$, $Hico+$,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	NRRL B-1584	$Epico^+, Cp^- X Erth^-, Ap^+, Ibim^-,$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Amoxy, Hico, Epico,Cp+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	NRRL B-571 X	$Erth^+, flu^+, Hico + Epico^+, Cp^- X Erth^-$
$ \begin{array}{c cccc} & {\rm NRRL B-571 \ X} & {\rm Erth}^+, {\it flu}^+, {\it Epico}^+, {\it Velo}^-, {\it Duri}^-, {\it Cp}^-, \\ {\it Ibid}^- {\it X} {\it Erth}^-, {\it flu}^-, {\it Epico}^-, {\it Velo}^+, \\ {\it Duri}^+, {\it Cp}^+, {\it Ibid}^+ \\ \hline \\ \begin{array}{c} 4 & {\rm NRRL B-1584 \ X} & {\it Ap}^+, {\it Cp}^+, {\it Am-Fluc}^+, {\it pen}^+, {\it Amoxy}^+ {\it X} \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^+, {\it pen}^+, {\it Amoxy}^+ {\it X} \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^+, {\it pen}^+, {\it Amoxy}^+ {\it X} \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^+, {\it pen}^+, {\it Ibid}^+, {\it Velo}^-, \\ {\it S} & {\it NRRL B-2643} & {\it Lerth}^+, {\it Tc}^+, {\it Ibim}^+, {\it flu}^+, {\it Ibid}^+, {\it Velo}^-, {\it Duri}^+ {\it Libid}^+, \\ {\it Velo}^+, {\it Duri}^+ {\it MRRL B-358 \ X} & {\it Ap}^+, {\it Cp}^+, {\it Am-Fluc}^+, {\it pen}^+, {\it Ibim}^+, \\ {\it Amoxy}^+, {\it Hico}, {\it Epico}^- {\it X} {\it Ap}^-, {\it Cp}^-, \\ {\it Amoxy}^+, {\it Hico}^-, {\it Epico}^- {\it X} {\it Ap}^-, {\it Cp}^-, \\ {\it Amoxy}^+, {\it Ibid}^+, {\it Velo}^+, {\it Duri}^+, {\it Epico}^- {\it X} \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^-, {\it pen}^-, {\it Ibim}^+, \\ \\ {\it Amoxy}^-, {\it Ibid}^+, {\it Velo}^+, {\it Duri}^+, {\it Epico}^- {\it X} \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^-, {\it pen}^-, {\it Ibim}^+, \\ \\ {\it Amoxy}^-, {\it Ibid}^-, {\it Velo}^-, {\it Duri}^+, {\it Epico}^- {\it X} \\ \\ {\it Ap}^-, {\it Cp}^-, {\it Am-Fluc}^-, {\it pen}^-, {\it Ibim}^+, \\ \\ {\it Amoxy}^-, {\it Ibid}^-, {\it Velo}^-, {\it Duri}^+, {\it Epico}^- {\it X} \\ \\ \\ {\it Amoxy}^-, {\it Ibid}^-, {\it Velo}^-, {\it Duri}^-, {\it Epico}^- {\it Amoxy}^+, \\ \\ {\it B} \\ \\ {\it NRRL B-642 \ X} \\ {\it Hico}^+, {\it Epico}^+, {\it Amoxy} {\it X} {\it Hico}^-, \\ {\it pen}^-, {\it Amoxy} {\it X} {\it Hico}^-, \\ \\ {\it MRRL B-642 \ X} \\ {\it NRRL B-64375 \ X} \\ {\it NRRL B-64375 \ X} \\ {\it NRRL B-64375$	2	NRRL B-358	, Flu [*] , Hico [*] , Epico [*] , Cp+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NRRL B-571 X	$Erth^+$, flu^+ , $Epico^+$, $Velo^-$, $Duri^-$, Cp^- ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	NRRL B-2643	Ibid X Erth , flu Epico , $Velo^+$,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$Duri^+$, Cp^+ , $Ibid^+$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	NRRL B-1584 X	Ap^+ , Cp^+ , Am - $Fluc^+$, pen^+ , $Amoxy^-$ X
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	NRRL NRS-213	Ap, Cp, Am-Fluc, pen, Amoxy ⁺
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NRRL NRS-1264	$Erth^+$, Tc^+ , $Ibim^+$, flu^+ , $Ibid^-$, $Velo^-$,
$ \begin{array}{c} & Velo^{+}, Duri^{+} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	5	X NRRL B-2643	$Duri^{-} X Erth^{-}, Tc^{-}, Ibim^{-}, flu^{-}, Ibid^{+},$
$ \begin{array}{c} & {\displaystyle \operatorname{NRRL B-358 \ X}} & Ap^+, Cp^+, Am-Fluc^+, pen^+, Ibim^+, \\ & Amoxy^+, Hico^-, Epico^- X Ap^-, Cp^-, \\ & Amoxy^+, Hico^-, Epico^- X Ap^-, Cp^-, \\ & Amoxy^+, Ibic^-, pen^-, Ibim^-, Amoxy^- Hico^+, \\ & Pico^- \end{array} \\ \hline \\ & {\displaystyle \operatorname{NRRL B-2643 \ X}} & Ap^+, Cp^+, Am-Fluc^+, pen^+, Ibim^+, \\ & \operatorname{NRRL B-642} & Ap^+, Cp^+, Am-Fluc^+, pen^+, Ibim^+, \\ & \operatorname{NRRL B-642 \ X} & Ap^+, Cp^-, Am-Fluc^-, pen^-, Ibim^-, \\ & \operatorname{NRRL B-642 \ X} & Cp^+, Am-Fluc^+, pen^+, Ibim^+, Amoxy^+, \\ & \operatorname{NRRL B-642 \ X} & Epico^- X Cp^-, Am-Fluc^-, pen^-, Ibim^-, \\ & \operatorname{NRRL B-642 \ X} & Hico+, Epico^+, Am-Fluc^-, pen^- X \\ & \operatorname{NRRL B-642 \ X} & Hico+, Epico^+, Am-Fluc^-, pen^+ \\ & \operatorname{NRRL B-642 \ X} & Hico+, Epico^+, Amoxy^- X Hico-, \\ & \operatorname{NRRL B-642 \ X} & Hico+, Epico^+, Amoxy^- X Hico-, \\ & \operatorname{NRRL B-642 \ X} & Hico+, Epico^+, Amoxy^- X Hico-, \\ & \operatorname{NRRL NRS-213 \ Epico^-, Amoxy^+} \\ & \operatorname{NRRL NRS-213 \ Pen^-, Amoxy^+} \\ \end{array} $			Velo ⁺ , Duri ⁺
6 NRRL B-642 Amoxy ⁺ , Hico ⁻ , Epico ⁻ X Ap ⁻ , Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁻ , Amoxy ⁺ Hico ⁺ , Epico ⁺ 7 NRRL B-2643 X NRRL B-642 Ap ⁺ , Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , Ibid ⁺ , Velo ⁺ , Duri ⁺ , Epico ⁻ X Ap ⁻ , Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁺ , Amoxy, Ibid, Velo ⁻ , Duri ⁻ , Epico ⁺ 8 NRRL B-41228 X NRRL B-642 Cp ⁺ , Am-Fluc ⁻ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , Epico ⁻ X Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁺ , Amoxy Epico ⁺ 9 NRRL B-642 X NRRL B-642 X NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ X Hico-, Epico ⁻ , Am-Fluc ⁺ , pen ⁺ 10 NRRL B-642 X NRRL NRS-213 Hico+, Epico ⁺ , Amoxy X Hico-, Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X NRRL NRS-213 Am-Fluc ⁺ , pen ⁺ , Amoxy x Am-Fluc ⁻ , pen ⁻ , Amoxy ⁺		NRRL B-358 X	Ap^+ , Cp^+ , Am - $Fluc^+$, pen^+ , $Ibim^+$,
O Am-Fluc [*] , pen [*] , Ibim [*] , Amoxy Hico ⁺ , Epico ⁺ 7 NRRL B-2643 X NRRL B-642 Ap ⁺ , Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , Ibid ⁺ , Velo ⁺ , Duri ⁺ , Epico ⁻ X Ap ⁻ , Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁺ , Amoxy ⁺ , Amoxy ⁻ , Ibid ⁻ , Velo ⁻ , Duri ⁻ , Epico ⁺ 8 NRRL B-41228 X NRRL B-642 Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , Epico ⁻ X Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁺ , Amoxy ⁺ , Amoxy ⁻ Epico ⁻ 9 NRRL B-642 X NRRL B-642 X NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁺ X Hico-, Epico ⁻ , Amoxy ⁻ X Hico-, Epico ⁻ , Amoxy ⁺ 10 NRRL B-642 X NRRL NRS-213 Hico+, Epico ⁺ , Amoxy ⁻ X Hico-, Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X NRRL NRS-213 Am-Fluc ⁺ , pen ⁺ , Amoxy ⁻ x Am-Fluc ⁻ , pen ⁻ , Amoxy ⁺	6	NRRL B-642	$Amoxy^+$, $Hico^-$, $Epico^- X Ap^-$, Cp^- ,
$ \begin{array}{c c} & Epico^{+} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	0		Am-Fluc, pen, Ibim, Amoxy Hico ⁺ ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Epico ⁺
7 NRRL B-642 Amoxy ⁺ , Ibid ⁺ , Velo ⁺ , Duri ⁺ , Epico 7 NRRL B-642 Amoxy ⁺ , Ibid ⁺ , Velo ⁺ , Duri ⁺ , Epico 8 NRRL B-41228 X Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , 8 NRRL B-642 Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , 9 NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ X 9 NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ X 10 NRRL B-642 X Hico+, Epico ⁺ , Amoxy X Hico-, 10 NRRL NRS-213 Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X Am-Fluc ⁺ , pen ⁺ , Amoxy x Am-Fluc ⁻ , 11 NRRL NRS-213 pen ⁻ , Amoxy ⁺		NRRL B-2643 X	Ap^+ , Cp^+ , Am - $Fluc^+$, pen^+ , $Ibim^+$,
1 X Ap [*] , Cp [*] , Am-Fluc [*] , pen [*] , Ibim [*] , Amoxy, Ibid, Velo [*] , Duri [*] , Epico ⁺ 8 NRRL B-41228 X Cp ⁺ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ , Epico [*] X Cp ⁻ , Am-Fluc [*] , pen [*] , Ibim [*] , Amoxy [*] Epico ⁺ 9 NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc [*] , pen [*] X 10 NRRL B-642 X Hico+, Epico ⁺ , Amoxy [*] X Hico-, Epico [*] , Amoxy [*] X Hico-, Epico [*] , Amoxy [*] 11 NRRL B-4375 X Am-Fluc [*] , pen ⁺ , Amoxy x Am-Fluc [*] , pen [*] , Amoxy [*]	7	NRRL B-642	$Amoxy^+$, $Ibid^+$, $Velo^+$, $Duri^+$, $Epico^-$
Amoxy, Ibid, VeloDuri, Epico+NRRL B-41228 X Cp^+ , Am-Fluc ⁺ , pen ⁺ , Ibim ⁺ , Amoxy ⁺ ,NRRL B-642Epico X Cp ⁻ , Am-Fluc ⁻ , pen ⁻ , Ibim ⁻ ,NRRL B-642 XHico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ XNRRL B-642 XHico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁺ NRRL B-642 XHico+, Epico ⁺ , Amoxy X Hico-,NRRL B-642 XHico+, Epico ⁺ , Amoxy X Hico-,NRRL B-642 XHico+, Epico ⁺ , Amoxy X Hico-,NRRL NRS-213Epico ⁻ , Amoxy ⁺ NRRL B-4375 XAm-Fluc ⁺ , pen ⁺ , Amoxy x Am-Fluc ⁻ ,NRRL NRS-213pen ⁻ , Amoxy ⁺	/		$X Ap^{-}, Cp^{-}, Am^{-}Fluc^{-}, pen^{-}, Ibim^{-},$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Amoxy, Ibid, Velo, Duri, Epico ⁺
8 NRRL B-642 Epico' X Cp', Am-Fluc', pen', Ibim', Amoxy Epico+ 9 NRRL B-642 X Hico+, Epico+, Am-Fluc', pen' X 10 NRRL B-642 X Hico+, Epico, Am-Fluc+, pen+ 10 NRRL B-642 X Hico+, Epico, Amoxy X Hico-, Epico, Amoxy+ 11 NRRL B-4375 X Am-Fluc+, pen+, Amoxy X Am-Fluc, pen , Amoxy+		NRRL B-41228 X	Cp^+ , Am - $Fluc^+$, pen^+ , $Ibim^+$, $Amoxy^+$,
Amoxy Epico ⁺ 9 NRRL B-642 X Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ X 10 NRRL B-642 X Hico+, Epico ⁺ , Amoxy ⁻ X Hico-, 10 NRRL NRS-213 Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X Am-Fluc ⁺ , pen ⁺ , Amoxy ⁻ x Am-Fluc ⁻ , 11 NRRL NRS-213 pen ⁻ , Amoxy ⁺	8	NRRL B-642	Epico X Cp, Am-Fluc, pen, Ibim,
9 NRRL B-642 X NRRL B-4375 Hico+, Epico ⁺ , Am-Fluc ⁺ , pen ⁺ X Hico-, Epico ⁻ , Am-Fluc ⁺ , pen ⁺ 10 NRRL B-642 X NRRL NRS-213 Hico+, Epico ⁺ , Amoxy ⁺ X Hico-, Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X NRRL NRS-213 Am-Fluc ⁺ , pen ⁺ , Amoxy ⁺ x Am-Fluc ⁻ , pen ⁻ , Amoxy ⁺			Amoxy ⁻ Epico ⁺
9 NRRL B-4375 Hico-, Epico [*] , Am-Fluc ⁺ , pen ⁺ 10 NRRL B-642 X Hico+, Epico ⁺ , Amoxy [*] X Hico-, 10 NRRL NRS-213 Epico [*] , Amoxy ⁺ 11 NRRL B-4375 X Am-Fluc ⁺ , pen ⁺ , Amoxy [*] x Am-Fluc [*] , 11 NRRL NRS-213 pen [*] , Amoxy ⁺	9	NRRL B-642 X	Hico+, Epico ⁺ , Am-Fluc ⁻ , pen ⁻ X
10 NRRL B-642 X NRRL NRS-213 Hico+, Epico ⁺ , Amoxy X Hico-, Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X NRRL NRS-213 Am-Fluc ⁺ , pen ⁺ , Amoxy x Am-Fluc ⁻ , pen ⁻ , Amoxy ⁺		NRRL B-4375	Hico-, Epico ⁻ , Am-Fluc ⁺ , pen ⁺
NRRL NRS-213 Epico ⁻ , Amoxy ⁺ 11 NRRL B-4375 X Am-Fluc ⁺ , pen ⁺ , Amoxy ⁺ x Am-Fluc ⁻ , pen ⁻ , Amoxy ⁺	10	NRRL B-642 X	<i>Hico+, Epico⁺, Amoxy⁻X Hico-,</i>
11 NRRL B-4375 X Am-Fluc ⁺ , pen ⁺ , Amoxy ⁻ x Am-Fluc ⁻ , NRRL NRS-213 pen ⁻ , Amoxy ⁺	10	NRRL NRS-213	$Epico$, $Amoxy^+$
NRRL NRS-213 pen ⁻ , Amoxy ⁺	11	NRRL B-4375 X	Am-Fluc ⁺ , pen ⁺ , Amoxy ⁻ x Am-Fluc ⁻ ,
	11	NRRL NRS-213	pen ⁻ , Amoxy ⁺

+, - = Resistant and sensitive to antibiotic, respectively.

Uptake experiments: In heavy metals uptake test, precultured cells were suspended in 250 ml conical flasks containing 150 ml minimal medium supplemented with factory effluents without any dilution and incubated under a

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

static conditions at 30 $^{\circ}$ C for 48 h. Thereafter, the cells were collected by filtration on membrane filter (pore size 0.45 μ m). Amounts of metals uptake by the bacterial cells were determined according to **Nakajima and Sakaguchi (1986).**

Determination of heavy metals concentration: The samples were collected and filtered using Millipore filters of 0.45 μ m pore size. The filtrate was collected to be used for heavy metals analysis. The concentration of heavy metals in solution was determined using the atomic absorption spectrophotometer at the Atomic Absorption Unit, Department of Chemistry, Faculty of Science, Mansoura University. Heavy metals under investigation in this work were as follows; Cu , Co, Fe, Cd and Pb.

Data evaluation (Langmuir isotherms): The uptake of the metals (mg of metal/g of dry cell weight) was calculated according to **Liu** *et al.* (2004) using the following formula: $Q = v (C_i - C_f)/m$

Where Q is the metal uptake (mg metal per g biosorbent), v the liquid sample volume (ml), Ci the initial concentration of the metal in the solution (mg/L), Cf the final (equilibrium) concentration of the metal in the solution (mg/L) and *m* the amount of the added biosorbent on the dry basis (mg).

Measuring transconjugant efficiency (TE): Transconjugant efficiency (TE) was calculated according to **Bakker** (2006) using the following formula;

TE MP (Mid parents) = Average PF_1 - Average PP/ mid parents, measured in units of the trait.

TE BP (Better parent) = Average PF_1 - Average Better parent / Better Parent, measured in units of the trait.

 P_{F1} = Average performance of crossbreds.

 P_p = Average performance of parents lines = P1+P2/2.

5. Results and Discussion

Transconjugant efficiency of bacterial recombinants

Environmental pollution has been recognized as one of the major problems of the modern world. Industrial development results in the generation of industrial effluents, and if untreated it was resulted pollution in water, sediment and soil pollution (Fakayode, 2005). Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health (Rajaram and Ashutost, 2008). The key pollutants include heavy metals, chemical wastes and oil spills etc. Heavy metal resistant bacteria have significant role in bioremediation of heavy metals in wastewater. The biosorption is basically at lab scale in spite of its development for decades (Wang and Chen, 2006). Microbial biomass can be used to decontaminate metal bearing wastewaters ,as well as, to concentrate metals. Biological methods such as biosorption or bioaccumulation strategies for the removal of metals ions may provide an attractive alternative to existing technologies (Preetha and Viruthagiri, 2005).

Bacterial transconjugants were used in this work as the biosorbents for Cu, Co, Fe, Cd and Pb. All bacterial strains used herein were grown in minimal medium containing 100% factory effluents.

As shown from the results in Table 4, most of bacterial transconjugants appeared higher levels in heavy metals uptake than their parental strains. Higher positive efficiency was achieved in transconjugant treatment in relation to the mid parents, as well as, the better parent. These transconjugants were as follows, Tr1 resulted from NRRL B-571 x NRRL B-1584, NRRLB-571 x NRRLB-2643 and NRRL B-358 x NRRL NRS 642. In addition, Tr1 and Tr2 resulted from NRRL NRS-1264 x NRRL B-2643, NRRLB-1584 x NRRL NRS-213, NRRL B-2643 x NRRL B-642, NRRL B-41228 x NRRL B-642 and NRRL B-642 x NRRL B-4375 appeared the same trend. The results obtained herein agreed with those reported by John Milton and Reetha (2012), who found that among the five strains of bacteria, Bacillus HMB1 was high efficient than the others strains in removal of heavy metals from the solution of waste water containing 100 mg/L. In addition, Ting and Choong (2009), found that three strains of Pseudomonas isolated from heavy metal contaminated soil accumulated 29, 25 and 26 mg g dry weight of cells, respectively at the zinc concentration of 1.6 mM. Ahmad et al. (2005) found that gram negative bacteria showed higher bioaccumulation capacity of heavy metals than Gram positive counter parts due to their higher level of intrinsic metal resistance. Brierley (1990) reported that bacteria make excellent biosorbents because of their high surface-to-volume ratios and a high content of potentially active chemosorption sites such as on teichoic acid in their cell walls. Churchill et al. (1995) used two gram-negative strains (Escherichia coli K-12 and Pseudomonas aeruginosa) and a gram-positive strain (*Micrococcus luteus*) to demonstrate biosorption of Cu^{2+} , Cr^{3+} , Co^{2+} and Ni^{2+} . Their sorption binding constants suggested that E. coli cells were the most efficient at binding copper, chromium and nickel and M. luteus sorbed cobalt most efficiently. Microbial species, such as Pseudomonas, have been shown to be relatively efficient in bioaccumulation of uranium, copper, lead, and other metal ions from polluted effluents (Gupta et al., 2001).

Many genera of microbes like *Bacillus, Enterobacter, Escherichia, Pseudomonas* and also some yeasts and fungi help in bioremediation of metals contaminated soil and water by bio-absorption. Heavy metal resistance genes are often found on plasmids and transposons (**Chu et al., 1992**). Plasmids also assist bacteria to acquire tolerance and resistance mechanisms against heavy metals or other toxic substances in the polluted environment (**Boronin 1992**).

Table	4: Transconjuga	ant efficien	су р	ercentage f	for heavy
	metals uptake	(mg per g	bio	sorbent) by	bacterial
	recombinants	growing	on	minimal	medium
	supplemented v	with wastew	vater	s.	

Biocontrol agents		ppm						
		Cu	Co	Fe	Cd	Pb		
NRRL B-571 X	P1	793	724	13793	862	758		
NRRL B-1584	P2	631	368	7017	368	736		
	MP	712	546	10405	615	747		
	Tr1	1085	1200	22685	1028	1771		
	TE MP	52.4	120	118	67	137		
	TE BP	36.8	66	64	19	134		
	Tr2	403	456	7070	403	543		
	TE MP	-43.4	-16	-32	-34	-27		
	TE BP	-49.2	-37	-49	-53	-28		

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

NRRL B-571	Х	P1		793 72		24 1379		93	862	75	58	
NRRI B-2643	2	P2		5	549 1		57	7 606		1 244		6
NRRL D-204.	,			54		1	57 47	0001		244	/	0
		MP		6	1/1	44	15	9927		553	4	17
1		Tr1		3	71	26	58	412	3	185	43	32
		TE	MP	-	45	-4	0	-58	3	-67	4	1
		TE	RD	-	52	4	3	70		.70	1	3
		IE.	DF	-	55	-(55	-70	' -	-79	-4	.5
		Tr2		3	51	12	20	436	2	241	- 30)7
		TE	MP	-	48	-7	3	-56	5	-56	-2	6
	TI		RP	-	56 -8		33	-68	2	-72	-5	9
NDDI D 571	v	D1		7	02	70).J	1270	,)2	862	75	0
NKKL B-5/1	Λ	PI		/	95 12		24	1379	13	862	13	٥٥.
NRRL B-4122	28	P2		5	514 49		95	756	1	533	66	56
		MP		6	53	60)9	1067	77	697	71	2
		Tr1		2	34	7	1	415	3	224	12	90
				2	54	1	1	415	5	224	42	20
		TE.	MP	-	64	-6	88	-61		-68	-4	0
		TE	BP	-	-70		00	-70)	-74	-4	4
	Т		Tr2		75	52	25	1000)()	450	77	15
		TE	MD		3	1	Δ	6		35	0)
		IE.			5	-1	.4	-0	.	-33	2	,
		TE.	BP	-	15	-'2	27	-27	·	-48		2
Table 4 continu	ued											
Biocontrol	agent	s						nnm				
Discontion	-50m							rhu				
			C	u	(Co		Fe		Cd	P	0
NRRI B. 1594	P 1		62	1	2	68	7	017		368	72	6
V NDDL NDC	11		03	1	3	00	1	1.62		100	13	0
A NKKL NKS-	P 2		65	3	4	28	8	163		428	- 38	1
213	MP		64	2	3	98	7	590		398	56	1
	Tr1		160)()	-10)50	20)150	1	100	124	50
	TEI	MD	14	0	1	64	1	165		176	12	2
	ILI	VIP	14	9	1	04		105		170	12	
	TE I	BP	15	4	1	85]	187		199	- 70)
	Tr2		67	7	2	25	13	3000		677	110	51
	TE I	MP	5		13			71		70	10	7
	TEI		7	7		-45		05		04	- 10	0
	IEI	BP	/			39		83		84	50	5
NRRL NRS-	1264	1	32	6	4	56	8	630	456		39	1
1264 X NRRL	2643		54	9	1	67	6	061		244	76	6
B-2643	MD	-	12	7	2	11	7	245		250	22	2
D-2043	IVIF		43	/	5	11	/	545		330	23	5
	Trl		61	2	1	93	Ľ	2806		483	90	3
	TE I	MP	40)	-	38		74		38	28	8
	TE I	RР	- 89	2	_	58		48		6	13	1
	T_2		1(20	10	200	20	150	1	200	15	50
	1r2		160	0	13	500	20	0150	1	300	15:	50
	TE I	MP	26	6	3	18	1	174		271	56	5
				-								-
	TE I	BP	- 39	1	1	85	1	133		185	29	6
NRRI B-358 X	D1		50	0	1	80	6	557		245	50	0
NDDL D (42	1 1 DO		37	0	1	00	0	020		100	17	0
INKKL B-642	P 2		- 30	1	1	98	2	830		198	17	9
	MP		44	6	1	89	4	694		217	38	5
	Tr1		42	6	2	80	5	373		266	52	0
						•••					-	-
	TE I	MP	-4	1	2	18	-	14	_	23	3	5
	<u> </u>			-								-
	TE I	BP	-2	8		56		-18		9	-1	2
	Tr2		39)	3	33	8	339		43	75	5
	TE	MP	_0	1	-	83	_	-82		-80	-8	0
	TE	חס		2		00 01		07		00	-0	7
	IEI	٥r	-9	3	-	04	-	0/		-02	-8	1
NKKL B-2643	P1		54	9	1	67	6	061		244	70	5
X NRRL B-642	P2	_	30	1	1	98	2	830	_	188	17	9
	MP		42	5	1	82	Δ	445		216	12	7
	T-1		-12	5		50	- -	166		175	20	5
	111		22	5	2	50	3	100		113	32	J
	TE I	MP	-4	1	2	¥2		-29		-19	15	6
	TE I	BP	-5	9	4	54	-	-48		-28	32	.8
	Tr?		20	8	1	68	5	220		194	27	4
	TE 1	MD	2)	0	1	0	5	17		10	17	5
	IEI	viP	-3	U	-	ð		1/		-10	15	3
	TE I	BP	-4	6		1		-14		-20	32	.6
NRRL B-41228	4122	28	51	4	4	95	7	561		533	66	6
X NRRL B-642	642		30	1	1	98	2	830		188	17	9
11 TUNE D-042	1042		30	7		10		105		200	17	2
	MР		40	/	3	46	5	195		300	42	2
	Tr1		108	00	10	800	16	0000	8	3800	880)0
	TE I	MP	254	54	-30)21	2	980	2	2344	198	85
	TEI	- RP	200)1	20	187	-	016	1	551	10	21
		1	200)1 70	20	102	10	010	1	551	144	-1 50
1	1r2		275	50	52	250	10	0000	- 3	\$750	17	50

	TE MP	576	1417	1825	942	1736
	TE BP	435	961	1223	604	1064
NRRL B-642	P1	514	495	7561	533	666
X NRRL B-	P2	301	198	2830	188	179
4375	M.P.	407	346	5195	360	422
	Tr1	10800	10800	160000	8800	8800
	TE MP	2554	3021	2980	2344	1985
	TE BP	2001	2082	2016	1551	1221
	Tr2	2750	5250	100000	3750	7750
	TE MP	576	1417	1825	942	1736
	TE BP	435	961	1223	604	1064
NRRL B-642 X	P1	301	198	2830	188	179
NRRL NRS-	P2	653	428	8163	428	387
213	MP.	477	313	5496	308	283
	Tr1	410	205	5038	230	25
	TE MP	-14	-35	-8	-25	-91
	TE BP	36	4	78	22	-86
	Tr2	1250	1750	33333	1833	3250
	TE MP	162	459	506	495	1048
	TE BP	315	784	1078	875	1716
NRRL B-4375	P1	335	167	4188	188	293
X NRRL NRS-	P2	653	428	8163	428	387
213	MP	494	297	6175	308	340
	Tr1	597	675	10311	597	1246
	TE MP	21	127	67	94	266
	TE BP	78	304	146	218	325
	Tr2	640	420	7860	320	760
	TE MP	30	41	27	4	124
	TE BP	91	151	88	70	159

MP = Mid parents, TEMP= Transconjugant efficiency related to mid-parents, TEBP = Transconjugant efficiency related to better parent.

Most treatments with bacterial recombinants exceeded one hundred percentage than their parental strains in their efficiency of heavy metals uptake from waste waters. This reflected the important role of bacterial recombinants to be used in bioremediation experiments in industrial sites. The data obtained herein agreed with **Brierley** *et al.* (1986) , who suggested that a metal loading capacity greater than 15% of biomass could be used as an economic threshold for practical applications of biosorption as compared with alternative techniques.

In conclusion, the removal of heavy metals from industrial waters has become an important application in water and wastewater treatment systems. Many bacterial strains contain genetic determinants to heavy metals uptake such as Hg, Ag, Ci, Cd and undoubtedly others. These resistance determinants are often found on plasmids. Biosorption is being an alternative to conventional methods for the removal of toxic heavy metals from chemical industrial effluents. The results obtained in this study indicated the potential use of recombinant bacteria for efficient removal of heavy metals from industrial effluents containing higher concentration of heavy metals.

References

[1] Ahmad, I.; S. Hayat; A. Ahmad; A. Inam and Samiullah. 2005. Effect of heavy metal on survival of certain groups of indigenous soil microbial population. Journal of Applied Science and Environmental Management, 9(1): 115-121.

- [2] **Bakker W. 2006.** Enhanced hybrid vigor Benefits Breeder and Broiler. Cobb Focus Issue 2.
- [3] **Boronin AM .1992.** Diversity of *Pseudomonas* plasmid. The Federation of European Microbiological Societies. 100: 461-468.
- [4] Brierley JA .1990. Production and application of a *Bacillus*-based product for use in metals biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, FL, pp 305–312.
- [5] **Brierley, J.A.; G.M. Goyak and C.L. Brierley, 1986.** Considerations for commercial use of natural products for metals recovery In: Eccles H and Hunt S. editors. Immobilization of ions by Biosorption Chechester UK: Ellis Horwood, 105-117.
- [6] Chu L; Mukhopadhyay D; Mongri Y; Kum SK and Misra TK .1992. Regulation of the *Staphylococcus aureus* plasmid PI258 mercury resistance operon. *Bacteriol*. 174: 7044-7047.
- [7] Churchill SA; Walters JV; Churchill PF.1995. Sorption of heavy metals by prepared bacterial cell surfaces. J Environ Eng 121:706–711
- [8] Collins CH and Lyne PM .1985. Microbiological Methods. 5th ed. Butterworths, London, pp. 167-181.
- [9] **Coombs JM and Barkay T .2004.** Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from deep terrestrial subsurface. Appl Environ Microb. 70: 1698-1707.
- [10] **Duffus JH.2002**. "Heavy metals" A meaningless term? (IUPAC Techinical Report). Pure and Applied Chemistry; 74(5) 793-807.
- [11] **Fakayode, P.K., 2005.** Alteration in Physico-chemical characteristics of soil irrigated with sugar mill effluent. Journal of CEnvironmental Biology, 12: 103-109.
- [12] **Gupta A; Phung LT; Taylor DE and Silver S .2001.** Diversity of silver resistance genes in IncH incompatibility group plasmids.Microbiology 147: 3393-3402.
- [13] John Milton, D and Reetha, D.2012. Removal oF heavy metals using bacteria isolated from lignite mining environment. International Journal of Recent Scientific Research Vol. 3, Issue, 12, pp. 1071 – 1078
- [14] Kita, G. and Skoblewski, P. 2010. Biosorption of heavy metals – modern and cheap method of polluted wastewater treatment. Food Chemistry and Biotechnology, Vol. 74:99-104.
- [15] **Leonard S.S.; Marres GK and Shi XL.2004**. Metalinduced oxidative stress and signal transduction. Free Rad Biol Med.; 37:1921-1942.
- [16] Lessel, M.; D. Balzer; K. Weyrauch and E. Lanka, 1993. The mating pair formation system of plasmid RP4 defined by RSF 1010 mobilization and donorspecific phage propagation. J. Bacteriol., 175(20): 6415-6425.
- [17] Liu H.L.; B.Y. Chen; Y.W. Lana and Y.C. Cheng, 2004. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal, 97: 195-201.
- [18] Nakajima, A. and T. Sakaguchi, 1986. Selective accumulation of heavy metals by microorganisms. Appl. Micro. Biotech., 24: 59-64.

- [19] Neytzell -De Wildes, F. G. 1991. Reassessment of the Strategy with respect to industrial effluent discharge with special reference to advanced technology treatment methods: phase I. Industrial effluent discharge problem areas. WRC Report No. 407/1/92.
- [20] Preetha, B. and T. Viruthagiri, 2005. Biosorption of zinc (II) by *Rhizopus arrhizus*: equilibrium and kinetic modeling. African Journal of Biotechnology, 4: 506-508.
- [21] **Rajaram T. and Ashutost D .2008**. Water pollution by industrial effluents in India: discharge scenario and case for participatory ecosystem specific local regulation. Envr. J., 40(1), pp56-69.
- [22] Roth, J.R. and R.V. Sonti, 1989. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics, 123: 19-28.
- [23] **Ting, A.S. Y and C.C Choong. 2009.** Biosorbents for heavy metals removal and their future. Biotechnology Advances.27: 195-226.
- [24] Veitia R. A. and Vaiman D.2011. Exploring the mechanistic bases of heterosis from the perspective of macromolecular complexes. FASEB J. vol 25: 476-482.
- [25] Wang J and Chen C.2006. Biosorption of heavy metals by Saccharomyces cerevisiae: Rev. Biotechnol. Adv., 24: 427-451.