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Abstract: Label cost optimization proposes a new improvement in label cost function, improving existing moves of α-expansion 
algorithm and introducing some new moves for this algorithm. Instead of k-mean optimization algorithm new technique i.e. fast 
approximation can be used in α-expansion algorithm to optimize label cost function. In order to perform comparison, different metrics 
of energy minimization will be considered. An appropriate comparison will be drawn among proposed technique and previous well 
known techniques. The objective is to effectively optimize energies so that satisfactory image segmentation can be obtained (represented 
with different labels respective to different objects).  
 
Keywords: Energy minimization, labels, α-expansion, segmentation, NP-hard, local minimum, non-parametric histogram. 
 
1. Introduction 
 
Energy minimization is of strong practical importance to 
computer vision. Energy expresses our criteria for a good 
solution i.e. low energies are good, high energies are bad, 
independent of any algorithm. Even for low level vision 
problems we are confronted by energies that are 
computationally hard to minimize. Computer vision is full of 
‘labelling’ problems cast as energy minimization. For 
example, the data to be labelled could be pixels, interest 
points, point correspondences, or mesh data such as from a 
range scanner. Depending on the application, the labels 
could be either semantic (object classes, types of tissue) or 
describe geometry/appearance (depth, orientation, shape, 
texture).  
 
1.1 Label Cost Energy Minimization 
 
There are many labelling problems for which the labels 
naturally form groups. In computer vision, a recent trend is 
the use of ‘context’ to resolve ambiguities in object 
recognition. The idea is that certain groups of labels are self-
consistent because they tend to appear together, e.g. the {car, 
road, sky} labels all belong to the “outdoors” context, while 
{table, chair, wall} all belong to the “indoors” context. In 
computer graphics, one may wish to automatically classify 
the faces of a 3D mesh into semantic parts for the benefit of 
artists and animators. The part labels arm, tail, and wheel 
naturally belong to different groups based on their context 
(humanoid, quadruped, and vehicle). In operations research, 
facility location can be cast as a labelling difficulty, and 
hierarchical variants have been studied. All of these 
disparate labelling problems are similar from an 
optimization point of view. When labels are clearly grouped 
in a hierarchy, the costs in the energy are naturally 
structured. 
 
1.2 How α-Expansion Works 
 
The α-expansion algorithm performs local search using a 
powerful class of ‘moves’. Given an initial labelling ^f and 
some particular label α ∈ L, a α-expansion move gives each 

variable the following binary choice: either keep the current 
label ^fp, or switch to label α. Let Mα(^f) denote the set of 
all moves (labellings) that can be generated this way, in 
other words Mα(^f) = {f : fp ∈ { ^fp} ∪ {α}}.  
 
All variables are simultaneously allowed to keep their 
current label or to switch, so there are an exponential 
number of possible moves. For each choice of α, we must 
efficiently find the best possible move. In practice, this sub-
problem is solved by casting it as a graph cut and using 
combinatorial algorithms to compute the optimal binary 
configuration [8].Because a graph cut finds the best move 
from an exponential number of possibilities, the α-expansion 
algorithm is a very large-scale neighbourhood search 
(VLSN) technique and is very competitive in practice [9]. 
 
With respect to some current labelling ^f, the full set of 
possible expansion moves is M (^f) = ∪ α∈L Mα(^f). The α-
expansion algorithm simply performs local search over the 
full search neighbourhood M (^f). Perhaps surprisingly, 
local search with expansion moves will terminate with a 
labelling ^f that is within a constant factor from the globally 
optimal labelling f∗. 
 
The α-expansion algorithm is generally implemented as 
shown below. 
 
α-EXPANSION (E) — local search with expansion moves 
1 f^:= arbitrary labelling 
2 repeat 
3 for each α ∈ L 
4 f := argminf∈Mα(f^) E(f) // solve via graph cut 
5 if E(f) < E(f^) 
6 f^:= f 
7 until converged 
8 return f^ 
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1. Energy Minimization Algorithms 
 
2.1 Iterated Conditional Modes (ICM) 
 
Iiterated conditional modes [1] uses a deterministic “greedy” 
strategy to find a local minimum. It starts with an estimate of 
the labelling, and then for each pixel it chooses the label 
giving the largest decrease of the energy function. This 
process is repeated until convergence, which is guaranteed 
to occur, and in practice is very rapid. Unfortunately, the 
results are extremely sensitive to the initial estimate, 
especially in high-dimensional spaces with non-convex 
energies (such as arise in vision) due to the huge number of 
local minima. ICM is assign each pixel the label with the 
lowest data cost. This resulted in significantly better 
performance. 
 
2.2 Graph Cuts 
 
The two most popular graph cuts algorithms [4], called the 
swap move algorithm and the expansion move algorithm 
were introduced in [7]. These algorithms rapidly compute a 
strong local minimum, in the sense that no “permitted move” 
will produce a labelling with lower energy. For a pair of 
labels α, β, a swap move takes some subset of the pixels 
currently given the label α and assigns them the label β, and 
vice-versa. The swap move algorithm finds a local minimum 
such that there is no swap move, for any pair of labels α, β 
that will produce a lower energy labelling. Analogously, we 
define an expansion move for a label α to increase the set of 
pixels that are given this label. The expansion move 
algorithm finds a local minimum such that no expansion 
move, for any label α, yields a labelling with lower energy. 
The criteria for a local minimum with respect to expansion 
moves (swap moves) are so strong that there are many fewer 
minima in high dimensional spaces compared to standard 
moves. In the original work of [7] the swap move algorithm 
was shown to be applicable to any energy where Vpq is a 
semi-metric and the expansion move algorithm to any 
energy where Vpq is a metric. The results of [9] imply that 
the expansion move algorithm can be used if for all labels α, 
β, and γ, Vpq(α, α) + Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β,α). The 
swap move algorithm can be used if for all labels α,β Vpq(α, 
α) + Vpq(β, β) ≤ Vpq(α, β) + Vpq(β,α). (This constraint 
comes from the notion of regular, i.e. sub modular, binary 
energy functions, which are closely related to graph cuts.) If 
the energy does not obey these constraints, graph cut 
algorithms can still be applied by “truncating” the violating 
terms [10].  
 
2.3Max-product loopy belief propagation (LBP) 
 
To evaluate the performance of LBP, we can implement the 
max-product LBP version, which is designed to find the 
lowest energy solution. The other main variant of LBP, the 
sum-product algorithm, does not directly search for a 
minimum energy solution, but instead computes the 
marginal probability distribution of each node in the graph. 
In general, LPB is not guaranteed to converge, and may go 
into an infinite loop switching between two labelling present 
a number of ways to speed up the basic algorithm. In 
particular, LBP implementation uses the distance transform 

method which significantly reduces the running time of the 
algorithm [2]. 
 
2.4 Tree-reweighted message passing (TRW) 
 
It is a message-passing algorithm similar, on the surface, to 
LBP. An interesting feature of the TRW algorithm is that it 
computes a lower bound on the energy. The original TRW 
algorithm does not necessarily converge, and does not, in 
fact, guarantee that the lower bound always increases with 
time. An improved version of TRW was used, which is 
called sequential TRW, or TRW-S. In this version, the lower 
bound estimate is guaranteed not to decrease, which results 
in certain convergence properties. In TRW-S we first select 
an arbitrary pixel ordering function S (p). The messages are 
updated in order of increasing S (p) and at the next iteration 
in the reverse order. Trees are constrained to be chains that 
are monotonic with respect to S (p).  
 
This Introduction covers the terminology and techniques 
used for the cost labeling approach. Future work will be 
focused around improvement in label cost function, 
improving existing moves of α-expansion algorithm and 
introducing some new moves for this algorithm. Some, new 
technique will be used in α-expansion algorithm to optimize 
label cost function and utilize it for better results. Gaussian 
mixture models are formed by combining multivariate 
normal density components. Gaussian mixture models are 
often used for data clustering [11]. Clusters are assigned by 
selecting the component that maximizes the posterior 
probability. Like k-means clustering, Gaussian mixture 
modeling uses an iterative algorithm that converges to a 
local optimum. Gaussian mixture modeling may be more 
appropriate than k-means clustering when clusters have 
different sizes and correlation within them.  
 
2. Literature Survey 
 
The objective of the literature review is to find and explore 
the benefits of Energy Minimization algorithms and also 
what are the different problems in existing algorithms and 
techniques. The main goal of this literature review is to find 
the gaps in existing research and methods and also what will 
be the possible solutions to overcome these holes. 
 
Andrew Delong et.al [5] In this paper author describes the 
α-expansion algorithm has had a significant impact in 
computer vision due to its generality, effectiveness, and 
speed. It is commonly used to minimize energies that 
involve unary, pair wise, and specialized higher-order terms. 
Their main algorithmic contribution is an extension of α-
expansion that also optimizes “label costs” with well 
characterized optimality bounds. Label costs penalize a 
solution based on the set of labels that appear in it, for 
example by simply penalizing the number of labels in the 
solution. As energy has a natural interpretation as 
minimizing description length (MDL) and sheds light on 
classical algorithms like K-means and expectation-
maximization (EM).Label costs are useful for multi-model 
fitting and several such applications: homography detection, 
motion segmentation, image segmentation, and compression. 
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Lena Gorelick et.al [6] In this paper author describes 
computers vision problems elegantly in terms of energy 
minimization by characterizing a class of energies with 
hierarchical costs and proposing a novel hierarchical fusion 
algorithm. In semantic segmentation one could rule out 
unlikely object combinations via hierarchical context. In 
geometric model estimation, one could penalize the number 
of unique model families in a solution, not just the number 
of models—a kind of hierarchical MDL criterion. 
Hierarchical fusion uses the well-known α-expansion 
algorithm as a subroutine, and offers a much better 
approximation bound in important cases. 
 
Olga Veksler et.al [7] In this paper author addresses the 
problem of minimizing a large class of energy functions that 
occur in early vision. The major restriction is that the energy 
function's smoothness term must only involve pairs of 
pixels. Two algorithms are proposed that use graph cuts to 
compute a local minimum even when very large moves are 
allowed. The first move considered is an α-β swap: for a pair 
of labels α β; this move exchanges the labels between an 
arbitrary set of pixels labeled and another arbitrary set 
labeled β. The first algorithm generates a labeling such that 
there is no swap move that decreases the energy. The second 
move considered is a α-expansion: for a label α, this move 
assigns an arbitrary set of pixels the label α. The second 
algorithm, which requires the smoothness term to be a 
metric, generates a labeling such that there is no expansion 
move that decreases the energy 
 
Vladimir Kolmogorov[8] Minimum cut/maximum flow 
algorithms on graphs emerged as an increasingly useful tool 
for exact or approximate energy minimization in low-level 
vision. As the combinatorial optimization literature provides 
many min-cut/max-flow algorithms with different 
polynomial time complexity. The algorithms include both 
Goldberg-Tarjan style “push-relabel” methods and 
algorithms based on Ford-Fulkerson style “augmenting 
paths”. These algorithms have been benchmarked on a 
number of typical graphs in the contexts of image 
restoration, stereo, and segmentation.  
 
Yuri Boykov et.al [3] In the last few years, several new 
algorithms based on graph cuts have been developed to 
solve energy minimization problems in computer vision. 
Each of these techniques constructs a graph such that the 
minimum cut on the graph also minimizes the energy. Yet, 
because these graph constructions are complex and highly 
specific to a particular energy function, graph cuts have seen 
limited application to date. In this paper, a characterization 
of the energy functions that can be minimized by graph cuts 
has been given. However the results are restricted to 
functions of binary variables. Energy functions can be 
minimized using graph cuts, among the energy functions 
that can be written as a sum of terms containing three or 
fewer binary variables. A general-purpose construction to 
minimize such an energy function using a necessary 
condition for any energy function of binary variables to be 
minimized by graph cuts i.e.concerning energies of the form 
E = D + V [2].By making the strong assumption that both D 
and V are tree metrics, and can compute a global optimum. 
However, most applications do not satisfy the metric 
assumption on data costs D. 

Richard Szeliski et.al [9] Among the most exciting 
advances in early vision has been the development of 
efficient energy minimization algorithms for pixel-labeling 
tasks such as depth or texture computation. It has been 
known for decades that such problems can be elegantly 
expressed as Markov random fields, yet the resulting energy 
minimization problems have been widely viewed as 
intractable. Algorithms such as graph cuts and loopy belief 
propagation (LBP) have proven to be very powerful. 
However, the trade-offs among different energy 
minimization algorithms are still not well understood. 
 
3. Discussion 
 
Image can be segmented by assigning different labels 
(represented by different colors) to different objects. Label 
costs penalize a solution based on the set of labels that 
appear in it, for example by simply penalizing the number of 
labels in the solution. There should be sufficient number of 
labels; too many labels do not represent good segmentation 
as multiple labels may represent subpart of single object. On 
the other hand, in case of too less number of labels, a single 
label may represent multiple objects. Label cost can be 
associated with energy terms (combination of various 
energies associated with images e.g. Smoothing Energy, 
Bending Energy, Elastic energy etc.). Most labeling 
problems in computer vision and machine learning are ill-
posed and in need of regularization, but the most useful 
regularization algorithms often make the problem NP-hard. 
The objective is to effectively optimize energies so that 
satisfactory image segmentation can be obtained 
(represented with different labels respective to different 
objects). In order to meet the objective, first task will be to 
define some label cost function in terms of energies. 
Unsupervised segmentation will be performed to assign 
labels by clustering simultaneously over pixels and color 
space using Gaussian Mixtures (for color images) and 
nonparametric histograms (for gray-scale images). Then 
based upon fast approximation based combinatorial 
optimization algorithm is implemented to minimize label 
cost function and redefine labels. α-expansion algorithm is 
already available for this purpose. The work will be focused 
around improvement in label cost function, and 
incorporating elastic energy for this algorithm.  
 
4. Conclusion and Future Scope 
 
Different metrics of energy minimization will be considered 
for performance comparison. An appropriate comparison 
will be drawn among proposed technique and previous well 
known techniques. The objective is to effectively optimize 
energies so that satisfactory image segmentation can be 
obtained (represented with different labels respective to 
different objects). New combinatorial optimization 
algorithm will be proposed to show promising experimental 
results with the new moves, which we believe could be used 
in any context where α -expansions are currently employed. 
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