
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Implementation of Efficient Architecture for
Vulnarability Packet Detection Using Verilog

M. Sivaramprasad1, D. Sridhar2

1P.G Student of Department of Electronics and Communication Engineering, SVIET, Nandamuru,
JNTUK, Kakinada, Andhra Pradesh, India

2Assistant Professor of Department of Electronics and Communication Engineering, SVIET, Nandamuru,

JNTUK, Kakinada, Andhra Pradesh, India

Abstract: Network security has always been an important issue and its application is ready to perform powerful pattern matching to
protect against virus attacks, spam and Trojan horses. However, attacks such as spam, spyware, worms, viruses, and phishing target the
application layer rather than the network layer. Therefore, traditional firewalls no longer provide enough protection. However, the
solutions in the literature for firewalls are not scalable, and they do not address the difficulty of an antivirus. The goal is
to provide a systematic virus detection hardware solution for network security for embedded systems. Instead of placing entire
matching patterns on a chip, our solution is based on an antivirus processor that works as much of the filtering information as possible
onto a chip. The infrequently accessing off-chip data to make the matching mechanism scalable to large pattern sets. In the first stage,
the filtering engine can filter out more than93.1% of data as safe, using a merged shift table. Only 6.9% or less of potentially unsafe
data must be precisely checked in the second stage by the exact-matching engine from off-chip memory. This gives a high efficiency,
improved performance and high ability of packet detection with less contribution of time in an effective way

Keywords: Algorithmic Attacks Embedded System, Memory Gap, Network Security, and Virus Detection.

1. Introduction

Network security has always been an chief issue. End users
are vulnerable to virus attacks, spams and Trojan horses, for
example. They may visit malicious websites or hackers
may gain entry to their computers and use them as
android computers to attack others. To ensure a
secure network environment, firewalls were first introduced
to block unauthorized Internet users from accessing
resources in a private network by means of simply
checking the sachet top (MAC address/IP address/port
number). Over the past few years, there has been a
substantial increase in the number of malware that have been
in print for mobile devices. As per, there exist at least 31
families and 170 variants of branded mobile malware.
Statistics have shown that at least 10 Trojans are released
every week. Even however it took computer viruses
twenty years to evolve, their mobile device counterparts
have evolve for the duration of just a length of two years.

To understand the threat that is involved, we opening
present the comparison of the environment used for
PC-based and itinerant device malware. While dealing
with a mammoth integer of virus this method drastically
reduces the probability of creature attacked. nevertheless,
attacks such when spam, spyware, worms, viruses, and
phishing target the application sheet rather than the
arrangement layer. Then traditional firewalls thumbs down
longer provide enough protection. Many solutions, such as
germ scanners, spam-mail filters, instantaneous
messaging protectors, network shields, content filters, and
peer-to-peer protector, have been in actual actuality
implement. Initially, these solutions were position into
service at the end-user side but be likely en route for be
merged into routers/firewalls to provide profound protection.
As a result, these routers stop threats on the network

periphery along with keep them not in of corporate
Networks. In this case, the firewall router might firstly
deny some connections beginning the firewall based on the
target’s IP address and the connection port. Then, the
fire-wall router would monitor the content of the web pages
to prevent the user from accessing any page that connects to
malware links or inappropriate content, based on content
filters. When the user wants to download a compressed file,
to ensure that the file is not infected, the firewall router
must decompress this file and check it using anti-virus
programs. In summary, firewall routers require several time-
consuming steps to provide a secure connection. In some
gear parallel combinational logic is applied at every one
word in the memory and a test is completed next to the same
time for coincidence with the search word. into other cases
the search word and all of the words in the memory are
shifted serially in synchronism; a single bit of the search
expression is subsequently compared to the same bit of
every solitary of the memory words using as loads of
single-bit coincidence circuits as there are words in
the memory. Amplifications of the associative
reminiscence technique allow for masking the search
word or requiring only a “close” amusement as
opposed to an exact equivalent Small parallel associative
memories are used in cache memory and effective
recollection mapping applications. Cabir was developed
for mobile phones running the Symbian and Series
60software, and using Bluetooth. The virus searches
within Bluetooth's range (about 30 meters) for mobile
phones running in discoverable mode and sends itself,
disguised as a security file, to any vulnerable devices.
The virus only becomes active if the recipient accepts the file
and then installs it.

Once installed, the virus displays the word "Caribe" on the
device's display. Each time an infected phone is turned on,

Paper ID: SEP14547 2264

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the virus launches itself and scans the area for other
devices to send itself to. The scanning process is likely to
drain the phone’s batteries. Cabir can be thought of as a
hybrid virus/worm: its mode of distribution qualifies it as a
network worm, but it requires user interaction like a
traditional virus .Since equivalent operations on many
words are expensive (in hardware), a variety of
stratagems are used on the road to approximate
associative memory operation lacking actually carrying out
the full test described here. solitary of these uses hashing
to generate a “best speculation” for a conventional address
followed bya test of the contents of that address. A
data-storage device in which a location is identified by
its informational content rather than by names, addresses,
or relative positions, and from which the data may be
retrieved.

2. Concept of a Firewall Router

Network firewalls and routers can use a rule database
to decide which packets will be allowed from one
network into another. By filtering packets the firewalls and
router can imp rove security and performance - by
excluding packets which may pose a security risk to a
network or are not relevant to it. However, as the size of
the rule list increases, it becomes difficult to maintain and
validate the rules, and the cost of rule lookup may add
significantly to latency. Ordered binary decision diagrams
(BDDs)compact method of representing and manipulating
Boolean expressions -- are a potential method of
representing the rules.

This paper explores how BDDs can be used to develop
methods that aid analysis of rules to validate them and
changes to them, to improve performance, and facilitate
hardware crutch up. 1 Introduction The growth of
network and internet communication creates several
challenges for network design. The first paper published
on firewall technology was in 1988, when engineers from
Digital Equipment Corporation (DEC) developed filter
systems known as packet filter firewalls. This fairly basic
system was the first generation of what is now a highly
involved and technical internet security feature. At
AT&T Bell Labs, Bill Cheswick and Steve Bellovin were
continuing their research in packet filtering and
developed a working model for their own company based
on their original first generation architecture. Packet filters
act by inspecting the "packets” which are transferred
between computers on the Internet. If a packet matches the
packet filter's set of filtering rules, the packet filter will
drop (silently discard) the packet or reject it (discard it,
and send "error responses" to the source). This type of
packet filtering pays no attention to whether a packet is
part of an existing stream of traffic (i.e. it stores no
information on connection "state").Instead, it filters each
packet based only on information contained in the packet
itself (most commonly using a combination of the packet's
source and destination address, its protocol, and, for TCP
and UDP traffic, the port number).

TCP and UDP protocols constitute most communication
over the Internet, and because TCP and UDP traffic by

convention uses well known ports for particular types of
traffic, a "stateless" packet filter can distinguish between,
and thus control, those types of traffic (such as web
browsing, remote printing, email transmission, file
transfer), unless the machines on each side of the packet
filter are both using the same non-standard ports. Packet
filtering firewalls work mainly on the first three layers
of the OSI reference model, which means most of the work
is done between the network and physical layers, with a
little bit of peeking into the transport layer to figure out
source and destination port numbers.[9]When a packet
originates from the sender and filters through a firewall,
the device checks for matches to any of the packet
filtering rules that are configured in the firewall and
drops or rejects the packet accordingly.

When the packet passes through the firewall, it filters the
packet on a protocol/port number basis (GSS). For
example, if a rule in the firewall exists to block telnet access,
then the firewall will block the TCP protocol for port
number 23. Two imperative issues are safety and
performance. When a new connection is established,
the firewall router scans the connection and forwards
these packet to the host after confirming that the
connection is secure. Because firewall routers focus on the
application layer of the OSI model, they must reassemble in-
coming packet to restore the original connection and
examine them through different application parsers to
guarantee a secure set-up environment. For occurrence,
believe a user search for information on web pages and
then tries to download a com-pressed file beginning a
web server.

 In this case, the firewall router might initially deny
some acquaintances from the firewall base on the
target’s IP address and the connection port. Then, the fire-
wall router would monitor the content of the web pages to
prevent the user from accessing any page that connects to
malware links or inapt pleased, based on content filters.
When the user wants to download a compressed
file, to ensure that the file is not infected, the
firewall router is obliged to decompress this file and check
it using anti-virus programs.

3. Present System

There are many algorithms and accompanying hardware
accelerators for fast pattern matching. One of the
typical algorithms is the automation approach. This
approach is based on Aho and Corasick’s algorithm
(AC), which introduces a linear-time algorithm for multi-
pattern search with a large finite-state ma-chine. Its
performance is not affected by the size of a given pattern set
(the sum of all pattern lengths). In contrast, heuristic
approaches are based on the Boyer-Moore algorithm, which
was introduced in 1977.

 Its key feature is the shift value, which shifts the
algorithm’s search window for multiple characters when it
encounters a mismatch. However, attacks such as spam,
spyware, worms, viruses, and phishing target the application
layer rather than the network layer. Therefore, traditional

Paper ID: SEP14547 2265

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

firewalls no longer provide enough protection. Many
solutions, such as virus scanners, spam-mail filters,
instant messaging protectors, network shields, content
filters, and peer-to-peer protectors, have been effectively
implemented. Initially, these solutions were implemented
at the end-user side but tend to be merged into
routers/firewalls to provide multi-layered protection.

As a result, these routers stop threats on the network
edge and keep them out of corporate networks. The
search window is a range of text exactly fetched by pattern
matching algorithms for each examination. This algorithm
performs better because it makes fewer comparisons
than the naïve pattern-matching algorithm. At runtime, the
Boyer-Moore algorithm uses a pattern pointer to locate a
candidate position by assuming that a desired pattern
exists at this position. The algorithm then shifts its search
window to the right of this pattern. By default, desired
patterns can exist in any position of a text; therefore, all
positions in a text are candidate positions and must be
examined. If the string of search windows does not
appear in the pattern, the algorithm can shift the pattern
pointer to the right and skip multiple characters from the
candidate position to the end of the pattern without
making comparisons.

Based on this concept, Wu and Manber (WM) modified the
Boyer-Moore algorithm to search for multiple patterns.
However, the performance of both of these algorithms
is bounded by the pattern length. By default, desired
patterns can exist in any position of a text; therefore, all
positions in a text are candidate positions and must be
examined. If the string of search windows does not
appear in the pattern, the algorithm can shift the pattern
pointer to the right and skip multiple characters from
the candidate position to the end of the pattern without
making comparisons. Based on this concept, Wu and
Manber (WM) [18] modified the Boyer-Moore algorithm
to search for multiple patterns. The WM algorithm is
widely used in many applications, including UNIX tools
such as agrep and glimpse. However, the performance of
both of these algorithms is bounded by the pattern length.
Its performance is not affected by the size of a given
pattern set (the sum of all pattern lengths), but it
requires a significant amount of memory due to state
explosion. Experiments [17] have shown that the
suboptimal AC algorithm requires 84.15 MB memory to
represent Snort’s rule set (4219 rules, as of December
2005). Even an Intel IXP2855 network processor (512kB
on-chip memory) must store such a pattern set in off-chip
memory.

Therefore, the memory hierarchy is the main factor in
performance. Many previous studies have tried to lower
memory requirements. In 2005, Lin Tan introduced a bit-
split method by splitting an 8-bit character into four 2-bit
characters to construct the automaton. Their state machines
are smaller than the original, and they have fewer fan-out
states for each transaction. However, the bit-split method
reads several memory blocks in parallel when matching
patterns. Thus, it can only be implemented by on-chip
memory because of its high memory read port requirements.

Piti Piyachon and Yan Luo extended this concept to the Intel
IXP2855 network processor.

 For increasingly large pattern sets, an IBM team
implemented an optimized AC algorithm on the cell
processor, and they discovered that the memory gap was the
bottleneck. As a result, they modified the algorithm and used
DMA to reduce the effect on the memory system. In
contrast, heuristic approaches are based on the Boyer-
Moore algorithm, which was introduced in 1977. Its key
feature is the shift value, which shifts the algorithm’s search
window for multiple characters when it encounters a
mismatch. The search window is a range of text exactly
fetched by pattern matching algorithms for each
examination. This algorithm performs better because it
makes fewer comparisons than the naïve pattern-matching
algorithm.

4. Virus Detection Processor

Focus on algorithms and have even developed for
specialized circuits to increase the scanning speed.
However, these works have not considered the interactions
between algorithms and memory hierarchy. Because the
number of attacks is increasing, pattern-matching processors
require external memory to support an unlimited pattern set.
This method makes the memory system the bottleneck.
However, when the pattern set is already intractably
large, a perfect solution is unattainable. Both engines
have individual memories for storing significant
information. For cost reasons, only a small amount of
significant information regarding the patterns can be stored
in the filtering Engine’s on chip memory. In this case, we
use a 32-kB on chip memory for the ClamAV virus
database, which contained more than 30 000 virus codes and
localized most of the computing inside the chip.
Conversely, the exact-matching engine not only stores
the entire pattern in external memory but also
provides information to speed up the matching
process. Our exact matching engine is space efficient
and requires only four times the memory space of the
original size pattern set. The size of a pattern set is the sum
of the pattern length for each pattern in the given pattern set;
in other words, it is the minimum size of the memory
required to store the pattern set for the exact-matching
engine. In this case, 8 MB of off chip memory was
required for the ClamAV virus database (2 MB).

 The filtering engine screens Impossible matches by
consulting two TCAM lookup tables (named no plane and
yes-plane), which are used to perform two steps of the on-
chip data-scanning as shown in Fig1. Only important
filtering signatures and skip data are stored on the chip. In
order to reduce the on-chip memory, the filtering engine
operates only on the fixed amount of the memory, including
a 16-KB TCAM and a 8.5-KB SRAM.These filtering data
are extracted from the entire virus database by pre-
processing the 30K virus patterns released from the
ClamAV. The operation principle of the virus-detection
processor. The filtering engine screens impossible matches
by consulting two TCAM lookup tables (named no-plane
and yes plane), which are used to perform two steps of

Paper ID: SEP14547 2266

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the on-chip data-scanning.

The proposed exact-matching engine also supports data
pre fetching and caching techniques to hide the access
latency of the off-chip memory by allocating its data
structure well. The other modules include a text buffer and
a text pump that pre-fetches text in streaming method to
overlap the matching progress and text reading. A load/store
interface was used to support bandwidth sharing.This
proposed architecture has six steps shown in Fig.2 for
finding patterns.

Initially, a pattern pointer is assigned to point to the start of
the given text at the filtering stage. Suppose the pattern
matching processor examines the text from left to right.
The filtering engine fetches a piece of text from the text
buffer. If the position indicated by the pattern pointer is not a
candidate position, then the filtering engine skips this piece
of text and shifts the pattern pointer right multiple characters
to continue to check the next position.

Figure 1: Virus Detection Processor Architecture

Figure 2: Two-phase pattern execution flow

Fig 2 Two-phase pattern execution flow conversely, the
exact-matching engine not only stores the entire pattern in
external memory but also provides information to speed up
the matching process. Our exact-matching engine is space-
efficient and requires only four times the memory space of
the original size pattern set. The size of a pattern set is
the sum of the pattern length for each pattern in the given
pattern set; in other words, it is the minimum size of the
memory required to store the pattern set for the exact-
matching engine. In this case,8 MB of off-chip memory was
required for the Clam AV virus database (2 MB). The
proposed exact-matching engine also supports data pre
fetching and caching techniques to hide the access latency
of the off-chip memory by allocating its data structure
well. The other modules include a text buffer and a text
pump that pre fetches text in streaming method to overlap
the matching progress and text reading. A load/store

interface was used to support bandwidth sharing.

4.1 General Process

4.1.1 No-Plane Structure
The filtering engine screens impossible matches by
consulting two TCAM lookup tables (named no-plane
and yes-plane). Which are used to perform two steps of the
on chip data-scanning to obtain a fast shift table. Which
indicates the impossible matching patterns (so-called
no plane). By comparing the input datum with the
no-plane TCAM from the least significant bit (LSB), the
engine first looks up the shift table to perform a quick shift
of impossible bytes until locating a possible match. If the
input datum is matched with an entry of no-plane, the input
string will be skipped according to the shift count stored
in the shift SRAM

4.1.2 Yes plane Structure
When the comparison of no-plane is missed or if the
corresponding shift-count is zero, the filtering engine will
enter the second step of virus detection. Then we
further look up another signature table (called the yes-plane)
to eliminate any false positives by ensuring that the
prefix has the same signature. The filtering engine will
skip the input datum if it is mismatched with the data of
the yes-plane. If a possible match is still not ruled out,
then the exactly-matching engine performs suffix matching
by making comparisons with a suffix tree stored in off-
chip memory, which can hold a large number of virus
patterns. The yes-plane TCAM to reduce more exact
comparisons. The filtering engine will skip the input datum
if it is mismatched with the data of the yes-plane. If a
possible match is still not ruled out, then the exactly
matching engine performs suffix matching by making
comparisons with a suffix tree stored in off-chip
memory, which can hold a large number of virus patterns.
The off chip memory needs roughly 8MB to store the entire
2MB virus patterns of the ClamAV .Our idea is to merge
these two single-port TCAMs into a single rectangular dual-
port TCAM and concurrently match with the whole prefix.
To achieve this goal we need a dual-port TCAM and two
SRAMs as shown in the right part of FIG, with a division
line inserted in the dual-port TCAM array to separate the no-
plane entries and the yes-plane entries. With the
proposed dual-port TCAM, the ternary cells storing “X”
terms can be minimized, and consequently both the total
memory capacity and the power consumption are reduced
It includes two single-port TCAMs and two SRAMs. One
TCAM serves as the no-plane.

4.2 Wu-Manber Algorithm

The Wu-Manber algorithm is a high performance,
multi pattern matching algorithm based on the Boyer-
Moore algorithm. It builds three tables in the pre processing
stage: a shift table, a hash table and a prefix table. The Wu-
Manber algorithm is an exact-matching algorithm, but its
shift table is an efficient filtering structure. The shift table is
an extension of the bad-character concept in the Boyer-
Moore algorithm, but they are not identical. The fig 3
shows Wu-Manber Algorithm match flow.

Paper ID: SEP14547 2267

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Wu-Manber matching process. (a) Matching flow; (b) shift table;(c) hash table + prefix table; (d) matching process.

4.3 Bloom Filter Algorithm

A Bloom filter is a space-efficient data structure used
to test whether an element exists in a given set. This
algorithm is composed of different hash functions and a long
vector of bits. Initially, all bits are set to 0 at the pre
processing stage. To add an element, the Bloom filter hashes
the element by these hash functions and gets positions of its
vector. The Bloom filter then sets the bits at these positions
to 1. The value of a vector that only contains an element
is called the signature of an element. To check the
membership of a particular element, the Bloom filter
hashes this element by the same hash functions at run
time, and it also generates positions of the vector. The fig 4
shows bloom filter algorithm match flow. Fig 4 Matching
flow

Figure 4: Matching flow

The filter only hashes all of the pattern prefixes at the
preprocessing stage. Multiple patterns setting the same
position of the bit vector are allowed. The arrows indicate
the candidate positions. The gray bars represent the search
window that the Bloom filter actually fetches for
comparison. Both the candidate position and search window
are aligned together. Thus, the Bloom filter scans and
compares patterns from the head rather than the tail,

like the WuManber algorithm. In step1, the filter hashes
“He” and mismatches the signature with the bit vector. The
filter then shifts right 1 character and finds the next
candidate position. For the search window “ee”, the
Bloom filter matches the signature and then causes a false
alarm to perform an exact-matching in steps 2 and 3.

The filter then returns to the filtering stage and shifts one
character to the right in step 4, which launches a true alarm
for the pattern “ever”. Finally, the Bloom filter filters the rest
of text and finds nothing. The Bloom filter then sets the
bits at these positions to 1. The value of a vector that
only contains an element is called the signature of an
element. To check the membership of a particular element,
the Bloom filter hashes this element by the same hash
functions at run time, and it also generates positions of the
vector. If all of these bits are set to 1, this query is claimed
to be positive, otherwise it is claimed to be negative.

The output of the Bloom filter can be a false positive
but never a false negative. Therefore, some pattern
matching algorithms based on the Bloom filter must
operate with an extra exact-matching algorithm.
However, the Bloom filter still features the following
advantages: 1) it is a space-efficient data structure; 2) the
computing time of the Bloom filter is scaled linearly
with the number of patterns; and 3) the Bloom filter is
independent. 4.4 Shift-Signature Algorithm The proposed
algorithm re-encodes the shift table to merge the
signature table into a new table named the shift-
signature table. The shift-signature table has the same size
as the original shift table, as its width and length are the
same seeing that the original change counter. There are two
fields, S flag with carry, in the shift signature table.

The carry meadow has two types of data: a shift value and a
signature. These two data types are used by two different
algorithms. Thus, the S-flag is worn to designate the data
type of a carry. The filtering steam engine can then filter the
text using a different algorithm at the same time as providing
a higher filter rate. The system used to merge these two

Paper ID: SEP14547 2268

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

tables is described as follows. First, the algorithm generates
two tables, a alter table and signature table, at the pre
processing period. The age bracket of the shift table is the
same as in the Wu-Manber algorithm. The S-flag is a1-bit
field used to indicate the data type of the bring Two data
types, shift value or signature, are defined for a carry.

The size and breadth of the shift signature counter are the
same as those of the original shift table. To join these
two tables the algorithm maps both entry in the shift table
and autograph table onto the shift signature table. For the
non-zero shift values, the S-flags are set, and their original
shift values are cut out at 1-bit to fit their carries.
Conversely, for the zero change values, their S flags are
clear, and their carries are used to store their signatures. In
this method, all of the entries in the shift-signature table
contribute to the filtering rate at run time. Because of the
address collision of bad characters, most entries contain
less than half of the maximum shift distance for a large
pattern set. Therefore, although this method sacrifices
the maximum shift distance, the filter rate is not reduced but
rather improved. The fig 5 shows Shift-Signature Algorithm
match flow.

Figure 5: Matching flow

5. Result & Analysis

5.1 Simulation Reports

Wu-Manber Algorithm

Inference: clk=clk, rst=1, after run you will get no virus
after make rst=0, apply 15 bit input string =ip if the iput
string is virus pattern set values i.e, is
ip="0001001100010100" then –output was virus detected

5.2 Bloom Filter Algorithm

Inference:clk=clkandinput
string=00000011XXXXXXXXXXXXXXXXXXXXXXXX
10110111(underlined data is signature value i.e if not
present in that signature it will go to next plane in that way
we will save the time of execution) and non underline data is
pattern
Then –output was virus detected

5.3 Shift signature Table

Generallyshift table can be constructed from the
Combination of wumanber algorithm and bloom filter
Inference:clk=clk, and rst =1 after run rst=0,apply

ip=0000010100010010 output was virus detected.

5.4 Synthesis Report

Here we increased number of virus patterns compared to
many previous designs include claimed to make available
high performance,

Paper ID: SEP14547 2269

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Conclusion

In this paper we describe a novel architecture for prototype
matching virus detection processor for network intrusion
unearthing system. The virus detection -processor is RAM-
based aim which be used to store the additional bug model to
hit upon the virus patterns .the dual port morsel CAM be

Dexterous pattern matching train is accomplished of detect
added big patterns. Since the pattern are mechanical hooked
on the co-processor with software, the planning can
continue to exist used to implement design in FPGA as
fighting vigorous as ASIC We have shown with the intention
of our blueprint filter survive talented of yielding
concert that surpass the most recent FPGA
implementations while enabling the users to course it
without having to regenerate moreover reconfigure the
hardware. Such quick configuration may become critical, as
the rate of coming out of new attack increase. Many
previous designs include claimed to make available high
performance, but the memory gap created by using
external memory decrease recital because of the
increasing size of virus databases. Furthermore, imperfect
resources restrict the expediency of these algorithms
used for embedded network security systems. Two-phase
heuristic algorithms are a solution with a tradeoff
between performances and cost due to an efficient filter
table accessible in internal recollection however, their
performance is without problems threatened by malicious
attacks. This work analyzes two scenarios of malevolent
attacks and provides two methods. The design of the
adjustable division line provides high flexibility for updating
virus databases.

References

[1] TSMC 0.13µm Logic 1P8M Salicide CU FSG

1.2V/3.3V Process Documents, Taiwan
Semiconductor Manufacturing Co., Ltd.

[2] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate
packet pattern matching using TCAM,” in Proc. 12th
IEEE Int. Conf. Netw. Protocols, 2004, pp. 174–
178.intrusion detection system,” ACMTrans. Embed.
Compute. Syst., vol. 3, pp. 614–633, 2004.

[3] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed
string searching against large dictionaries on the
Cell/B.E. Processor,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process. 2008, pp. 1–8.

[4] S. Dharmapurikar, P. Krishnamurthy, and T. S.
Sproull, “Deep packet inspection using parallel
bloom filters,” IEEE Micro, vol. 24, no. 1, pp.52–61,
Jan. 2004.

[5] L. Tan and T. Sherwood, “A high throughput string
matching architecture for intrusion detection and
prevention,”in Proc. 32 nd Annu. Int. Symp. Comput.
Arch., 2005, pp. 112–122.

[6] Chieh-Jen Cheng, Chao-Ching Wang, WeiChun Ku,
Tien-Fu Chen, and Jinn-Shyan Wang, “Scalable High-
Performance Virus Detection Processor Against a
Large Pattern Set for Embedded Network Security”
Commun. VOL. 20, NO. 5, MAY 2012.

[7] V. Aho and M. J. Corasick, “Efficient string matching:

An aid to bibliographic search,” Commun. ACM,
vol. 18, pp. 333–340, 1975.

[8] O. Villa, D. P. Scarpazza, and F. Petrini, “ Accelerating
real-time string searching with multicore processors,”
Computer, vol. 41, pp. 42–50,2008.

[9] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen, “A
fast string matching algorithm for network processor-
based intrusion detection system,” ACMTrans. Embed.
Comput. Syst., vol. 3, pp. 614–633, 2004.

[10] Micron Technology, Inc., Boise, ID, “256MB DDR2
SDRAM datasheet,” 2003.

Author Profile

M. Sivaramprasad doing M.Tech VLSI System
Design in Sri Vasavi Institute of Engineering and
Technology, Nandamuru, Received B.Tech degree in
Electronics and communication Engineering at Sri
Vasavi Institute of Engineering and Technology,

Nandamuru.

D. Sridhar Received the M.Tech degree in VLSI
System Design from Avanthi Institute of Engineering
and Technology, Narsipatnam, B.Tech degree in
Electronics and communication engineering at
Gudlavalleru. He has total Teaching Experience (UG

and PG) of 7 years. He has guided and co-guided 5 P.G and U.G
students. His research areas included VLSI system Design, Digital
signal processing, Embedded systems

Paper ID: SEP14547 2270

