Adsorption of Fluoride from Aqueous Phase by Agro Based Adsorbent

*G. Anusha1, J. Raja Murugadoss2

*Associate Professor1, Department of Civil Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India
Professor & Head, Department of Civil Engineering, KPR Institute of Engineering & Technology, Coimbatore, India

Abstract: *The presence of fluoride in higher concentration is probably the most common problem faced by the consumers and water treatment professionals. It may cause dental fluorosis. Hence to remove fluoride from water among the methods available, adsorption has gained popularity due to several advantages. A batch study adsorption has been conducted by adsorption process using activated carbon prepared from Bale fruit (Limoniaacidissima) shell as adsorbent and the removal efficiency is determined by optimizing the parameters such as dosage, time, pH and concentration. The maximum removal efficiency was found to be more than 63%. This experimental study proves to be an economical method of fluoride removal since the developed product is a waste product. Even small industries, with fluoride bound wastewater can adopt this method of treatment and hence prevent the polluted water entering the stream.

Keywords: Adsorption, Isotherm, Fluoride, Activated carbon, Limonia Acidissima

1. Introduction

The aromated fluorinated compounds are quite stable and they have no stable and they have no natural decompositions. Hence the detoxification of these compounds under mild condition becomes necessary. The cleavage of C-F bond of fluorinated compounds results in the formation of fluoride ions. Fluoride is one of the essential nutrients for human beings. Excess fluoride consumption causes dental, skeletal fluorosis. Hence the surface and ground water sources containing excessive fluorides are required to be defluoridated before consumption (Bhargava.D.S, 2008).

Adsorption studies were carried out using a batch reactor. The prepared solution containing iron was bottled in BOD bottles of 150 ml and agitated using orbital shaker for required time period. The concentration was varied from 0.05mg/L to 2 mg/L. The pH (1,3,5,7,8,9) of each test solution was adjusted to the required value with suitable acid and alkali solutions. The time was varied from 5 minutes - 25 minutes and the adsorbent dosage was varied from 0.5g - 2.5g. After agitating the sample for the required contact time, the contents were filtered through whatman No.41 filter paper and were analysed using UV-visible spectrophotometer and residual concentration was determined.

3. Results and Discussions

Effect of Contact Time

Figure 1 shows the effect of contact time on the uptake of Fluoride onto the carbon. The contact time was varied from 15 minutes to 30 minutes and the optimum contact time was found to be 20 minutes.

Effect of Contact Time

Figure 1 shows the effect of contact time on the uptake of Fluoride onto the carbon. The contact time was varied from 15 minutes to 30 minutes and the optimum contact time was found to be 20 minutes.

Figure 1: Adsorption curve for different contact time
Effect of pH

The pH of the solution is an important parameter controlling the adsorption process. The adsorption of fluoride from aqueous solution is dependent on pH of the solution. The adsorption of fluoride was studied at various pH values (1, 3, 5, 7, 9, 11) (Fig.2). The uptake of fluoride was dependent on pH and the optimal fluoride removal efficiency occurred at pH 5.

Effect of Adsorbent

The amount of adsorbent on the efficiency of adsorption was studied. The adsorption dose was varied from 0.5 g to 2.5 g and the adsorption studies were performed at pH 5 (Fig.3). The maximum removal of fluoride was attained at an adsorbent dose of 1.5 g with no further appreciable increase in the removal percentage after 1.5 g.

Figure 4: Langmuir isotherm for Limona Acidissima

Here the $R^2 = 0.9875 < 1$ which shows that the adsorbent process is favourable for fluoride uptake.

4. Conclusion

The adsorption capacities of sludge were strongly dependent on the pH of the solution. The sorption capacity was decreased with an increase in the pH and an increase in the initial concentration and after reaching the optimum value there was no appreciable increase with increasing contact time. The rate of increase of fluoride was more significant up to a contact time of 20 minutes. From this study it may be concluded that sludge powder may be used as a low-cost natural sorbent and it is available in abundant sources and may also be effective in removing fluoride present in wastewater.

References

