
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Malware Detection and Tracer Approach for
Operating System

Dokuparthi Prasanthi1, V. Rama Krishna2

1M.Tech student, Department of CSE, Anurag Group of Institutions, Hyderabad, India

2Assistant Professor, Department of CSE, Anurag Group of Institutions, Hyderabad, India

Abstract: Modern computer systems are built on a foundation of software components from a variety of vendors. While critical
applications might undergo extensive testing and evaluation procedures, the heterogeneity of software sources hazardous the integrity of
the execution environment for these trusted programs. For instance, if an attacker can be able to merge an application exploit with
privilege increase vulnerability, the Operating System (OS) can become corrupted. Mandatory Access Control (MAC) in a commercial
operating system to handle malware problem is a challenge but also a capable approach. The firmest barriers to apply MAC to defeat
malware programs are the incompatible and unusable problems in existing MAC systems. The aim of our study is to address these issues
design a novel Efficient Malware Detection and Tracer design (EMDT) using Hidden Markov model, which incorporates intrusion
detection and tracing in an operating system. In this proposed approach conceptually consists of three actions: tracing, detecting and
restricting deduced intruders .The novelty of the proposed study is that it leverages light-weight intrusion detection and tracing
techniques to automate security label configuration that is widely acknowledged as a tough issue when applying a MAC system in
practice. The other is that, rather than controlling information flow as a traditional MAC does, it traces intruders and restricts only their
significant malware behaviours’, where intruders characterize processes and executables that are potential agents of a remote attacker.
Our prototyping and testing’s on Windows operating system show that Tracer can effectively defeat all malware samples tested via
blocking malware behaviours while not causing a significant compatibility problem.

Keywords: Detection, intrusion, malware, tracing, vulnerability.

1. Introduction

Malicious software (i.e., Malware) is one of the most severe
computer security problems today. A network of hosts which
are cooperated by malware and controlled by attackers can
cause a lot of damages to information systems. As a useful
malware defence technology, Mandatory Access Control
(MAC) works without relying on malware signatures and
blocks malware behaviours before they cause security
damage. Even if an unauthorized user manages to breach
other layers of defence, MAC is capable of act as the last
shelter to avoid the entire host from being compromised.
However, MAC mechanisms built in commercial operating
systems (OS) often go through from two problems which
make general users unenthusiastic to assume them. One
problem is that a built-in MAC is mismatched with a lot of
application software and thus interferes with their running
and the other problem is low usability, which creates it
difficult to configure MAC properly. Our observations are as
follows: The incompatibility problem is introduced because
the security labels of existing MACs are not capable to
distinguish between malicious and benign entities, which
Causes a enormous number of False Positives (FP) (i.e.,
treating benign operations as malicious) thus avoiding many
benign software from performing legal operations; the low-
usability problem is launched, because existing MACs are
not capable to automatically label the huge number of
entities in OS and thus require tough configuration work at
End users. With these investigation results, our main
objective is to propose a novel MAC enforcement approach
EMDT, this consists of three actions: Detection, tracing and
restriction.

Each process or executable has two states, suspicious or
benign. The contributions of this study are We introduce
EMDT, a novel MAC enforcement approach which
combines intrusion detection and tracing techniques to
disable malware on a commercial OS in a compatible and
usable manner. We have implemented EMDT to immobilize
malware timely without need of malware signatures. We
investigate the root reason so discover compatibility and low
usability problems of existing MACs. Although not all the
observations are brand new, we consider that understanding
these reasons more comprehensively and illustrating them
through the design of an actual system are useful for other
MAC researchers.

2. Related Work

DTE proposed by Badger et al. (1995) is a classical MAC
model to confine process execution, which group’s processes
and files into domains and types, respectively and controls
accesses among domains and types. Tracer can be
considered as a simplified DTE that has two domains (i.e.,
benign and suspicious) and four types (i.e., benign, read-
protected, write-protected and suspicious). Moreover, Tracer
can usually configure the DTE attributes (i.e., domain and
type) of processes and files under the maintain of intrusion
detection and tracing so as to develop usability. PRECIP
Wang et al. (2008) addresses several practical issues that are
significant to contain spyware that be determined to leak
sensitive information. The risk-adaptive access controls
(Kaspersky Lab, 2012). That targets to create access control
more dynamic so as to attain a better tradeoff between risk
and benefit. Most existing antimalware technologies are
based on detection (Kirda et al., 2006; Martignoni et al.,
2008). Tracer tries to combine detection and access control

Paper ID: SEP14492 1779

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

so that it not only can detect but also can block malware
behaviours before their harming security. Antimalware
technology that be similar to Proposed EMDT is behaviour
blocking (Nachenberg, 2002) which can confine the
behaviours of definite adverse programs that are profiled in
advance. Many commercial antimalware tools (Kaspersky
Lab, 2012; Viper Inc., 2012) also have a behaviour-based
module to protect against unknown malware programs.

Problems in MAC

Incompatibility is a familiar problem when enforcing a MAC
modeling operating system (Li et al., 2007; Fraser, 2000;
Wang et al., 2008). To examine its core reason, in a secure
network environment, we set up two mechanisms to run
MAC enforced operating systems with MLS policy allowed
and MAC module allowed. After a few days, we surveyed
that these MAC systems produced a enormous number of log
records about denied accesses, which specified that some
applications failed and some acted irregularly. As the
operation environment is secure without intrusion and
malware, these denied accesses are thus “false positive.”
However, from the view of intrusion thwarting, these
processes do not necessarily represent intruders so that their
“read” or “write” accesses to the/tmp should not be merely
denied. Although it is possible to resolve this problem by
adding “hiding sub directories” under/tmp, it is still difficult
to eliminate the FPs resulting from many other shared
entities on an OS Relying on these labels, a MAC system
habitually fails to make correct decisions on intrusion
blocking which eventually results in many FPs. Low
usability is another problem in a MAC-enabled system, as it
often requires make difficult configurations and
unconventional ways of usage.

3. Proposed System

Efficient Malware Detection and Tracer (EMDT): In this
section, we present our EMDT approach that aims to
immobilize malware in a OS by disagreeing malware
behaviours. The adversaries of EMDT are malware
programs that break into a host through the network or
removable drives. As OS is the most popularly attractive to
hackers, the description of EMDT is designed Appling it to
operating systems with some changes.

4. Overview of EMDT

4.1 Overview

The design of an access control mechanism is to define the
security label. We initiate a new form of security label called
suspicious label for our EMDT approach. It has two values:
suspicious and benign. Meanwhile, EMDT only allocates a
suspicious label to a process or an executable, because a
process is possibly the agent of an intruder and an executable
determines the execution flow of a procedure which
represents an intruder. When a process requests to access
these entities, EMDT mainly uses their DAC information to
make access control decisions, thus a vast amount of
configuration work can be reduced while keeping traditional

usage conventions unchanged.

Figure 1: EMDT Overview

The above Fig. 1 gives an overview of EMDT which
consists of three types of actions, tracing, detection and
restriction. Each process or executable has two states,
suspicious and benign. The restriction action forbids a
suspected intruder to make malware behaviours in order to
guard CIAP. That is to protect integrity, confidentiality and
availability, as well as to stop malware propagation. The
three actions study as follows: Once detecting a suspected
process or executable, EMDT labels it as suspicious and
traces its descendent and interacted processes, as well as its
generated executables. EMDT does not restrict benign
processes at all and permits suspicious processes to run as
long as possible but stops their malware behaviours that
would cause security damages.

The object and parameter signify the target and parameter of
the operation, respectively. Specific malware behaviours
monitored in the current version of EMDT, which includes
the 30 critical malware behaviours shown in Table 1.
Moreover, EMDT allocates dynamic addition of new
behaviours. EMDT utilizes the subject label and behaviour
to build a decision while normal MACs use the subject label
, object label,operation and parameter. As behaviour consists
of operation, object and parameter, EMDT actually uses the
same four factors of normal MAC decision. Moreover,
EMDT’s decision procedure produces three possible access
control results: “allow,” “deny,” and “change label,” which
be similar to those of normal MACs. The detailed decision
logic of Tracer is shown in Table 1. The detection and
tracing actions guide to the decision result “change label,”
while restriction action leads to “deny.” All access requests

Paper ID: SEP14492 1780

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

not denied are allocated. As an online approach, Tracer be
able to produce the FP rate lower than that of behaviour-
blocking mechanisms in commercial antivirus software. This
is attained as a MAC system, EMDT blocks a behaviour
based simultaneously on the behaviour and security label
(i.e., the suspicious label of the current process), rather than
simplify the behaviour as done by a behaviour-blocking
system.

4.2 Detecting intruders

The detecting action is liable for identifying all potential
intruders. we design a light-weight intrusion detection
algorithm that can identify all potential intruders but may
have a relatively higher FP rate at the initial step. Tracing
and restricting actions, will still agree to it to run rather than
stop it immediately, but only avoid it from executing
featured malware behaviours. As depicted in the above Fig.
1, the detection works at two levels: entrance and interior:

Where, D (P) is detection of process, signature s belongs to
signature based, it comes in distrustful folder. The detection
at entrance attempts to check all possible venues through
which a malware program may break into the system.

Figure 2: The mechanism to dynamicaly detecting the
malware behaviours to OS

4.3 Tracing Intruders

To track intruders within an operating system, one can utilize
OS-level information flow as done in King and Chen (2003)
and Goel et al. (2005). However, a main challenge for
leveraging OS level information flow to trace suspicious
entities is that, file and process tagging normally leads the
entire system to be floated with “suspicious” labels and thus
earns too many FPs. To address this issue, we suggest the
following two methods to limit the number of tagged files
and processes in a single OS while averting malware
programs from evading the tracing as much as possible. For
tagging files, unlike the approaches in King and Chen (2003)
and Goel et al. (2005) the schemes of several malware

detection and MAC systems (Fraser, 2000; Wang et al.,
2008) that trace information flow on OS level, Tracer simply
focuses on the tagging of executables while ignoring non
executables and directories. This is because an executable
signifies the possible execution flow of the process loading
it, thus it ought to be deemed as an inactive intruder while a
process is treated as an active intruder (Fig. 2). For tagging
processes, we observed that the excessive number of tags
mainly come from tracing Interposes Communication, i.e.,
spotting a process as suspicious if it obtains IPC data from a
suspicious process. To address this issue, Tracer only tags a
process receiving data from dangerous IPCs that can be
exploited by a malware program to acquire control of the
process to make arbitrary malicious behaviours.

4.4 Restricting Intruders

In order to disable malware programs on a host, the
restricting action monitors and blocks intruders’ requests for
executing critical malware behaviours listed in Table 2. To
follow the principle of complete mediation for building a
security protection system, Tracer further restricts two
extensive

behaviours, called generic malware behaviours, to guard
security more widely. The first one is “Steal confidential
information,” which stands for all illegal reading of
confidential information from files and registry entries. The
other is “Damage system integrity,” which be an illegal
modifications of the files and registry entries that need
preserving integrity. All behaviours restricted are listed on
the column “restrict” in Table 2. In summary, the restricting
action consists of three rules (Fig. 4):

• Restricting critical malware behaviours
• Restricting generic malware behaviours
• Restricting behaviours bypassing Tracer

By mediating all these behaviours, Tracer is able to
safeguard system security and prevent a malware program
from propagating itself in the system. To be exact,
confidentiality is mainly accomplished by blocking the
generic behaviour “Steal confidential information;”

Paper ID: SEP14492 1781

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: Dynamically restricting and detecting the malware

behaviors using EMDT process

integrity is generally protected by blocking the generic
behaviour “Damage system integrity;” availability is guarded
by blocking the behaviours listed in Table 2 with the capital
letter A attached. The algorithm 1 may impose a relatively
elevated overhead only on the malware processes that
frequently exhibit file copying behaviours but not on benign
processes and the suspected processes that are actually
gentle.

Algorithm 1:
Monitoring the Application Process:
 Input: File to be read,
Buffer reader Process: If (File! = Copying Behaviour)||
(Current Process = = Benign)
Return Operation To Buffer
For (Node of file = Read list of Buffer)
 If (File = = Node)
Statement: Attach the File in the Buffer reader
 Else Statement: copy the File into Node (Stack) for
Blocking

Then Copy the file into buffer Return (permit the File to
monitor)

Algorithm 2 is given below for detection that correlate read
and writes operations by comparing buffer contents are more
complicated to be circumvented than the other candidate
algorithms, e.g., comparing buffer addresses. In the worst
case that a malware program successfully circumvents the
algorithms, EMDT still can tail it by monitoring related
behaviours, e.g., “Create executables,” since file-copying
behaviours require to create executables.

Algorithm 2:
Detecting the Malware Process:
 Input: File to be read,
Buffer writer Process:
If (File ! = Copying Behaviour)||
(Current Process = = suspicious)
 Return Operation To Buffer
 For (Node of file = Read list of Buffer)
If (File==Node)
Statement: Attach the File in the Buffer writer
 Else Statement: Blocking file from Corruption
Then Copy the malware type into bufferwriter
Return (Malware type to buffer)

4.5 Dynamic changes of malware behaviours detection
process

EMDT can be able to dynamically add in new behaviours to
monitor. Behaviour consists of object, operation and
parameter. For example, the operation create-file
corresponds to two system calls: NtOpenFile and
NtCreateFile. In contrast, a single system call might contain
more than one operation. In each concerned system call, we
set up one or more checkpoints, each of which is dependable
for checking the behaviours belonging to the same

Operation with the support of a modifiable behaviour list in
memory.

5. Evaluation Results

Table 3 is given below explains the detailed test results of 5
selected malware samples. We can see that all the malware
samples are successfully disabled via the restriction of their
malware behaviours. For example, the worm “Worm.”
downloaded from the local website has the following main
steps for function: it first copies itself, i.e., regsv.exe, to hard
drive in OS, then runs regsv.exe as a new process, the new
process then inserts a value under registry key regsv.exe so

that it can be initiated when the system restarts, finally
listens at port 113 to accept commands from a remote
attacker. On a host without EMDT allowed, all above steps
are successfully executed. However, after activating the
EMDT protection, the malware behaviour “Copy itself” is
blocked, i.e., the malware cannot generate a new copy of
itself in the system folder. Consequently, the rest of the
behaviours do not emerge anymore because these behaviours
depend on the new process launched from the malware’s
copy. In other words, the worm is disabled.

Paper ID: SEP14492 1782

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

fundamental reason is that the antimalware tools identify a
suspicious behaviour only supported on the behaviour itself
while Tracer further regard as the suspicious label of the
process requesting the behaviour (Fig. 5 and 6).

 6. Conclusion

In this study, we propose a novel MAC enforcement
approach that integrates intrusion detection and tracing to
guard against malware in a commercial OS. We have
extracted 30 critical malware behaviours and three common
malware characteristics for the incompatibility and low
usability problems in MAC, which will benefit other
researchers in this area. Based on these studies, we propose a
novel MAC enforcement approach, called EMDT using
Hidden markov model, to disable malware timely without
need of malware signatures or other knowledge in progress.
The novelty of Tracer design is two- fold. One is to utilize
intrusion detection and tracing to regularly configure
security labels. EMDT system doesn’t restrict the suspected
intruders right away but permits them to run as long as
feasible except blocking their critical malware behaviours.
This design generates a MAC system with good
compatibility and usability. We have implemented Tracer in
several OS and the evaluation results show that it can
successfully guard against a set of real-world malware
programs, including unknown malware programs, with much
small FP rate than that of commercial antimalware
techniques. In future we are going to initiate this study for a
large web server runs the application front-end logic and
data are outsourced to a database or file server where there is
increase in application and data complexity.

References

[1] Badger, L., D.F. Sterne, D.L. Sherman, K.M. Walker

and S.A. Haghighat, 1995. Practical domain and type
enforcement for UNIX. Proceeding of the IEEE
Symposium on Security and Privacy (S&P), pp: 66-77.

[2] Fraser, T., 2000. LOMAC: Low water-mark integrity
protection for COTS environments. Proceeding of the
IEEE Symposium on Security and Privacy (SP’ 00), pp:
230-245.

[3] Goel, A., K. Po, K. Farhadi, Z. Li and E. Lara, 2005.
The taser intrusion recovery system. Proceeding of the
20th ACM Symposium on Operating Systems Principles
(SOSP ’05), pp: 163-176.

[4] Kaspersky Lab, 2012. Retrieved from:
http://www.kaspersky.com/.

[5] King, S.T. and P.M. Chen, 2003. Backtracking
intrusions. Proceeding of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), pp: 223-236.

[6] Kirda, E., C. Kruegel, V.G. Banks and R.A. Kemmerer,
2006. Behavior-based spyware detection. Proceeding of
the 15th Conference on USENIX Security Symposium
(USENIX-SS ’06).

[7] Li, N., Z. Mao and H. Chen, 2007. Usable mandatory
integrity protection for operating systems. Proceeding of
the IEEE Symposium on Security and Privacy (SP ’07),
pp: 164-178.

[8] Martignoni, L., E. Stinson, M. Fredrikson, S. Jha and
J.C. Mitchell, 2008. A layered architecture for detecting
malicious behaviors. Proceeding of the 11th
International Symposium on Recent Advances in
Intrusion Detection, pp: 78-97.

[9] Microsoft, 2012. Mandatory Integrity Control. Retrieved
from:http://en.wikipedia.org/wiki/MandatoryIntegrityCo
ntrol.

[10] Nachenberg, C., 2002. Behaviors Blocking: The Next
Step in Anti-Virus Protection. Retrieved from:
http://www.securityfocus.com/infocus/1557.

[11] Shan, Z., X. Wang and T. Chiueh, 2011. Tracer:
Enforcing mandatory access control in commodity os
with the support of light-weight intrusion detection and
tracing. Proceeding of the 6th ACM Symposium on
Information, Computer and Communication Security,
pp: 135-144.

[12] Viper Inc., 2012. Retrieved from: http://www. vipre.
com/vipre/, 2012.

[13] Wang, X., Z. Li, J.Y. Choi and N. Li, 2008. PRECIP:
Towards practical and retrofittable confidential
information protection. Proceeding of the 15th Network
and Distributed System Security Symposium.

Author Profile

Dokuparthi Prasanthi received the MCA degree from Acharya
Nagarjuna University Vijayawada in 2012 and pursuing M.tech
degree in Computer science and Engineering from Anurag Group
of Institutions (Formerly CVSR College of Engineering) JNTU
Hyderabad, India.

V. Rama Krishna working as Assistant Professor in Computer
Science and Engineering from Anurag Group of Institutions
(Formerly CVSR College of Engineering) JNTU Hyderabad, India.

Paper ID: SEP14492 1783

