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Abstract: Digital signature scheme based on the computational difficulty of integer factorization. The scheme possesses secure against 
an adaptive chosen-message attack: Receiver who receives signatures for messages of his choice (where each message may be chosen in 
a way that depends on the signatures of previously chosen messages) cannot later forge the signature. This is surprising, since the 
properties of having forgery being equivalent to factoring and being invulnerable to an adaptive chosen-message attack were 
considered in the folklore to be contradictory. More commonly, we show how to construct a signature scheme with such properties 
based on the existence of a “claw-free” pair of permutations – a potentially weaker assumption than the intractability of integer 
factorization. The new scheme is potentially realistic: signing and verifying signatures are practically fast, and signatures are compact. 
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1. Introduction 
 
The idea of a “digital signature” first appeared in Diffie and 
Hellman’s seminar paper that is “New Directions in 
Cryptography”. According to that each user can publish a 
public key, while keeping secret a secret key. In their scheme 
user A generates a signature for the message M which is 
depends on M and on A’s secret key, such that anyone can 
verify the validity of signature using A’s public key. 
However, while knowing user A’s public key is enough to 
allow one to validate A’s signatures, it does not allow anyone 
to easily forge A’s signatures. They also proposed the way of 
implementing signatures based on “trap-door functions”. 
 
The notion of a digital signature is useful and is a legal 
replacement for handwritten signatures [7, 8]. However, a 
number of technical problems arise if digital signatures are 
implemented using trap-door functions as suggested by Diffie 
and Hellman [2]; these problems have been addressed and 
solved in part elsewhere. Consider, [5] showed how to handle 
s sparse messages sets and how to ensure that if an enemy 
sees previous signatures (for messages that he has not 
chosen) it does not help him to forge new signatures (this is a 
“non-adaptive chosen-message attack” ). 
  
The signature scheme presented here, using totally different 
ideas than those presented by Diffie and Hellman, they 
advance the state of the art of signature schemes with security 
properties even further; it has the following important 
characteristics: 
• What we prove that forgery is difficult and not merely 

obtaining the secret key used by the signing algorithm (or 
obtaining an efficient equivalent algorithm).  

• Forgery is proven to be difficult for a “most general” 
enemy who can mount an adaptive chosen-message attack. 
In contrast to all previous published work on this problem, 
we prove that this scheme is invulnerable against such an 
adaptive attack where each message whose signature is 
requested may depend on all signatures previously 
obtained from the real signer. We believe that an adaptive 

chosen-message attack is the most powerful attack possible 
for an enemy who is restricted to using the signature 
scheme in a natural manner. 

• The properties we prove about the new signature scheme 
do not depend in any way on the set of messages which can 
be signed or on any assumptions about a probability 
distribution on the message set.  

• This scheme can be generalized so that it can be based on 
“hard” problems other than factoring whenever one can 
create claw-free trap-door pair generators. 

 
Our scheme can be based on family of pairs of claw-free 
permutations, yielding a signature scheme that is invulnerable 
to a chosen-message attack even if the claw-free trap-door 
permutations are vulnerable to a chosen-message attack when 
used to make a trap-door signature scheme. Basic ideas in the 
construction are the use of randomization, signing by using 
two authentication steps (the first step authenticates a random 
value which is used in the second step to authenticate the 
message), and the use of a tree-like branching authentication 
structure to produce short signatures. We note that our 
signature scheme is not of the simple Diffie-Hellman “trap-
door” type. Such as given message can have many signatures. 
• The general technique for forging signatures can be used as 

a “black box” in a construction that enables the enemy to 
aspect one of the signer’s public moduli. 

• The technique of “forging” signatures by getting the real 
signer to play the role of the “black box” (i.e. getting the 
actual signer to produce some desired genuine signatures) 
does not help the enemy to factor either of the signer’s 
moduli.  

 
2. Fundamental Notions 
 
To properly characterize the results of this paper, need to 
answer the following questions: 
• What is a digital signature scheme?  
• What kinds of attacks can the enemy made against a digital 

signature scheme?  
• What is meant by “breaking” the signature scheme?  
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2.1 What Is a Digital Signature Scheme? 
 
A digital signature scheme consists of following components: 
• A security parameter k, which is chosen by the user when 

he creates his public and secret keys. Here the parameter k 
determines a number of quantities (length of signatures, 
length of signable messages, running time of the signing 
algorithm).  

• A message space M which is the set of messages to which 
the signature algorithm may be applied. 

• A signature bound B which is an integer bounding the total 
number of signatures that can be produced with an instance 
of the signature scheme. 

• A key generation algorithm G which any user A can use on 
input 1k (i.e. k in unary) to generate in polynomial time a 
pair (PA

k, SA
k) of matching public and secret keys.  

• A signature algorithm σ which produces a signature σ(M, 
SA) for the given message M using the secret key SA.  

• A verification algorithm V which tests whether S is a valid 
signature for message M using the public key PA. (I.e. V 
(S, M, PA ) will be true if and only if it is valid.) 

Any of the above algorithms may be “randomized” 
algorithms that make use of auxiliary random bit stream 
inputs. Here G must be a randomized algorithm, since part of 
its output is the secret key, which is unpredictable to an 
adversary. The signing algorithm σ is randomized – our 
signing algorithm is randomized and is capable of producing 
many different signatures for the same message. Generally, 
the verification algorithm need not be randomized, and ours 
is randomized. 
 
2.2 Kinds of Attacks 
 
We differentiate two basic kinds of attacks: 
• Key-Only Attacks here enemy knows only the signer’s 

public key. 
• Message Attacks where the enemy is able to examine 

some signatures corresponding to either known or chosen-
messages before his attempt to break the scheme.  

 
We further identify the following four kinds of message 
attacks, which are characterized by how the messages whose 
signatures the enemy chooses the messages and signatures. 
• Known Message Attack: The enemy is given access to 

signatures for a set of messages m1, . . . , mt. The messages 
are known to the enemy but are not chosen by him.  

• Generic Chosen Message Attack: Here the enemy is 
allowed to obtain from A valid signatures for a chosen list 
of messages m1, . . . , mt before he breaks the A’s signature 
scheme.  

• Directed Chosen Message Attack: This is same as 
generic chosen-message attack, except that the list of 
messages to be signed may be created after seeing A’s 
public key but before any signatures are seen. 

• Adaptive Chosen Message Attack: This is more general 
one. Here the enemy is also allowed to use A as an 
“oracle”; not only may he request from A signatures of 
messages which depend on A’s public key but he may also 
request signatures of messages which depend additionally 
on previously obtained signatures.  

 

2.3 What Does It Mean To “Break” a Signature Scheme? 
 
One might say that the enemy has “broken” user A’s 
signature scheme if his attack allows him to do any of the 
following with a non-negligible probability: 
• A Total Break: Compute A’s secret trap-door 

information.  
• Universal Forgery: Find an efficient signing algorithm 

functionally equivalent to A’s signing algorithm (based on 
possibly different but equivalent trap-door information).  

• Selective Forgery: Forge a signature for a particular 
message chosen a priori by the enemy.  

• Existential Forgery: Forge a signature for at least one 
message. The enemy has no control over the message 
whose signature he obtains, so it may be random. 
Consequently this forgery may only be a minor nuisance to 
A.  

 
Note that to forge a signature means to produce a new 
signature; it is not forgery to obtain from A a valid signature 
for a message and then claim that he has now “forged” that 
signature, any more than passing around an authentic 
handwritten signature is an instance of forgery. For example, 
in a chosen-message attack it does not constitute selective 
forgery to obtain from the real signer a signature for the 
target message M. 
 
3. Previous Signature Schemes and their 

Security 
 
Here we list a number of previously proposed signature 
schemes and briefly review some facts about their security. 
 
Trap-Door Signature Schemes [2]: Any trap-door signature 
scheme is existentially forgeable with a key-only attack since 
a valid (message, signature) pair can be created by beginning 
with a random “signature” and applying the public 
verification algorithm to obtain the corresponding “message”. 
A common heuristic for handling this problem in practice is 
to require that the message space be sparse (i.e. requiring that 
very few strings actually represent messages – for example 
this can be enforced by having each message contain a 
reasonably long checksum.) In this scheme this specific 
attack is not likely to result in a successful existential forgery. 
 
Rivest-Shamir-Adleman [11]: The RSA scheme is 
selectively forgeable using a directed chosen-message attack, 
because RSA is multiplicative: the signature of a product is 
the product of the signatures. (It can be handled in practice as 
above using a sparse message space.) 
 
Merkle-Hellman [7]: Shamir showed the basic Merkle-
Hellman “knapsack” scheme to be universally forgeable 
using just a key-only attack [13]. (This scheme was perhaps 
more an encryption scheme than a signature scheme, but it 
had been proposed for use as a signature scheme as well.) 
 
Rabin [10]: Rabin’s signature scheme is totally breakable if 
the enemy uses a directed chosen-message attack. However, 
for non-sparse message spaces selective forgery is as hard as 
factoring if the enemy is restricted to a known message 
attack. 
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Williams [15]: This scheme is same as Rabin’s. The proof 
that selective forgery is as hard as factoring is a little 
stronger, since here only a single instance of selective forgery 
guarantees factoring (Rabin needed a probabilistic 
argument). Williams uses effectively (as we do) the 
properties of numbers which are the product of a prime p ≡ 3 
(mod 8) and a prime q ≡ 7 (mod 8). Again, this scheme is 
totally breakable with a directed chosen-message attack. 
 
Lieberherr [6]: This scheme is similar to Rabin’s and 
Williams’, and is totally breakable with a directed chosen-
message attack. 
 
Shamir [12]: This knapsack-type signature scheme has 
recently been shown by Tulpan [14] to be universally 
forgeable with a key-only attack for any practical values of 
the security parameter. 
 
Goldwasser-Micali-Yao [5]: This paper presents for the 
first time signature schemes which are not of the trap-door 
type, and it have the interesting property that their security 
characteristics hold for any message space. The first 
signature scheme in [5] was proven not to be even 
existentially forgeable against a generic chosen-message 
attack unless factoring is easy. However, it is not known to 
what extent directed chosen-message attacks or adaptive 
chosen-message attacks might aid an enemy in “breaking” the 
scheme. The second scheme presented there (based on the 
RSA function) was also proven not to be even existentially 
forgeable against a generic chosen-message attack. This 
scheme may resist existentially forgery against an adaptive 
chosen-message attack, even though this has not been proven. 
(A proof would require showing certain properties about the 
density of prime numbers and making a stronger intractability 
assumption about inverting RSA.) We may note that, by 
comparison, scheme presented here is so much faster, 
produces much more compact signatures, and it is based on 
much simpler assumptions (only the difficult of factoring or 
more generally the existence of claw-free permutation pair 
generators). 
 
Several ideas and techniques presented in [5], such as bit-by-
bit authentication, are used in the present paper. 
 
Ong-Schnorr-Shamir [9]: Totally breaking this scheme 
using an adaptive chosen-message at-tack has been shown to 
be as hard as factoring. However, Pollard has recently been 
able to show that the “OSS” signature scheme is universally 
forgeable in practice using just a key-only attack; he 
developed an algorithm to forge a signature for any given 
message without obtaining the secret trap-door information. 
A more recent “cubic” version has recently been shown to be 
universally forgeable in practice using just a key-only attack 
(also by Pollard). An even more recent version based on 
polynomial an equation was similarly broken by Estes, 
Adleman, Kompella, McCurley and Miller for quadratic 
number fields. 
 
El Gamal[4]: This scheme, based on the complexity of 
computing discrete logarithms, is existentially forgeable with 
a generic message attack and selectively forgeable using a 

directed chosen-message attack. 
 
Okamoto-Shiraishi[8]: This scheme is based on the 
difficulty of solving quadratic inequalities mod-ulo a 
composite modulus, was shown to be universally forgeable 
by Brickell and DeLaurentis [1].  
 
4. The Paradox of Proving Signature Schemes 

Secure 
 
The paradoxical nature of signature schemes which are 
provably secure against chosen-message at-tacks made its 
first appearance in Rabin’s paper, “Digitalized Signatures as 
Intractable as Factorization” [10]. The signature scheme 
proposed there works as follows. User A publishes a number 
n which is the product of two large primes. To sign a 
message M , A computes as M ’s signature one of M ’s 
square roots modulo n. (When M is not a square modulo n, A 
modifies a few bits of M to find a “nearby” square.) Here 
signing is essentially just extracting square roots modulo n. 
Using the fact that extracting square roots modulo n enables 
one to factor n, it follows that selective forgery in Rabin’s 
scheme is equivalent to factoring if the enemy is restricted to 
at most a known message attack. 
 
However, it is true (and was noticed by Rabin) that an enemy 
might totally break the scheme using a directed chosen-
message attack. By asking A to sign a value x2 mod n where 
x was picked at random, the enemy would obtain with 
probability 1

2 another square root y of x2 such that gcd(x + y, 
n) was a prime factor of n. 
 
Rabin suggested that one could overcome this problem by, 
for example, having the signer concatenate a fairly long 
randomly chosen pad U to the message before signing it. In 
this way the enemy can not force A to extract a square root of 
any particular number. 
 
However, the reader may now observe that the proof of the 
equivalence of selective forgery to factoring no longer works 
for the modified scheme. That is, being able to selectively 
forge no longer enables the enemy to directly extract square 
roots and thus to factor. Of course, breaking this equivalence 
was really the whole point of making the modification. 
 
4.1 The Paradox 
 
We now “prove” that it is impossible to have a signature 
scheme for which it is both true that forgery is provably 
equivalent to factoring, and yet the scheme is invulnerable to 
adaptive chosen-message attacks. The argument is essentially 
the same as the one given in [15]. By forgery we mean in this 
section any of universal, selective, or existential forgery – we 
assume that we are given a proof that forgery of the specified 
type is equivalent to factoring. 
 
Let us begin by considering this given proof. The main part 
of the proof presumably goes as follows: given a subroutine 
for forging signatures, a constructive method is specified for 
factoring. (The other part of the equivalence, showing that 
factoring enables forgery, is usually easy, since factoring 
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usually enables the enemy to totally break the scheme.) 
 
But it is trivial then to show that an adaptive chosen-message 
attack enables an enemy to totally break the scheme. The 
enemy merely executes the constructive method for factoring 
given in the proof, using the real signer instead of the forgery 
subroutine! That is, whenever he needs to execute the forgery 
subroutine to obtain the signature of a message, he merely 
performs an “adaptive chosen-message attack” step – getting 
the real user to sign the desired message. In the end the 
unwary user has enabled the enemy to factor his modulus! (If 
the proof reduces factoring to universal or selective forgery, 
the enemy has to get the real user to sign a particular 
message. If the proof reduces factoring to existential forgery, 
the enemy need only get him to sign anything at all.) 
 
4.2 Breaking the Paradox 
 
How can one hope to get around the apparent contradictory 
natures of equivalence to factoring and invulnerability to an 
adaptive chosen-message attack? 
 
The key idea in resolving the paradox is to have the 
constructive proof that forgery is as hard as factoring be a 
uniform proof which makes essential use of the fact that the 
forger can forge for arbitrary public keys with a non-
negligible probability of success. However, in “real life” a 
signer will only produce signatures for a particular public 
key. Thus the constructive proof cannot be applied in “real 
life” (by asking the real signer to unwittingly play the role of 
the forger) to factor. 
 
In our scheme this concept is implemented using the notion 
of “random rooting”. Each user publishes not only his two 
composite moduli n1 and n2, but also a “random root” r. This 
value r is used when validating the user’s signatures. The 
paradox is resolved in our case as follows: 
 
It is provably equivalent to factoring for an enemy to have a 
uniform algorithm for forging; uniform in the sense that if for 
all pairs of composite numbers n1 and n2 if the enemy can 
randomly forge signatures for a significant fraction of the 
possible random roots r, then he can factor either n1 or n2.  
 
The above proof requires that the enemy be able to pick r 
himself – the forgery subroutine is fed triples (n1, n2, r) where 
the r part is chosen by the enemy according the procedure 
specified in the constructive proof. However, in “real life” 
the user has picked a fixed r at random to put in his public 
key, so an adaptive chosen-message attack will not enable the 
enemy to “forge” signatures corresponding to any other 
values of r. Thus the constructive method given in the proof 
cannot be applied! More details can be found in section 9. 
 
5. Building Blocks for Signing 
 
In this section we define the basic building blocks needed for 
describing our signature scheme. In later section, we will 
define what a signature is and how to sign, using the objects 
and data structures specified here. 
 

Assumption: Assume from here on that all claw-free 
functions used are defined over domains which do not 
include the empty string. This assumption is necessary 
because we use as a “marker” in our construction; note that it 
is easy, via simple recordings’, to enforce this construction if 
necessary. We start by defining the essential notion of an f -
item. 
 
Definition: Let f = (df , f0, f1) be a claw-free pair. A tuple of 
strings (t, r; c1 , . . . , cm) is an f -item if 

fhc1,...,cm i(t) = r 
Definition: In an f -item (t, r; c1 , . . . , cm), 
• t is called the tag ,  
• r is called root of the item 
• The ci ’s are the children belong to item. We note that the 

children are ordered, so that we can speak of the first child 
or the second child of the item.  

 
Reminder that given a claw free pair f and a tuple it is easy to 
check if the tuple is an f -item by applying the appropriate fhii 
to the tag, and checking if the correct root is obtained. Figure 
1 shows our graphic representation of an f -item (t, r; c1 , c2) 
with two children. 

 
Figure 1: An f -item with two children 

 
Definition: We say that a sequence of f -items L1, L2. . . Lb is 
an f -chain starting at y if, for i = 1, . . . , b − 1, the root of 
Li+1 is one of the children of Li and y is the root of L1. We 
declare the chain ends at x if x is one of the children of the 
item Lb. For efficiency related considerations, our signature 
scheme will organize a collection of a special type of f -
chains in the tree-like structure defined below. 
 
Definition: Let i be a binary string of length b and f a claw-
free pair. An f -i-tree is a bijection T between DF S(i) and a 
set of f -items such that: 
(1) if string j has length b, then T (j) is an f -item with 

exactly two children, exactly one of which is , the empty 
string. These f -items are called bridge items.  

(2) if string j has length less than b, then T (j) is an f -item 
with exactly two children, c0 and c1, both of which are 
non-empty strings. Moreover, c0 , the 0th child, is the 
root of T (j0) and c1, the 1st child, the root of T (j1).  

 
The f -item T (j) is said to be of depth d if string j has length 
d. (The bridge items are thus the items of b depth.) The root 
of T is the root of the f -item T ( ). The internal nodes of T 
are the root and the children of the f -items of depth less than 
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b. The leaves of the T are the non-empty children of the 
bridge items. Thus the internal nodes and the leaves of an f -
i-tree are actual values and not f -items. Leaves possess 
binary names of length b, leaf j is non-empty child of bridge 
item T (j). The path to leaf j = j0 . . . jb is the f -chain T ( ), T 
(j0), . . . , T (j0 . . . jb). 
 
Figure 2 gives our graphic representation of an f -100-tree, as 
it would be used in our signature scheme. In this figure we 
denote by ri

f the root of f -item T (i), and by ri
g the leaf (non-

empty) child of bridge item T (i). (Also present in this figure 
are a number of “g-items”, which are not part of the f -100 
tree but are attached to it in a manner to be described. 

 
Figure 2: An f- lO0-tree. 

 
There are two reasons for letting the bridge items of an f -i-
tree have the empty string as one of their children. First, it 
makes them de facto f -items with single child, a subtle point 
in our proof of security that is pointed in remark 1. Second, it 
makes them distinguishable from items with two children that 
is the simple point used. 
 
6. Description of our Signature Scheme 
 
6.1 Message Spaces 
 
The security properties of the signatures scheme hold for any 
nonempty message space M ⊂ {0, 1}+. 
 
6.2 How to Generate Keys 
 
Assume the existence of a claw-free permutation pair 
generator G and, without loss of generality, that the bound B 
on the number of signatures that can be produced is a power 
of 2:  
B = 2b. 
 
The key-generation algorithm K running shown below on 
inputs 1k and 2b: 
1) K runs G twice on the input 1k to secretly and randomly 

select two quintuples 
2) (df , f0, f0

−1, f1, f1
−1), and (dg , g0, g0

−1, g1, g1
−1) ∈ [G(1k )]. 

3) K then randomly selects rf in Df = [df ()].  
4) K outputs the public key P K = (f, rf , g, 2b) where f is the 

claw-free pair (df , f0, f1) and g is the claw-free pair 

(dg , g0, g1).  
5) K outputs the secret key SK = (f −1, g−1).  
6) The P K and SK so produced are said to be (matching) 

keys of size k. 
 
6.3 What Is a Signature? 
 
A signature of a message m with respect to a public key (f, rf 
, g, 2b) consists of:  
1) An f -chain of length b + 1 starting at a string rf and ending 

at rg , and  
2) A g-item with rg as its root and m as its only child.  
 
6.4 How to Sign?  
 
In the remainder of this section we shall presuppose that user 
A’s public key is P K = (f, rf , g, 2b) where f = (df , f0, f1) and 
g = (dg , g0, g1). User A’s secret key is SK = (f −1, g−1). We 
denote by Df the domain [df ()], and denote by Dg the domain 
[dg ()] similarly. Conceptually, user A creates an f -1b-tree T , 
which has 2b leaves. The root of T will be rf . The other 
internal nodes of T are randomly selected elements of Df . 
The leaves of T are randomly selected elements of Dg . 
 
To sign mi, the i − th message in the chronological order, 
user A computes a g-item Gi whose root ri

g ∈ Dg is the ith 
leaf of T , and whose only child is the message mi . He then 
outputs, as the signature of mi, Gi and the f -chain in T 
starting at root rf and ending at leaf ri

g . 
 
In practice, it will be undesirable for user A to precompute 
and store all of the T. He will instead” grow” T as needed 
and try to optimize his use of storage space and time. This is 
taken into account by our signing procedure. We describe a 
variation of our signing method that requires the signer to 
remember just his secret key and his most recently produced 
signature, in order to produce his next signature. The reader 
may find it helpful to refer to Figure 2 while reading this 
description. 
 
6.5 How to Verify a Signature 

 
Given A’s public key (f, rf , g, 2b), anyone can easily verify 
that the first b+1 elements in the signature of mi are f -items 
forming an f -chain starting at rf and ending at ri

g , and that 
the g-item in the signature has ri

g as its root and mi as its only 
child. If these checks are all satisfied, the given sequence of 
items is accepted as an authentic signature by A of the 
message mi. It is easy to confirm that these operations take 
time proportional to b times some polynomial in k, the size of 
the public key. 
 
7. Efficiency of the Proposed Signature 

Scheme 
 
Assume that if f = (df , f0, f1) is a claw-free pair of size k, then 
an element of Df is specified by a k-bit string. Then the time 
to compute a signature for a message m of length l is is O(bk) 
f -inversions (i.e. inversions of f0 or f1) and O(l) g-inversions. 
Another relevant measure of efficiency is “amortized” time. 
That is, the time used for producing all possible 2b signatures 
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divided by 2 b. In our scheme, the amortized “f -inversion” 
cost is O(k). The amortized “g-inversion” cost is O(l) if the 
average length of a message is l. The length of the signature 
for m is O(bk + l), where l is the length of m, as m is 
included in m’s signature as the child of the g-item. Clearly, 
if m is known to the signature recipient, the g-item need not 
include m: it suffices to give its root and its tag. This way the 
length of the signature can be only O(bk) long, which is 
independent of the length of m and possibly much shorter. 
The memory required by the signing algorithm is O(bk) since 
it consists of storing (the f -items in) the most recently 
produced signature. 

 
8. Conclusion 
 
This scheme possesses the novel property of being robust 
against an adaptive chosen-message attack: an adversary who 
receives signatures for messages of his choice (where each 
message may be chosen in a way that depends on the 
signatures of previously chosen messages) cannot later forge 
the signature of even a single additional message. 
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