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Abstract: In this paper, we have discussed Bayesian estimation of the parameter of an Inverse Maxwell distribution via Size-Biased 
sampling. Bayes estimators of the scale parameter � of the Inverse Maxwell distribution under squared error, precautionary, entropy, 
and another two loss functions for using quasi-prior have been obtained. The risk functions of these estimators relative to squared error 
loss function have been obtained for the sake of comparison. The corresponding graphs have also been plotted. 
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1. Introduction 
 
In Bayesian approach it is assumed that parameter θ is itself 
a random variable (though unobservable) with a known 
distribution called prior distribution. The prior distribution 
(specified prior) is modified in the light of the available data 
to determine a posterior distribution (the conditional 
distribution of θ given the data), which summarizes what can 
be said about θ on the basis of the assumptions made and the 
data at hand. 
 
Let f( y ∣∣ θ ); θ ∈ Θ be the probability density function of 
lifetime distribution of a component or an animate, where 
the parameter space Θ is known but the true value of θ is 
unknown. Let g (θ) be the prior density function of the 
random variable θ. Let � = (��, … , ��) be a n independent 
observations from f(y;θ). Then using Bayes’ theorem (1763) 
the posterior distribution f � θ ∣∣ y � of θ is given by 

 f � θ ∣∣ y � =
�� �∣∣� ��(�)

� �� �∣∣� ��(�)��Θ
                        (1) 

where f � y ∣∣ θ � is the joint probability density function of 
 y = (y�, … , y�). For a given sample �, the posterior p.d.f. 

f � θ ∣∣ y � is the basis for most types of Bayesian inference. 
In order to define Bayes estimators we must specify a loss 
function 
 L�θ�, θ� ≥ 0, for all �� and θ ; 
The corresponding Bayes risk is defined as the expected 
value of the risk R�θ�, θ� with respect to the prior distribution 
g(θ) on Θ and is given as, 

 r�θ�, θ� = E[R�θ�, θ�] = � R�θ�, θ� g(θ)dy
Θ

 

where the risks function R�θ�, θ� is defined as  

 R�θ�, θ� = � L�θ�, θ� f � y ∣∣ θ � dy
�

 

where χ stands for the sample space of �. The fundamental 
problems in Bayesian analysis is that of the choice of prior 
distribution g(θ) and loss function L�θ�, θ� which may be 
appropriate for the situation at hand. 
 
 
 

2. Prior Distributions  
 
A prior distribution of a parameter is the probability 
distribution that represents your uncertainty about the 
parameter before the current data are examined. Multiplying 
the prior distribution and the likelihood function together 
leads to the posterior distribution of the parameter. We use 
the posterior distribution to carry out all inferences. We 
cannot carry out any Bayesian inference or perform any 
modeling without using a prior distribution. 
 
In Bayesian analysis the fundamental problem is that of the 
choice of prior distribution g(�) and a loss function L(.,.). 
Let us consider a suitable prior (quasi–prior) for � to obtain 
the bayes estimators in this case assuming independence 
among the parameters is: 

 g(�) = �
��; θ > 0, d > 0                            (2) 

 
Loss Functions 
 
The Bayes estimation �� of θ is the course optimal relative to 
the loss function chosen. A commonly used loss function is 
the squared error loss function (SELF) 
 L (��, �) = ��� − ���

  
(a) Squared error loss function (SELF) 

 L(��, �) = (�� − �)�                                (�) 
The Bayes estimator under the above loss function, say is � �  
the posterior mean, i.e. 

 ���= ��(�)                                   (4) 
The risk function is given by: 

��(��) = ��(��)� − ��������  +  ��             (�) 
 
(b) Precautionary Loss Function 
Norstrom (1996) introduced an alternative asymmetric 
precautionary loss function and also presented a general 
class of precautionary loss functions with quadratic loss 
function as a special case (Srivastava,R.S.,et al. (2004)). A 
very useful and simple asymmetric precautionary loss 
function is given as 

 ����, ��  =  ������
�

��
                                 (6) 

The posterior expectation of loss function in (6) is 
��[L(�� −  �)] = �� ���

��
� + ������  − ��(�)            (7) 
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The value of �� that minimize (7), denoted by ��� is obtained 
by solving the following equation  
 �
��

��[L(�� −  �))] = 0  

 ��� =  [��(��)]
�
�                          (8) 

 
(c) Entropy Loss Function  
In many practical situations, it appears to be more realistic to 
express the loss in terms of the ratio �

�

�
. In this case, Calabria 

and Pulcini (1994) points out that a useful asymmetric loss 
function is the entropy loss given by 

 L(δ) = [�� −  �����(�) −  1]                 (9)  
where  

 δ = �
�

�
 , 

The posterior expectation of loss function in (9) is 
��[L(�)] = b��� ���

�
�  −  �� ����� ���

�
� �  − 1�      (10) 

The value of �� that minimum (10), denoted by ��� is obtained 
by solving the following equation  
 �
��

��[L(∆)] = 0  

 ��� =  ��� ��
�

��
��

                        (11) 
(d) Loss function-L1 : 
Consider the loss function given by  

L1(��, �) = ���

�
 −  1�

�
                         (12) 

The Bayes estimator under loss function- L1, say ��� using 
the value of f(θ|�), 

��� =  
����

��

��� �
���

                                 (13) 

(e) Loss function-L2 : 
Consider the loss function given by  

L2(��, �) = ��
��

 −  1�
�
                        (14) 

The Bayes estimator under loss function- L2 , say ��� using 
the value of f(θ|�), 

 ��� =  ������
��(�)

                              (15) 
 
In this paper, we have considered the Bayesian estimation 
problem of the scale parameter of a Inverse Maxwell 
Distribution via Size- Biased sampling using the squared 
error loss function, precautionary, entropy, and other two 
loss functions under quasi- prior.  
 
When observation is selected with probability proportional 
to their size, the resulting distribution is called size-biased. 
Statistical analysis based on size-biased samples has been 
studied in detail since the early 70’s. The concept of length-
biased sampling was mainly developed by Rao (1977) and 
Zelen & Feinleib (1969) etc. The size-biased distribution 
occurs naturally for some sampling plans in biometry, 
wildlife studies and survival analysis, among others. When 
dealing with the problem of sampling and selection from a 
size-biased distribution, the possible bias due to the nature of 
data collection process can be utilized to connect the 
population parameter to that of the sampling distribution 
(Olcay Akman,et.al, (2007)).  
 

Now the probability density function of the Size-Biased 
Inverse Maxwell distribution is given by 

 f(y; θ) = �
�

�
�� �� �

��� , y > 0,                    (16) 
 using the relationship  
 f(y;θ) = � �(�;�)

��
� , 

where θ is a scale parameter of Inverse Maxwell distribution 
ℎ(�; �) where 

 ℎ(�; �) =  �

√��
�
�
  �

��.e� �
���  y > 0, θ > 0.  

Moments  
The rth raw moments of sized-biased inverse Maxwell 
distribution are given by 
 μ�

�  = E(Yr)  
 μ�

�   = � ���
� �(�)��                         (17) 

 = �

�
�
�
 Ґ(1-�

�
)                                 (18)  

 Mean  

 μ�
�  =��

�
                                         (19)  

 
Cumulative distribution function : Cumulative distribution 
function of Size-Biased Inverse Maxwell Distribution is 
given as  

 F(t) = e� �
���                                    (20)  

Survival Function : Survival Function of Size-Biased 
Inverse Maxwell Distribution is defined a 
 S (t) = 1- F(t)  

 = 1- e� �
���                                 (21) 

Hazard Function: Hazard Function of Size-Biased Inverse 
Maxwell Distribution is defined a 
 λ (t) = �(�)

�(�)
  

 = �
�

�
��  � �

� �
���

�� �
� �

���
�                             (22) 

Let us suppose that n items are put to test, then the joint 
p.d.f. is given by:- 

 f(y;�) = �
�

�� �Ԥ���
� �

��
��  ����

��; t, � > 0;          (23)  

where S = [∑ �
��

�
�
��� ];  

the maximum likelihood estimator (MLE) � � of � may be 
obtained as; 

 �� = �
�
 .                                      (24) 

The pdf of �� comes out to be  

f(�� ) = �
��(���)

��
�

�
�

����� �
����

� ; �� >0              (25) 
 
3.  Bayesian Estimation Under g(θ) 
 
In order to carry out the estimation procedure, let us suppose 
that very small information is available about the parameter 
(the suitable prior for this case). Assuming independence 
among the parameters is, we have a prior from (2) i.e quasi 
prior 
 g(�) = �

��  
joint density function of SBIMD is given by 

 f(�|�) = ��
�

�
�

∑ �
��

�  �
�∑ �

��
����

��
�
���                     (26) 
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Now using the Bayes theorem, the joint density function 
(26) along with the prior pdf given in (2), we obtain the 
following joint posterior density function of SBIMD is 

 f(θ | �) = �(�|�)�(�)

� �(�|�)�(�)���
�

                    (27)  

substituting the value of g(θ) and f(y|θ) in the equation 
(27), we get 

 f(θ | �) = [�]���������
��

�����(�����)
 ;                  (28) 

(a) Squared error loss function : the Bayes estimator 
under squared error loss function is the posterior mean given 
by 

 ��� = � � f �θ�y��
� ��                (29) 

Substituting the value of f(θ | �) from equation (28) in 
equation (29) and solving it, we get 

 ��� =  � � [�]���������
��

�����(�����)
 �

�                 (30) 
Solving equation (30), we get 

 ��� =  �
�����

                              (31) 
(b) Precautionary loss function :The Bayes estimator under 
precautionary loss function  

��� =  [��(��)]
�
� 

 = �� ���
�  f(θ | �) dθ�

�
�                        (32) 

Which on simplification leads to  
 ��� =  �

[(�����)(�����)]
�
�
                     (33) 

 
(c) Entropy loss function: The Bayes estimator under 
entropy loss function  

��� =  ��� �
1
�

��
��

 
  

 = �� �
�

�
�  f(θ | �) dθ�

��
                      (34) 

Which on simplification comes out to be  
 ��� =  �

(�����)
                              (35) 

 
(d) Other loss function-L1 : 
 Consider the loss function given by  

L1(��, �) = ���

�
 −  1�

�
 

The Bayes estimator under loss function- L1 say ��� using the 
expression of f (θ|�) in equation (28) is the solution of 
equation given  

��� =  
�� �1

��

�� � 1
���

 

  

 = 
� �

�
�

�  �(� | �) ��

� �
��

�
�  �(� | �) ��

                                  (36) 

 Or ��� =  �
(���)

                                          (37) 
 

(e) Other loss function- L2 : 
 Consider the loss function given by  

L(��, �) = ��
��

 −  1�
�
 

The Bayes estimator under loss function-L2, say, ��� using 
the value of f(θ|�) from equation (28) is the solution of 
equation given by 

��� =  
��(��)
��(�)  

 = 
� ���
�  �(� | �) ��

� ��
�  �(� | �) ��

                            (38) 

 Or 
 ��� =  �

(�����)
                                    (39) 

 
4.  The Risk Functions Under The Squared 

Error Loss Function 
 

(i) The risk function of ��� , relative to squared error loss 
function is denoted by ��(��� ) and accordance with (5), is 
given by 

��(��� ) =  �� ���� 
�� − 2���(��� ) + ��            (40) 

Substituting the value of ��� from (31) and evaluating various 
expectations in (40), we get 

��(��� ) =  �� �(���)(���)
(�����)� − �(���)

(�����)
+  1�            (41) 

(ii) The risk function of ��� , relative to squared error loss 
function is denoted by ��(��� ) is given by 

��(��� ) =  �� ���� 
�� − 2���(��� ) +  ��           (42) 

Substituting the value of ��� from (33) and evaluating various 
expectations in (42), we get 

��(��� ) =  �� � (���)(���)
[(�����)(�����)]

− �(���)

[(�����)(�����)]
�
�

+  1� 

(43) 
(iii) the risk function of ��� , relative to squared error loss 
function is denoted by ��(��� ) is given by 

��(��� ) =  �� ����
�� − 2���(��� ) +  ��            (44) 

Substituting the value of ��� from (34) and evaluating various 
expectations in (44), we get 

��(���) =  �� �(���)(���)
(�����)� − �(���)

(�����)
+  1�            (45) 

(iv) the risk function of ��� , relative to squared error loss 
function is denoted by ��(��� ), is given by 

��(��� ) =  �� ���� 
�� − 2���(��� ) +  ��         (46) 

Substituting the value of ���  from (36) and evaluating 
various expectations in (46) we get 

��(��� ) =  �� �(���)(���)
(���)� − �(���)

(���)
+  1�         (47)  

(v) the risk function of ��� , relative to squared error loss 
function is denoted by ��(��� ), is given by 

��(��� )  =  �� ���� 
�� − 2���(��� ) +  ��        (48) 

Substituting the value of ���  from (38) and evaluating 
various expectations in (48), we get 

��(��� ) =  �� �(���)(���)
(�����)� − �(���)

(�����)
+  1�        (49) 

 
5. Conclusion 
 
In this paper, we have discussed Bayesian estimation of 
parameter of one parameter of Inverse Maxwell Distribution 
using size-biased sampling. Which is same as the estimation 
of the parameter of the corresponding SBIMD. It is evident 
from the equations (24), (31), (33), (35), (37) and (39) that 
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the MLE’s of � � , Bayes estimators of the scale 
parameter � of the SBIMD under squared error loss 
function, precautionary and entropy loss functions using 
prior probability distribution (29) have different expressions 
for their definitions. Here it is clear that the Bayes estimators 
do depend upon the parameters of the prior distribution. 
 
In the tables 1(a),1(b),1(c) and 1(d) , we have shown the 
ratio to risk function with respect to ��,BS, BP, Be, B1 and B2 
of the bayes estimators � � �, � � �,  � � �,  � � � ,and  � �� 
respectively .the parameter � under squared error loss 
function as given in equation (41), (43), (45), (47) and (49) 
for n=5(5)15 and d=0.5(0.5)5.0.  
 
It is evident that none of the estimators dominate the other 
uniformly The tables show that the value of d has a major 
role in deciding the estimator to be used for precision point 
of view , It may be used as a guideline as to the choice of the 
estimator according to the situation at hand, If there is any 
bias in the mind of the experimenter with regard to the loss 
function and it is ignorant of the value of d then the table can 
be used to decide that what value of d is to be chosen to be 
used in quasi-density  
  

Table 1(a): Risk function (θ = 1, n= 5) 

 
 

 
 

Table 1(b): Risk function (θ = 1, n= 10) 

 
 

 
 

 Table 1(c): Risk function (θ = 1, n= 15)  
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