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Abstract- Augmented reality (AR) is a live and combines direct or indirect view of a physical, real-world environment it's real time data 
whose elements are augmented by computer generated virtual content such as sound, video, graphics or GPS data. An AR system poses 
unique challenges including requiring a high quality camera pose estimate and operating on resource limited platforms. There is several 
hybrid approach using ORB binary features and optic flow that is able to real time performance result is possible with platform specific 
optimizations, improve speed and extend the usable tracking range. 
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1. Introduction 
 
Augmented reality is a concept of supplementing the real 
world with the virtual world. Although it uses a virtual 
environment created by computer graphics, its main 
playground is the real environment. Computer graphics serve 
the function of adding necessary information into the real 
environment. In so doing, it makes up for the weak point of 
unreality which can occur in the environment providing only 
the virtual world. Augmented reality is to improve the 
recognition tools for the real world and thus to efficiently 
interact between humans and computers. 
 
In order to perform the object tracking, markerless 
augmented reality systems rely in natural features instead of 
fiducial marks. Therefore, there are no ambient intrusive 
markers which are not really part of the environment. 
Furthermore, markerless augmented reality counts on 
specialized and robust trackers already available. Another 

advantage of the markerless systems is the possibility of 
extracting from the environment characteristics and 
information that may later be used by them. However, among 
the disadvantages we can consider for markerless augmented 
reality systems is that tracking and registration techniques 
become more complex. 
 
Old AR systems like ARTag [1] utilize fiducial markers or 
“tags”, over which virtual objects are rendered. Marker-based 
systems are ideal for applications involving a static or fixed 
environment, or situations where the desired virtual defined 
marker tag does not extend beyond the tag itself. In the 
performing and using of application, users must print and 
carry the tags in order to use the AR application. For more 
complex, large scale applications, significant infrastructure is 
required in the form of huge number of or hundreds of 
markers placed throughout the environment [2]. 
 

 
Figure 1: AR pipeline overview
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In this paper, we present an end-to-end markerless AR 
pipeline based on the binary ORB descriptor by Rublee et al 
[3]. The system is capable of real time performance on 
current generation consumer grade mobile devices. The 
system requires nothing more than a calibrated monocular 
camera; every other process is performed online and in real 
time, including map creation. The computational restrictions 
of mobile devices are addressed at each stage in the pipeline, 
and an Android implementation is used to evaluate the 
system as a whole.  
 
2. Previous Work 
 
There has been myriad work done in the field of AR over the 
past decade. In this paper we focus mainly on work related to 
markerless AR, mobile AR, and their relevant computer 
vision algorithms. 
 
The best known work in monocular camera localization and 
mapping is the MonoSLAM system developed by Davison et 
al [4]. The authors successfully applied SLAM 
methodologies to the vision domain using a monocular 
camera as the sole input device. MonoSLAM maintains a 
sparse map of oriented planar textures (~12 for any given 
camera view) centered on Shi-Tomasicorners. The system is 
initialized using a planar target containing four known 
features before dynamically updating the map. They present 
results in the AR domain, and achieve real-time operation at 
30Hz while rendering augmentations.  
 
The Parallel Tracking and Mapping (PTAM) system, 
introduced by Klein and Murray in 2007 [5], uses a multi-
threaded approach in order to simultaneously track interest 
points by morphing and matching image patches, and 
maintain a map of these patches. PTAM uses a stereo pair of 
images of a planar scene for initialization, and uses bundle 
adjustment to determine and update the 3D locations of 
interest points. 
 
Taehee and Hollerer also propose a multi-threaded approach 
in [6]. They use a hybrid tracking method which extracts 
SIFT features [7] (instead of image patches) and then tracks 
them using optic flow. They achieved real-time performance 
by only extracting and matching SIFT features periodically 
in a thread separate from the tracker. They also perform 
scene recognition by recognizing previously recorded SIFT 
features. 
 
On the mobile front, attempts have been made to adapt SIFT 
and its speedier counterpart SURF [8] to mobile devices. 
Wagner et al proposed a hybrid between FAST corners [9] 
and a reduced version of the SIFT descriptor in [10]. 
Ratherthan compute descriptors every frame, they also adopt 
a hybrid approach and track existing features using SAD 
patch correlation. This method achieves upwards of 20Hz 
while extracting ~150 features per frame (320x240). Chen et 
al propose a modified version of SURF in [11] that achieves 
a roughly 30% speed-up over the original SURF algorithm, 
but nevertheless falls far short of real-time operation on 
mobile devices.  
 
The first self-contained AR system to run on a consumer-
grade cell phone was presented in 2004 by Mohring et al 

[12]. Their system recognizes different markers via circular 
bar codes and detecting gradient changes in the red, green, 
and blue color channels. Their entire pipeline achieved a 
frame rate of 4-5fps, at a camera resolution of 160x120. 
 
A reduced version of the PTAM system has been adapted to 
the iPhone [13], but results showed severely reduced 
accuracy and execution speed. PTAM is intended for use in 
small AR workspaces, and suffers reduced performance as 
the map gets bigger and bigger due to the bundle adjustment 
process being cubic with respect to the number of features in 
the map (O(n3)). 
 
As a continuation of their work in [10], Wagner et al propose 
a more complete version of their feature detection and 
matching system in [14]. They use a similarly modified 
version of SIFT and outlier rejection that runs at 
approximately 26Hz. However, when AR-related overhead 
(image retrieval from camera, rendering, etc.) is taken into 
consideration, the speed drops to 15Hz. They combine this 
with patch tracking to greatly improve speed to 8ms per 
frame (not including AR overhead) instead of using SIFT on 
every frame. Their system runs on 320x240 imagery during 
the SIFT phase, and down-samples further to 160x120 while 
tracking. In addition, a maximum of 100 features are tracked 
at any given time.  
 
To the best of our knowledge, there exists no complete AR 
system that incorporates all the elements presented in this 
paper while achieving real-time operation on mobile devices. 
Most notably absent from existing systems are online map 
creation and multiple map support. 
 
3. Technical Approach  
 
This section describes our system. The stages of the AR 
pipeline shown in Figure 1 are discussed. For each stage we 
discuss which algorithms are used, and any modifications 
that were made to improve efficiency.  
 
3.1 Map Overview  
 
We define a ‘map’ as a list of feature descriptors and their 
corresponding 3D world coordinates. In our system, 
matching features in an input video frame to a map is 
accelerated by using a tree structure. When a map is created, 
the descriptors are placed into a clustering tree with eight 
branches as done by Muja and Lowe in [15]. Each map has 
an associated 3D bounding box consisting of four world 
coordinates. This bounding box can be projected into the 
image frame once camera pose has been estimated. 
Additionally, the system maintains a 100-word descriptor 
vocabulary. Each map is matched to this vocabulary to create 
unique response histograms. 
 
3.2 Platform Specific Acceleration  
 
To achieve real time speeds on a resource limited mobile 
devices, platform specific adaptations are used. This system 
makes use of the NEON instruction set, which utilizes the 
SIMD engine present in the ARM Cortex-A series of 
processors2. This is achieved through the use of ‘intrinsic’ 
functions added to the C/C++ code. 
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3.3 Processing Stages  
 
Our system is a ‘hybrid’ system, in that it either uses feature 
detection and matching or optic flow tracking to find 
corresponding points between each input frame and the 
stored maps. Which method it uses depends on if the system 
is ‘lost’ or not. The stages depicted in Figure 1 are described 
below. 
 
3.4 Image Decoding  
 
On mobile devices it is often necessary to convert the image 
formats for use in AR. The input camera format and output 
screen format are usually incompatible and require a 
conversion step. The vast majority of smart phone and tablet 
cameras return images in some variation of the YUV format. 
The common YUV420 format is convenient for vision 
algorithms as the luminance data block can be used directly 
as a gray scale image. However, in order to display a colour 
image on the screen (using the Android API) or upload it as 
an OpenGL texture, it must be converted to an RGB format. 
A resolution of 640x480 is used throughout the system, 
which the camera is able to return directly without the need 
for software down-sampling. See Appendix A for conversion 
formulae 
 
3.5 Feature Detection (performed in ‘lost’ hybrid mode) 
 
Our system is based on the ORB descriptor, which is an 
oriented version of the BRIEF descriptor [17]. Both ORB 
and BRIEF are binary descriptors, meaning the descriptor 
itself is a binary string rather than a floating-point vector as 
is the case with the SIFT and SURF algorithms. To build the 
ORB descriptor, interest points (typically FAST corners) are 
detected in the image and a series of pixel intensity 
comparisons are carried out between the interest point and 
some distribution of nearby pixels (256 comparisons in the 
case of the 32-byte descriptor). A single bit is required to 
store the result of each comparison, and each comparison is 
very fast to compute. This makes ORB very well suited for 
applications where memory and computation resources are at 
a premium.  
 
The most notable downside to the ORB descriptor is that it is 
not scale invariant. This can be compensated for by 
extracting features at different image scales in the input 
image and/or in the stored map but this was found to reduce 
execution speed too greatly. Instead, the system requires that 
maps be detected at or near their home position. 
 
There are two general cases considered when extracting 
features from the new camera frame. First, if the system is 
not already localized to a specific map (the ‘lost’ state,) 
features are extracted from the entire image and then used to 
determine which map, if any, the camera is looking at second 
case occurs when the system is already localized to a map, 
but existing feature inliers are not being tracked (conditions 
for tracking may not have been met). In this case, features are 
only extracted from within the bounding box of the map as it 
appeared in the previous frame. This bounding box is 
updated each frame during the map update process.  

 
Figure 2: Histogram comparison for map recognition 

 
3.6 Frame Lookup (performed in ‘lost’ hybrid mode) 
 
Newly detected features in the camera frame are matched to 
the map set using a bag of words scheme. Normalized 
response histograms are created for both frame and map by 
matching their descriptors to a descriptor vocabulary. These 
histograms are compared using their L2 distance, and the 
map whose histogram gives the lowest distance is returned as 
the most likely to be present in the frame (Figure 2).  
 
One notable shortcoming is that we do not apply a hard 
threshold on whether or not a map is present at all. Even if 
there is no map present in the scene, the system will always 
return the most likely candidate. The reason for this is that 
we could not find a value that reliably separated the two 
cases. The system relies on the descriptor matching phase 
described in the next section to determine if the map is 
actually present. Once the most suitable map is found, it is 
matched to the camera frame. 
 
3.7 Descriptor Matching Behaviour 
 
Comparing binary descriptors is done by calculating their 
Hamming distance. This consists of an exclusive-or 
operation followed by a population count of the result. This 
can be done quickly using built in XOR and POPCNT 
instructions, but we achieve a further speed increase by once 
again using the SIMD engine. Rather than iterating through 
the 256-bit descriptor one integer at a time (8 integers total), 
they are stored across two 128-bit registers and processed in 
only two parts. This yields an approximate threefold increase 
in speed, even over the POPCNT instruction. 
 
Frame descriptors are first matched to the roots of the 
candidate map, and then to the branch whose root yielded 
Figure 2–Histogram comparison for map recognition the best 
score. Matches are filtered using two thresholds: an absolute 
threshold of 75 for the best Hamming score (this value was 
picked based on the distribution of true positive scores in 
[17]), and a relative threshold of 0.75 for the ratio between 
the best and second best matches. Additionally, a threshold 
of 20 is set as the minimum number of good matches that 
must be found for the map to be deemed detected. This 
number was determined empirically, based on the observed 
average number of false matches that occur when there is no 
map present in the frame. Using this threshold the system 
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ignores frames that do not contain a map, regardless of the 
best map returned in the lookup phase. 
 
3.8 Pose Estimation Behaviour 
 
If a suitable number of good matches are found, the system 
attempts to estimate the pose of the camera using the known 
3D coordinates of the map and their corresponding 2D frame 
locations. We have found that improved performance can be 
achieved by using two different pose estimation algorithms, 
one for each of the hybrid modes (‘lost’ or ‘tracking’).When 
determining pose, two cases are considered, one for each 
mode of the hybrid system: pose from descriptor matches, 
and pose from tracked inliers (discussed below). Despite the 
various limits and thresholds applied during the matching 
process, it is still possible for false positives to be present. 
These bad matches can comprise a significant portion of the 
correspondences, and, if not rejected, degrade the accuracy of 
the recovered camera pose. The goal is to use only correct 
matches in the Calculation of the pose. To do this, the EPnP 
[18] technique is used inside a RANdom SAmple and 
Consensus (RANSAC) loop [19].  
 
The maximum number of iterations was determined 
empirically. Since the RANSAC algorithm is not 
deterministic, the integrity of the camera pose depends 
largely on the probability of selecting four accurate 
correspondences within the maximum number of iterations. 
5000 iterations may have an infinitesimal chance of failing to 
find inliers, but the running time would be far too high. 
Therefore, this probability is weighed against the iteration 
speed in order to find a middle ground between accuracy and 
efficiency. In practice, when the correct map is present in the 
camera image, the number of outliers was typically below 
25%. However, under extreme conditions this number was 
observed to climb to 50% (or higher), so the maximum 
number of iterations was calculated based on a 50% outlier 
ratio. Additionally, to determine the number of iterations, the 
desired probability of selecting four good inliers was 
arbitrarily set to 99%. The number of iterations was set to 72 
using Equation (3) in appendix B. There is one main 
downside to pose estimation using feature matches: The 
same features are not always detected in every frame, which 
means the set of inliers is always different. This causes the 
camera pose to differ slightly each frame, which manifests 
itself as jitter in the displayed augmentation. To combat this, 
an inlier tracking method is used. 
 
3.9 Inlier Tracking Behaviour 
 
In our system we utilize an optic flow [20] tracking mode, 
both for speed performance and to allow for a greater range 
of motion without losing pose. Inlier tracking begins when 
the number of inliers reaches 50% of the total map size or 
higher. This value was obtained by observing that the 
average number of matches under ideal conditions is 
typically two thirds of the total map size (66%), and the 
average number of inliers under ideal conditions is 75% or 
more, which combine for 50% or more of the total map size. 
This requires the camera to be moderately close to its 
original position when the map was created, but when 
tracking it is desirable to begin with as many inliers as 
possible.  

When tracking begins, instead of extracting and matching 
new features at the start of the next frame, inliers from the 
previous frame are tracked in the new frame using optic 
flow. This provides a number of benefits. First, tracking 
existing features is computationally faster than extracting 
new features and matching them. Second, because these are 
inliers, they are already known to be accurate matches. 
Rather than performing RANSAC-based pose estimation on 
the tracked inliers, the system skips straight to least-squares 
pose estimation. This time, however, an iterative pose 
estimation method based on Levenberg-Marquardt 
optimization [21] present in OpenCV is used instead of 
EPnP. The reason for using the iterative method is that it 
produces more consistently robust results at extreme viewing 
angles. Although the iterative method is slower in general, 
performing least-squares iterative pose estimation is still 
much faster than using RANSAC based EPnP. Using optic 
flow and iterative pose estimation, the system is able to track 
the map plane until it is nearly perpendicular to the camera 
plane and still achieve a robust, stable pose. 
 
This represents one of the contributions of this paper, the 
observation that a RANSAC loop not needed in the tracking 
mode if properly initialized, and that furthermore the 
iterative pose mode provides better visual stability for AR. 
  
Ideally, every inlier in the previous frame will be tracked into 
the new frame. This is not realistic, however. Each new 
frame will result in fewer and fewer successful tracks due to 
occlusion; difficult viewing conditions, motion blur, or even 
camera noise. Eventually there will be too few tracks 
remaining to obtain a reliable pose. When this occurs, the 
system assumes the map has been lost, extracts new features, 
and goes back to the frame lookup step. The lower limit on 
the number of tracks is set to 20. This number is based solely 
on observation of augmentation stability. 
 
3.10 Map Updation 
 
The final process in the pipeline is to dynamically update the 
map. First, the projection matrix is computed from the pose 
and camera parameters. It is used to re-project the 3D 
bounding corners of the map into 2D image space to provide 
the region of interest used in feature detection.  
 
Secondly, if features were extracted from the current frame, 
inlier descriptors are added to the map. In this way, each 3D 
world point in the map can have more than one descriptor 
associated with it. In order to prevent the map from growing 
overly large, the number of descriptors that can be associated 
with each point is limited. When the limit is reached, older 
descriptors are removed in favour of the newer ones with the 
exception of the original descriptor, which is never removed. 
This allows map features to be more consistently detected 
from different viewpoints. 
 
3.11 Augment Portrayal 
 
Once the map has been updated, the final task is to pass the 
recovered pose back to OpenGL to be used to create a model 
view matrix (Appendix C). With a model view matrix 
obtained via an accurate camera pose, any 3D augmentation 
can be drawn. With sufficient 3D graphics experience, one 
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could design complex augmentations that integrate 
seamlessly with their real world surroundings.  
 
4.  Conclusion 
 
This paper presents an elaborated survey on mobile based 
augmented reality system designed to operate in real 
environment current generation mobile devices. Many past 
research issues have been highlighted and directions for 
future work have been suggested. Many open issues have 
been highlighted by the researchers such as dealing with 
optimisations, speed with dynamic scene.  
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