
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

An Elaborated Survey on Mobile based Augmented
Reality System

Shaik Abdul Gaffar 1, Shaik Nyamathulla2

1Computer Science Engineering, Guntur Engineering College, Guntur, India

Abstract- Augmented reality (AR) is a live and combines direct or indirect view of a physical, real-world environment it's real time data
whose elements are augmented by computer generated virtual content such as sound, video, graphics or GPS data. An AR system poses
unique challenges including requiring a high quality camera pose estimate and operating on resource limited platforms. There is several
hybrid approach using ORB binary features and optic flow that is able to real time performance result is possible with platform specific
optimizations, improve speed and extend the usable tracking range.

Keywords: Augmented Reality; Markerless; Mobile; Real Time; Feature Detectors; ORB; Hybrid Tracking

1. Introduction

Augmented reality is a concept of supplementing the real
world with the virtual world. Although it uses a virtual
environment created by computer graphics, its main
playground is the real environment. Computer graphics serve
the function of adding necessary information into the real
environment. In so doing, it makes up for the weak point of
unreality which can occur in the environment providing only
the virtual world. Augmented reality is to improve the
recognition tools for the real world and thus to efficiently
interact between humans and computers.

In order to perform the object tracking, markerless
augmented reality systems rely in natural features instead of
fiducial marks. Therefore, there are no ambient intrusive
markers which are not really part of the environment.
Furthermore, markerless augmented reality counts on
specialized and robust trackers already available. Another

advantage of the markerless systems is the possibility of
extracting from the environment characteristics and
information that may later be used by them. However, among
the disadvantages we can consider for markerless augmented
reality systems is that tracking and registration techniques
become more complex.

Old AR systems like ARTag [1] utilize fiducial markers or
“tags”, over which virtual objects are rendered. Marker-based
systems are ideal for applications involving a static or fixed
environment, or situations where the desired virtual defined
marker tag does not extend beyond the tag itself. In the
performing and using of application, users must print and
carry the tags in order to use the AR application. For more
complex, large scale applications, significant infrastructure is
required in the form of huge number of or hundreds of
markers placed throughout the environment [2].

Figure 1: AR pipeline overview

Paper ID: 23091403 2218

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

In this paper, we present an end-to-end markerless AR
pipeline based on the binary ORB descriptor by Rublee et al
[3]. The system is capable of real time performance on
current generation consumer grade mobile devices. The
system requires nothing more than a calibrated monocular
camera; every other process is performed online and in real
time, including map creation. The computational restrictions
of mobile devices are addressed at each stage in the pipeline,
and an Android implementation is used to evaluate the
system as a whole.

2. Previous Work

There has been myriad work done in the field of AR over the
past decade. In this paper we focus mainly on work related to
markerless AR, mobile AR, and their relevant computer
vision algorithms.

The best known work in monocular camera localization and
mapping is the MonoSLAM system developed by Davison et
al [4]. The authors successfully applied SLAM
methodologies to the vision domain using a monocular
camera as the sole input device. MonoSLAM maintains a
sparse map of oriented planar textures (~12 for any given
camera view) centered on Shi-Tomasicorners. The system is
initialized using a planar target containing four known
features before dynamically updating the map. They present
results in the AR domain, and achieve real-time operation at
30Hz while rendering augmentations.

The Parallel Tracking and Mapping (PTAM) system,
introduced by Klein and Murray in 2007 [5], uses a multi-
threaded approach in order to simultaneously track interest
points by morphing and matching image patches, and
maintain a map of these patches. PTAM uses a stereo pair of
images of a planar scene for initialization, and uses bundle
adjustment to determine and update the 3D locations of
interest points.

Taehee and Hollerer also propose a multi-threaded approach
in [6]. They use a hybrid tracking method which extracts
SIFT features [7] (instead of image patches) and then tracks
them using optic flow. They achieved real-time performance
by only extracting and matching SIFT features periodically
in a thread separate from the tracker. They also perform
scene recognition by recognizing previously recorded SIFT
features.

On the mobile front, attempts have been made to adapt SIFT
and its speedier counterpart SURF [8] to mobile devices.
Wagner et al proposed a hybrid between FAST corners [9]
and a reduced version of the SIFT descriptor in [10].
Ratherthan compute descriptors every frame, they also adopt
a hybrid approach and track existing features using SAD
patch correlation. This method achieves upwards of 20Hz
while extracting ~150 features per frame (320x240). Chen et
al propose a modified version of SURF in [11] that achieves
a roughly 30% speed-up over the original SURF algorithm,
but nevertheless falls far short of real-time operation on
mobile devices.

The first self-contained AR system to run on a consumer-
grade cell phone was presented in 2004 by Mohring et al

[12]. Their system recognizes different markers via circular
bar codes and detecting gradient changes in the red, green,
and blue color channels. Their entire pipeline achieved a
frame rate of 4-5fps, at a camera resolution of 160x120.

A reduced version of the PTAM system has been adapted to
the iPhone [13], but results showed severely reduced
accuracy and execution speed. PTAM is intended for use in
small AR workspaces, and suffers reduced performance as
the map gets bigger and bigger due to the bundle adjustment
process being cubic with respect to the number of features in
the map (O(n3)).

As a continuation of their work in [10], Wagner et al propose
a more complete version of their feature detection and
matching system in [14]. They use a similarly modified
version of SIFT and outlier rejection that runs at
approximately 26Hz. However, when AR-related overhead
(image retrieval from camera, rendering, etc.) is taken into
consideration, the speed drops to 15Hz. They combine this
with patch tracking to greatly improve speed to 8ms per
frame (not including AR overhead) instead of using SIFT on
every frame. Their system runs on 320x240 imagery during
the SIFT phase, and down-samples further to 160x120 while
tracking. In addition, a maximum of 100 features are tracked
at any given time.

To the best of our knowledge, there exists no complete AR
system that incorporates all the elements presented in this
paper while achieving real-time operation on mobile devices.
Most notably absent from existing systems are online map
creation and multiple map support.

3. Technical Approach

This section describes our system. The stages of the AR
pipeline shown in Figure 1 are discussed. For each stage we
discuss which algorithms are used, and any modifications
that were made to improve efficiency.

3.1 Map Overview

We define a ‘map’ as a list of feature descriptors and their
corresponding 3D world coordinates. In our system,
matching features in an input video frame to a map is
accelerated by using a tree structure. When a map is created,
the descriptors are placed into a clustering tree with eight
branches as done by Muja and Lowe in [15]. Each map has
an associated 3D bounding box consisting of four world
coordinates. This bounding box can be projected into the
image frame once camera pose has been estimated.
Additionally, the system maintains a 100-word descriptor
vocabulary. Each map is matched to this vocabulary to create
unique response histograms.

3.2 Platform Specific Acceleration

To achieve real time speeds on a resource limited mobile
devices, platform specific adaptations are used. This system
makes use of the NEON instruction set, which utilizes the
SIMD engine present in the ARM Cortex-A series of
processors2. This is achieved through the use of ‘intrinsic’
functions added to the C/C++ code.

Paper ID: 23091403 2219

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.3 Processing Stages

Our system is a ‘hybrid’ system, in that it either uses feature
detection and matching or optic flow tracking to find
corresponding points between each input frame and the
stored maps. Which method it uses depends on if the system
is ‘lost’ or not. The stages depicted in Figure 1 are described
below.

3.4 Image Decoding

On mobile devices it is often necessary to convert the image
formats for use in AR. The input camera format and output
screen format are usually incompatible and require a
conversion step. The vast majority of smart phone and tablet
cameras return images in some variation of the YUV format.
The common YUV420 format is convenient for vision
algorithms as the luminance data block can be used directly
as a gray scale image. However, in order to display a colour
image on the screen (using the Android API) or upload it as
an OpenGL texture, it must be converted to an RGB format.
A resolution of 640x480 is used throughout the system,
which the camera is able to return directly without the need
for software down-sampling. See Appendix A for conversion
formulae

3.5 Feature Detection (performed in ‘lost’ hybrid mode)

Our system is based on the ORB descriptor, which is an
oriented version of the BRIEF descriptor [17]. Both ORB
and BRIEF are binary descriptors, meaning the descriptor
itself is a binary string rather than a floating-point vector as
is the case with the SIFT and SURF algorithms. To build the
ORB descriptor, interest points (typically FAST corners) are
detected in the image and a series of pixel intensity
comparisons are carried out between the interest point and
some distribution of nearby pixels (256 comparisons in the
case of the 32-byte descriptor). A single bit is required to
store the result of each comparison, and each comparison is
very fast to compute. This makes ORB very well suited for
applications where memory and computation resources are at
a premium.

The most notable downside to the ORB descriptor is that it is
not scale invariant. This can be compensated for by
extracting features at different image scales in the input
image and/or in the stored map but this was found to reduce
execution speed too greatly. Instead, the system requires that
maps be detected at or near their home position.

There are two general cases considered when extracting
features from the new camera frame. First, if the system is
not already localized to a specific map (the ‘lost’ state,)
features are extracted from the entire image and then used to
determine which map, if any, the camera is looking at second
case occurs when the system is already localized to a map,
but existing feature inliers are not being tracked (conditions
for tracking may not have been met). In this case, features are
only extracted from within the bounding box of the map as it
appeared in the previous frame. This bounding box is
updated each frame during the map update process.

Figure 2: Histogram comparison for map recognition

3.6 Frame Lookup (performed in ‘lost’ hybrid mode)

Newly detected features in the camera frame are matched to
the map set using a bag of words scheme. Normalized
response histograms are created for both frame and map by
matching their descriptors to a descriptor vocabulary. These
histograms are compared using their L2 distance, and the
map whose histogram gives the lowest distance is returned as
the most likely to be present in the frame (Figure 2).

One notable shortcoming is that we do not apply a hard
threshold on whether or not a map is present at all. Even if
there is no map present in the scene, the system will always
return the most likely candidate. The reason for this is that
we could not find a value that reliably separated the two
cases. The system relies on the descriptor matching phase
described in the next section to determine if the map is
actually present. Once the most suitable map is found, it is
matched to the camera frame.

3.7 Descriptor Matching Behaviour

Comparing binary descriptors is done by calculating their
Hamming distance. This consists of an exclusive-or
operation followed by a population count of the result. This
can be done quickly using built in XOR and POPCNT
instructions, but we achieve a further speed increase by once
again using the SIMD engine. Rather than iterating through
the 256-bit descriptor one integer at a time (8 integers total),
they are stored across two 128-bit registers and processed in
only two parts. This yields an approximate threefold increase
in speed, even over the POPCNT instruction.

Frame descriptors are first matched to the roots of the
candidate map, and then to the branch whose root yielded
Figure 2–Histogram comparison for map recognition the best
score. Matches are filtered using two thresholds: an absolute
threshold of 75 for the best Hamming score (this value was
picked based on the distribution of true positive scores in
[17]), and a relative threshold of 0.75 for the ratio between
the best and second best matches. Additionally, a threshold
of 20 is set as the minimum number of good matches that
must be found for the map to be deemed detected. This
number was determined empirically, based on the observed
average number of false matches that occur when there is no
map present in the frame. Using this threshold the system

Paper ID: 23091403 2220

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ignores frames that do not contain a map, regardless of the
best map returned in the lookup phase.

3.8 Pose Estimation Behaviour

If a suitable number of good matches are found, the system
attempts to estimate the pose of the camera using the known
3D coordinates of the map and their corresponding 2D frame
locations. We have found that improved performance can be
achieved by using two different pose estimation algorithms,
one for each of the hybrid modes (‘lost’ or ‘tracking’).When
determining pose, two cases are considered, one for each
mode of the hybrid system: pose from descriptor matches,
and pose from tracked inliers (discussed below). Despite the
various limits and thresholds applied during the matching
process, it is still possible for false positives to be present.
These bad matches can comprise a significant portion of the
correspondences, and, if not rejected, degrade the accuracy of
the recovered camera pose. The goal is to use only correct
matches in the Calculation of the pose. To do this, the EPnP
[18] technique is used inside a RANdom SAmple and
Consensus (RANSAC) loop [19].

The maximum number of iterations was determined
empirically. Since the RANSAC algorithm is not
deterministic, the integrity of the camera pose depends
largely on the probability of selecting four accurate
correspondences within the maximum number of iterations.
5000 iterations may have an infinitesimal chance of failing to
find inliers, but the running time would be far too high.
Therefore, this probability is weighed against the iteration
speed in order to find a middle ground between accuracy and
efficiency. In practice, when the correct map is present in the
camera image, the number of outliers was typically below
25%. However, under extreme conditions this number was
observed to climb to 50% (or higher), so the maximum
number of iterations was calculated based on a 50% outlier
ratio. Additionally, to determine the number of iterations, the
desired probability of selecting four good inliers was
arbitrarily set to 99%. The number of iterations was set to 72
using Equation (3) in appendix B. There is one main
downside to pose estimation using feature matches: The
same features are not always detected in every frame, which
means the set of inliers is always different. This causes the
camera pose to differ slightly each frame, which manifests
itself as jitter in the displayed augmentation. To combat this,
an inlier tracking method is used.

3.9 Inlier Tracking Behaviour

In our system we utilize an optic flow [20] tracking mode,
both for speed performance and to allow for a greater range
of motion without losing pose. Inlier tracking begins when
the number of inliers reaches 50% of the total map size or
higher. This value was obtained by observing that the
average number of matches under ideal conditions is
typically two thirds of the total map size (66%), and the
average number of inliers under ideal conditions is 75% or
more, which combine for 50% or more of the total map size.
This requires the camera to be moderately close to its
original position when the map was created, but when
tracking it is desirable to begin with as many inliers as
possible.

When tracking begins, instead of extracting and matching
new features at the start of the next frame, inliers from the
previous frame are tracked in the new frame using optic
flow. This provides a number of benefits. First, tracking
existing features is computationally faster than extracting
new features and matching them. Second, because these are
inliers, they are already known to be accurate matches.
Rather than performing RANSAC-based pose estimation on
the tracked inliers, the system skips straight to least-squares
pose estimation. This time, however, an iterative pose
estimation method based on Levenberg-Marquardt
optimization [21] present in OpenCV is used instead of
EPnP. The reason for using the iterative method is that it
produces more consistently robust results at extreme viewing
angles. Although the iterative method is slower in general,
performing least-squares iterative pose estimation is still
much faster than using RANSAC based EPnP. Using optic
flow and iterative pose estimation, the system is able to track
the map plane until it is nearly perpendicular to the camera
plane and still achieve a robust, stable pose.

This represents one of the contributions of this paper, the
observation that a RANSAC loop not needed in the tracking
mode if properly initialized, and that furthermore the
iterative pose mode provides better visual stability for AR.

Ideally, every inlier in the previous frame will be tracked into
the new frame. This is not realistic, however. Each new
frame will result in fewer and fewer successful tracks due to
occlusion; difficult viewing conditions, motion blur, or even
camera noise. Eventually there will be too few tracks
remaining to obtain a reliable pose. When this occurs, the
system assumes the map has been lost, extracts new features,
and goes back to the frame lookup step. The lower limit on
the number of tracks is set to 20. This number is based solely
on observation of augmentation stability.

3.10 Map Updation

The final process in the pipeline is to dynamically update the
map. First, the projection matrix is computed from the pose
and camera parameters. It is used to re-project the 3D
bounding corners of the map into 2D image space to provide
the region of interest used in feature detection.

Secondly, if features were extracted from the current frame,
inlier descriptors are added to the map. In this way, each 3D
world point in the map can have more than one descriptor
associated with it. In order to prevent the map from growing
overly large, the number of descriptors that can be associated
with each point is limited. When the limit is reached, older
descriptors are removed in favour of the newer ones with the
exception of the original descriptor, which is never removed.
This allows map features to be more consistently detected
from different viewpoints.

3.11 Augment Portrayal

Once the map has been updated, the final task is to pass the
recovered pose back to OpenGL to be used to create a model
view matrix (Appendix C). With a model view matrix
obtained via an accurate camera pose, any 3D augmentation
can be drawn. With sufficient 3D graphics experience, one

Paper ID: 23091403 2221

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

could design complex augmentations that integrate
seamlessly with their real world surroundings.

4. Conclusion

This paper presents an elaborated survey on mobile based
augmented reality system designed to operate in real
environment current generation mobile devices. Many past
research issues have been highlighted and directions for
future work have been suggested. Many open issues have
been highlighted by the researchers such as dealing with
optimisations, speed with dynamic scene.

References

[1] M. Fiala, "ARTag, a fiducial marker system using

digital techniques," in Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, 2005, pp. 590-596 vol. 2.

[2] M. Fiala and G. Roth, "Magic Lens Augmented
Reality: Table-top and Augmentorium," presented at
the ACM SIGGRAPH 2007 posters, San Diego,
California, 2007.

[3] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
"ORB: An efficient alternative to SIFT or SURF," in
Computer Vision (ICCV), 2011 IEEE International
Conference on, 2011, pp. 2564-2571.

[4] J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
"MonoSLAM: Real-time single camera SLAM,"
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, pp. 1052-1067, 2007.

[5] G. Klein and D. Murray, "Parallel Tracking and
Mapping for Small AR Workspaces," in Mixed and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, 2007, pp. 225-234.

[6] L. Taehee and T. Hollerer, "Hybrid Feature Tracking
and User Interaction for Markerless Augmented
Reality," in Virtual Reality Conference, 2008. VR '08.
IEEE, 2008, pp. 145-152.

[7] D. G. Lowe, "Object recognition from local scale-
invariant features," in Computer Vision, 1999. The
Proceedings of the Seventh IEEE International
Conference on, 1999, pp. 1150-1157 vol.2.

[8] H. Bay, T. Tuytelaars, and L. Van Gool, "SURF:
Speeded up robust features," Computer Vision–ECCV
2006, pp. 404-417, 2006.

[9] E. Rosten and T. Drummond, "Machine Learning for
High-Speed Corner Detection," presented at the
European Conference on Computer Vision, 2006.

[10] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,
and D. Schmalstieg, "Pose tracking from natural
features on mobile phones," presented at the
Proceedings of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, 2008.

[11] W.-C. Chen, Y. Xiong, J. Gao, N. Gelfand, and R.
Grzeszczuk, "Efficient Extraction of Robust Image
Features on Mobile Devices," presented at the
Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented
Reality, 2007.

[12] M. Mohring, C. Lessig, and O. Bimber, "Video See-
Through AR on Consumer Cell-Phones," presented at

the Proceedings of the 3rd IEEE/ACM International
Symposium on Mixed and Augmented Reality, 2004.

[13] G. Klein and D. Murray, "Parallel Tracking and
Mapping on a camera phone," in Mixed and
Augmented Reality, 2009. ISMAR 2009. 8th IEEE
International Symposium on, 2009, pp. 83-86.

[14] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,
and D. Schmalstieg, "Real-Time Detection and
Tracking for Augmented Reality on Mobile Phones,"
Visualization and Computer Graphics, IEEE
Transactions on, vol. 16, pp. 355-368, 2010.

[15] M. Muja and D. G. Lowe, "Fast Matching of Binary
Features," in Computer and Robot Vision (CRV), 2012
Ninth Conference on,2012, pp. 404-410.

[16] T. P. Morgan. (2012). ARM Snags 95 Percent Of
Smartphone Market, Eyes New Areas For Growth.
Available: http://www.crn.com/news/components-
peripherals/240003811/arm-snags-95-percent-of-
smartphone-market-eyes-new-areas-for-growth.htm

[17] M. Calonder, V. Lepetit, C. Strecha, and P. Fua,
"BRIEF: Binary Robust Independent Elementary
Features," Computer Vision–ECCV 2010,pp. 778-792,
2010.

[18] V. Lepetit, F. Moreno-Noguer, and P. Fua, "Epnp: An
accurate o (n) solution to the pnp problem,"
International Journal of Computer Vision, vol. 81, pp.
155-166, 2009.

[19] M. Fischler and R. Bolles, "Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography," Commun. ACM,
vol. 24, pp. 381-395, 1981.

[20] C. Tomasi and T. Kanade, "Detection and Tracking of
Point Features," Carnegie Mellon University1991.

[21] K. Levenberg, "A Method for the Solution of Certain
Non-Linear Problems in Least Squares," Quarterly of
Applied Mathematics, pp. 164-168, 1944.

[22] W. Garage. (2012). OpenCV Change Log. Available:
http://code.opencv.org/projects/opencv/wiki/ChangeLo
g

[23] J. Hruska. (2013). Nvidia’s Tegra 4 demystified: 28nm,
72-core GPU, integrated LTE, and questionable power
consumption.Available:
http://www.extremetech.com/computing/144942-
nvidias-tegra-4-demystified-28nm-72-core-gpu-
integrated-lte-and-questionable-power-consumption

Author Profile

Shaik Abdul Gaffar Obtained the B.Tech degree in
Computer Science and Engineering (CSE) from
Chalapathi Institute of Technology, Mothadaka,
Guntur District. At present I am persuing the M.Tech
in Computer Science and Engineering (CSE)

Department at Guntur Engineering College, Guntur.

Shaik Nyamathulla obtained the B.Tech. degree in
Computer Science and Information Technology (CSIT)
from Hi-Point college of Engg and Tech, Hyderabad
in 2009 and M.Tech from Guntur Engineering College
in 2013. He has 5 years of teaching experience and

working in Computer Science and Engineering (CSE) Department
at Guntur Engineering College, Guntur.

Paper ID: 23091403 2222

