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Abstract: In this paper, we study the Batch gradient method with Smoothing L1/2 Regularization and Momentum for Pi-sigma 
Networks, assuming that the training samples are permuted stochastically in each cycle of iteration. The usual L1/2 Regularization term 
involves absolute value and is not differentiable at the origin, which typically causes oscillation of the gradient method of the error 
function during the training. However, using the Smoothing approximation techniques, the deficiency of the norm L1/2 Regularization 
term can be addressed. Corresponding convergence results of Smoothing L1/2 Regularization are proved, that is, the weak convergence 
result is proved under the uniformly boundedness assumption of the activation function and its derivatives. 
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1. Introduction 
 
In the neural networks research field, The pi-sigma neural 
networks (PSNN) [1] is a type of feed forward polynomial 
neural network (FPNN) and it’s the most popular models. 
These networks are known to provide inherently more 
successful mapping capability than traditional feed forward 
networks and to improve the learning efficiency. The neural 
networks consisting of the PSNN modules are widely used 
for classification and approximation problems. PSNN use 
product neurons are only composed of the product of inputs, 
and the number of weights required increases combinatorially 
with the dimension of the inputs [2-5]. To speed up and 
stabilize the training iteration procedure, a momentum term is 
often added to the increment formula for the weights so that 
the new weight updating rule becomes a combination of the 
present gradient of the error function and the previous weight 
updating increment [6-10]. Convergence of batch gradient 
method with momentum has been discussed in [11-13], under 
the condition that the error function is quadratic with respect 
to the weights. This condition was then relaxed in [14], where 
a gradient method with adaptive momentum for two-layer 
FNNs is considered and the online gradient method with 
momentum and its convergence for FNNs readers can refer to 
literature [9, 10, 15-17], in which some adaptive momentum 
terms are proposed and the related convergence results are 
established. 
 
However, in the procedure of training FNN with SSE, the 
weights sometimes become very large and over-fitting tends 
to occur.A standard technique to prevent over- fitting is 

regularization, in which an extra term that penalizes large 
weights are added to the conventional error function [18-23]. 
Briefly to overview the main points of this paper, the origin 
modify the using smooth L1\2 regularization in the extra term 
acts as a brute-force to drive unnecessary weights to zero and 
to prevent the weights from taking too large in the training 
processing into networks. 
 
A commonly used regularization term is the squared penalty 
[18, 24], a term proportional to the magnitude of the network 
weights and many experiments have shown that to be 
provides a way to control the magnitude of the weight. 
 
The regularization methods are recently developed as feasible 
approaches to solve the problem such that variable selection 
problem in machine learning. In general, the regularization 
methods take the form [25]. 

��� = �
1
�

� ����, �(��)�
�

���

+ �‖�‖�
��           (1) 

where �(. , . ) � ���,�(��)� is a loss function, {(��, ��)���
� } is a 

data set, � is the regularization parameter, and ‖�‖�
� p- norm 

of function f and is normally taken as the norm of the 
coefficient of linear model. Almost all the existing learning 
algorithms can be considered as a special form of this 
regularization framework. The best subset selection, namely, 
the �� penalty, along with the traditional model selection 
criteria such as AIC and BIC For example, when p= 0 [26, 
27]. The L0 regularization can be understood as a penalized 
least squares with penalty ‖�‖�, in which the parameter λ 
functions as balancing the two objective terms. The 
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complexity of the model is proportional with the number of 
variable selection, and solving the model generally is 
intractable, particularly when N is large (It is NP-hard, see 
[28] ). It is well known that the L1 regularization has a very 
close relationship with the model Lasso and Basis Pursuit, 
two independent works of Tibshirani [29], and that of Chen, 
Donoho, and Saunders [24]. The L1 regularization problem 
can be transformed into an equivalent convex quadratic 
optimization problem, and therefore, can be very efficiently 
solved. It can also result in sparse solution of the considered 
problem, with a promise that, under some mild conditions, 
the resultant solution coincides with one of the solutions of L0 
regularization [30-32]. L1 regularization has been widely used 
to discourage the weights from taking large values [33, 34]. 
However, � > 0 may not lead to the sparsity-promoting 
property, so � ∈ �0, 1� are required [35]. 
 
The L1\2 regularization and propose a novel successfully 
applied in variable selection and feature extraction problems 
in high dimensional and massive data analysis. Recently, Xu 
et al. [36] justified that the sparsity-promotion ability of the 
L1\2 problem was strongest among the Lp minimization 
problems with all p∈ [1/2, 1) and similar in p∈ (0, 1/2]. So 
the L1\2 problem can be taken as a representative of Lp (0 < p 
< 1) problems. However, as proved by Ge et al. [37], finding 
the global minimal value of the L1\2 problem was still 
strongly NP-hard. Finally, we propose the following L1\2 
Regularization: 

���� �⁄ = arg min �
1
�

 �(���� − ��)�
�

���

+ �‖�‖�� �⁄ �    (2) 

where � ≥ 0 is an appropriate regularization parameter and 

‖�‖�� �⁄ = �|��|� �⁄
�

���

 

The �� �⁄  regularization is a nonconvex and non-Lipschitz 
problem. Due to the existence of the term |��|� �⁄ , the 
objective function is even not directionally differentiable at a 
point with some �� = 0, which makes the problem is very 
difficult to solve. Existing numerical methods that are very 
efficient for solving smooth problem could not be used 
directly. One possible way to develop numerical methods for 
solving equ. (2) is to smoothing the term |��|� �⁄  using some 
smoothing function. However, it is easy to see that the 
derivative of the smoothing function will be unbounded and 
differentiable. Consequently, it is not desirable that the 
smoothing function based numerical methods could work 
well. Recently, the �� �⁄  regularization has been successfully 
applied in [38] proposed a constrained optimization 
reformulation to the unconstrained �� �⁄  regularization 
problem. The reformulation is to minimizing a smooth 
function subject to some quadratic constraints and 
nonnegative constraints such as the generalized gradient 
(GG) and recurrent neural network (RNN) methods shown as 
[39, 40]. 
 
In this paper, we study the deterministic convergence of the 
batch gradient method with both momentum term and 
smoothing �� �⁄  regularization term. Note that the usual �� �⁄  
regularization is not smooth at the origin, which makes the 
problem is very difficult to solve. To overcome this drawback 
using smoothing function, so it is easy to see that the 

derivative of the smoothing function will be unbounded and 
differentiable. 
 
The rest of this paper is organized as follows. In the next 
section the batch gradient method with smoothing �� �⁄  
regularization penalty term and momentum is described for 
training PSNN model. In section 3, the convergence results 
of batch gradient method with smoothing �� �⁄  regularization 
and momentum are presented. The detailed proofs of the 
main results are gathered in section 4. Finally, we conclude 
this paper in section 5. 
 
2. Batch gradient method with smoothing L1\2 
regularization and momentum (BGMSRM)  
 
2.1. Batch gradient method with L1\2 regularization and 
momentum 
Consider a three-layer network consisting of � input node, � 
hidden nodes, and one output nodes. Suppose that by 
�� = ����, … , ����� ∈ �� be the weight vector between the 
input units and the hidden unit (� = 1, 2, … , �). To simplify 
the presentation, we write all the weight parameters in a 
compact form � = (��

�, … , ��
� ) ∈ ��� . the weights on the 

connections between the product node and the summation 
node are fixed to 1. We have included a special input unit 
�� = −1, corresponding to the biases ��� with fixed value 1. 
The topological structure of PSNN is shown in Fig. 1. 
 

 
������ �: PSNN structure with a single output 

 
suppose that {��, ��}���

� ⊂ �� � � is a given set of training 
samples, where �� = ���

�, ��
�, … ��

�� ∈ ℝ�. Let �: ℝ → ℝ be a 
transfer function for the hidden and output node, which is 
typically, but not necessarily, a sigmoid function. for an input 
� ∈ ℝ�, the output of of the network can be written as 

� = � �� ��(�����)
�

���

�
�

���

� = � ��(��. �)
�

���

�   (3) 

For simplicity, we write ��(�) = �
�

(�� − �(�))�. Define the 
error function takes the form 

��(�) =
1
2

� ��� − � ��(��. ��)
�

���

��

��

���

= � ��

�

���

��(��. ��)
�

���

� (4)  

Its gradient with respect to the weight vector �� (� =
1, 2, 3, … �) is 
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 ����( �) = � ��
� ��(��. ��

�

���

)�
�

���

�(��. ��)
�

���
���

�� 

By adding L1/2 regularization penalty term, the modified cost 
error function takes the form 

 �(�) = ��(�)  + � �|��|� �⁄
�

���

               (5)  

where λ > 0 is a penalty coefficient. 
The gradient of error function by adding L1/2 regularization 
penalty term with respect to ω� (k = 1, 2, 3, … , N). i.e.,  

���(�) =  ����( �)  +
 � ��� (��)

2 |��|� �⁄                (6) 

Given an initial weight �����, the batch gradient method 
with L1\2 update the weights iteratively by 

��
���� =  ��

������ − ��∆�
���

����,          (7) 
where � = 0, 1, 2, … ;  � = 1, 2, … , � ; 

∆�
���

���� = −�� �����
������( �) +

 � ��� (��
������)

2 � ���
�������

� �⁄ � (8) 

where � > 0 represents the learning rate in the � −
�ℎ training epoch. To speed up and stabilize the training 
iteration procedure, a momentum term is often added to the 
increment rule equ. (8) and this gives the batch gradient 
method with L1\2 regularization and momentum, i.e.,  

∆�
���

���� = −�� �����
������( �) +

 � ��� (��
������)

2 � ���
�������

� �⁄ �  

+ ��� ∆��
������ (9)  

where α�� is the momentum coefficient with respect to the 
term ∆ω�

������.  
 
2.2 Smoothing L1\2 regularization and momentum 
A modified L1\2 regularization term is proposed by smoothing 
the usual one at the origin, resulting in the following error 
function with a smoothing L1\2 regularization penalty term: 

�(�) = ��(�)  + � �|��|� �⁄
�

���

        (10)  

where �(�) is a smooth function that approximates |�|. for 
definiteness and simplicity, we choose �(�) as a piecewise 
polynomial function: 

�(�) = �
|�| �� |�| ≥ � 

−
1

8�� �� +
3

4�
�� +

3
8

 �� |�| < �     (11) 
 

  

where a is a small positive constant. Then It is easy to get 

�(�) ∈ �
3
8

�, +∞� , ��(�) ∈ �−1, 1�, ���(�) ∈ �0,
3

2�
� (12) 

The gradient of the error function can be written as in equ. 
(4) with 

���(�) =  ����( �)  + 
� ��(��)

 2� � (��)� �⁄  (13) 

where λ > 0 is a penalty parameter and k = 1, 2, 3, … , N. 
Given an initial weight ��, the batch gradient method with 
L1\2 regularization penalty update the weights {��} 
iteratively by 

��
���� =  ��

������ − ��∆�
���

����, (14) 
where � = 0, 1, 2, … ;  � = 1, 2, … , � ; and 

∆�
���

���� = −�� � ����
������( �) +

� �′(��
������)

2� �(��
������)� �⁄

�  (15) 

where � > 0 is a penalty parameter and � = 1, 2, 3, … , �. To 
speed up and stabilize the training iteration procedure, a 
momentum term is often added to the increment rule equ. 
(15) and this gives the batch gradient method with L1\2 
regularization and momentum, i.e.,  

∆�
���

���� = −�� � ����
������( �) +

 � �′(��
������)

2� �(��
������)� �⁄

�

+ ��� ∆�
���

������ (16) 
where ��� is the momentum coefficient with respect to the 
term ∆�

���
������. 

For the sake of description, we denote 

 ��,�,� = −�� � ����
������( �) +

� �′(��
������)

2� �(��
������)� �⁄

� (17)  

Particularly when i = 1 denote 

��,� = −�� �����
��( �) +

� �′(��
��)

 2� �(��
��)� �⁄

� (18) 

Then there holds 

���
��( �) = � ��,�

�

���

 (19) 

and the learning rule equ. (16) becomes 
∆�

���
������  = −����,�,� + ∆�

���
������,  

 � = 0, 1, … ; � = 1, 2, … . � (20) 
In this work, by choosing an initial �� ∈ (0 ,  1� and positive 
constant �, we inductively determine �� in equ. (18) by 
(cf.[41] ) 

1
����

=
1

��
+ �, � = 0, 1, 2 … . . (21) 

It is easy to get from equ. (20) that �� = −��/(1 + ����) 
for � = 0, 1, … hence there hold �� = �(1\�) and for 
�� → 0 �� � → ∞, and for the momentum coefficients ��� 
in equ. (19), then we choose them by the rule 

��� = �
��

� ‖���‖

�∆��
�������

 ���∆��
������� ≠ 0 

0 ����

   (22) 

 
3. Convergence Results 
 
In this section we present some convergence theorems of the 
Batch gradient method with smoothing L1\2 regularization 
with momentum term in equ. (14). To analyze the 
convergence of the algorithm, we need the following 
assumptions. 
 
Assumption (A1) ���

� (�)� and ���
��(�)� (� = 1, 2, … . , �) are 

uniformly bounded, i.e., there is a constant � > 0 such that 
���

� (�)� ≤ � and ���
��(�)� ≤ �. 

Assumption (A2) inequality (75) valid, and � and �� in equ. 
(19) satify � > ���{1, ��} and 0 < �� ≤ ���{1, 1 ��⁄ −
1/�}. 
Assumption (A3) the set Ω� ∈ {� ∈  Ω: ��(�) = 0} 
Contains finite points, where Ω is closed bounded region such 
that {��} ⊂ Ω. 
Theorem 1 。 Let the error function be given by equ. (10), 
let Assumptions (A1) and (A2) be satisfied, and let the 
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weight {��} be generated by the algorithm equ. (14). Then 
there holds 

���(���)�� ≤ �(���), � = 0, 1, … … .. 
Theorem 2. Under the same assumption of Theorem 1, the 
weight sequence {��} generated by equ. (16) is uniformly 
bounded. 
Theorem 3. Let the error function be given by equ. (10), and 
let the weight {��} be updated by equ. (16). if Assumption 
(A1) and (A2) are valid, then there holds the following weak 
convergence result 
 lim�→�‖��(��)‖ = 0. 
Furthermore, if Assumption (A4) is also valid, we have the 
strong convergence 

lim
�→�

�(��) = �∗ , ‖��(��)‖ = 0. 

4. Proofs  
 
For convenient, we use the following notation: 

��
�,� = ��,�,� − ��,�, � = 0, 1, 2, … , � = 1, 2, … , �, 1 ≤ �

≤ � (23)  
��

�,� =  ��
(���)� − ��

��, � = 0, 1, 2, . . (24)  

��
�,� =  ����,� ∆�

���
������  − ����,�,��

���

���

, 1 ≤ � ≤ �, 1 ≤ �

≤ �, � = 0, 1, 2, … (25) 
Then, by the error function equ. (10) we have 

���(���)�� = � �� �����
(���)�. ���

�

���

�
�

���

+ � � ����
(���)��

�
�

�

���

 (26)  

�(���) = � �� �����
��. ���

�

���

�  + � � ����
���

�
�

�

���

 (27) 
�

���

 

����� �. ��� {��} �� ����� �� ���. (21). �ℎ��� ℎ��� 
0 < �� < ���� ≤ 1, � = 1, 2, … … (28) 

�
�

< �� <
�
�

, � =
��

1 + ���
, � =

1
�

, � = 1, 2, … . . (29) 

Proof. This lemma is easy to validate by virtue of equ. (21) 
and �� ∈ (0 ,  1�. 
����� �. �� ���������� (�1)�� �����, ��� {��} ��������� 

 equ. (21), there holds  

����,��
�

���

≤  ���� ����,��
�

���

 (30) 

���
�,�� ≤  �� ��,�

�

���

� + ����
�  ����,��

�

���

 (31) 

���
�,��

�
≤  ����

�  ����,���
�

���

 (32) 

where ��, �� ��� �� are positive constants and � =
0, 1, 2, … ;  � = 1, 2, … �. 
Proof. By Assumption (A2), (A2), equ. (30) and Cauchy-
Schwartz, we have 

�����
����. ���

�

���

− ����
��. ���

�

���

�

≤ �����
����. ���

���

���

� ����
���� − ��

������

+ �����
����. ���

���

���

���
��. ���� ������

����

− ����
�� ����

+ ⋯ . . + �����
��. ���

�

���

� ����
����

− ��
������

≤ �� �� 2���,��
���

���

+  ����
�,��

���

���

� (33) 

where �� = ��(1 ≤ � ≤ �, 1 ≤ � ≤ �, � = 0, 1, 2, … ). 
Similarly, easy to get 

�����
����. ���

�

���
���

− ����
��. ���

�

���
���

�

≤ C� �� 2���,��
���

���

+  ����
�,��

���

���

� (34) 

where C� = C��� (1 ≤ j ≤ J, 1 ≤ k ≤ N, m = 0, 1, 2, … ). 
combination equ. (22), equ. (23) and 0 < �� ≤ 1 gives 
���

������ −  ��
�� �

≤ ����,� �∆�
���

������� + �����,��+ �����,���
���

���

 

≤ ����
�  ���,�� + �����,�� +  �����

�,���
���

���

 

≤ �� �� 2���,��
���

���

+  ����
�,��

���

���

� , � = 2, 3, … … � (35) 

By Assumption (A1), (A2), equ. (15), equ. (22), equ. (33), 
equ. (34), equ. (35) and differential mean value theorem, we 
have 

���
�,��  = �����

�� ��(��
������. ��

�

���

)� �(��
������. ��)��

�

���
���

− ����
� ��(��

��. ��
�

���

)� �(��
��. ��)��

�

���
���

  

+
�
2�

 �
 �′(��

������)
 �(��

������)� �⁄
−

 �′(��
��)

 �(��
��)� �⁄

�� 

≤ �����
�����,�� ����

������. ���
�

���
���

��(��
������. ��

�

���

)

− �(��
��. ��

�

���

)� ��� 
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+ �����
� ��(��

��. ��
�

���

)� �����
������. ���

�

���
���

− �(��
��. ��)

�

���
���

� ���

+  
�
2�

������,�,�,�����
������ − ��

��� 

≤ (������ + ���� + ��) �� �� 2���,��
���

���

+ ����
�,��

���

���

�  

≤ ���� ��2 ���,��  + ���
�,���

���

���

, � = 2, 3, … . � (36) 

where ��,�, �̃�,�,� and ��,�,�,� are suitable constants. and 
�� = ������ + ���� + ��, � = 2, 3, … . , �. 
Note that for any � = 1, denotation functions equ. (18) and 
equ. (23) imply 

���
�,�� = 0 (37) 

This together with equ. (36) we get 
���

�,�� ≤ �����2 ‖��,�‖  + ���
�,��� = 2����‖��,�‖ (38) 

And 
���

�,�� ≤ �����2 ‖��,�‖  + ���
�,�� + 2 ‖��,�‖�

= 2��(1 + ��)��(‖��,�‖  
+ ‖��,�‖ ) (39) 

Applying an induction on ���
�,��, we have for 2 ≤ � ≤ � 

���
�,� � ≤ 2��(1 + ��)����� ����,��

���

���

 (40) 

A sum of � = 1, 2, … . � yields equ. (30) in Lemma 6 
immediately: 

����
�,�� =  ����

�,��
�

���

≤ ���� ������
�

���

�

���

 (41)  

where �� = 2�� ∑ (1 + ��)����
��� . 

Next, we prove equ. (31). In view of equ. (24) and equ. (25), 
we have 

��
�,� =  ����� ∆��

������ − ���� � − ����
�,��

�

���

 (42)  

Setting �� = (1 + ��) and using equ. (24) and equ. (41), 
there holds 

���
�,��  ≤  �� �� �� � 

�

���

� + �� ����
�,��

�

���

+ � ����∆��
�������

�

���

 

≤  �� �� �� � 
�

���

� + ����
� ���� �� 

�

���

+ ��
� ���� �� 

�

���

 

=  �� �� �� � 
�

���

� + ����
� ���� �� 

�

���

 (43) 

Finally, we prove equ. (32) by virtue of equ. (43). 
 
Again using 0 < η� ≤ 1, the estimation equ. (43) can be 
rewritten as  

���
�,�� ≤  (1 + ��)  �� ���� �� 

�

���

 (44) 

Squaring two sides of equ. (44) and applying Cauchy-
Schwartz inequality, we have 

���
�,��

�
≤ (1 + ��)���

� ����� �� 
�

���

�

�

 

≤ ����
� �������

�

���

 (45) 

where �� = �(1 + ��)�. the proof it is completed.  
 
����� �.  
 
�� ���������� (�1)�� ����� ��� �� ��������� equ. (21) 
�ℎ�� ℎ��� 

��−�� � ��,�

�

���

� . �� ��,�

�

���

�� ≤ ����
� ����,���

�

���

 (46) 

�� � ��,�

�

���

� . �� ��� ∆��
������ 

�

���

��

≤ ���
� ����,���

�

���

 (47) 

 
Proof.  
 
It is similar to the proof of Lemma 3 in [43] and thus omitted.  
To prove the monotonicity of E(ω��), first we need to give 
an estimation of the difference E(ω(���)�) −  E( ω��). 
shown in the following lemma. 
 
Lemma 8. 
 
There is a positive constant γ independent of m such that 

���(���)�� ≤  �( ���)  − �� �� ��,�

�

���

�

�

+ ���
� ����,���

�

���

 (48) 

 
Proof  
 
Using Taylor’s formula to first and second orders for 

�(��
(���)�. ��

�

���

) = �(��
��. ��

�

���

)

− � ��(��
����. ��

�

���
���

)���
(���)�

�

���

− ��
������ 
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+
1
2

� � � ��,�,�

�

���
����,��

� �����
(���)� − ���

�����������
(���)�

�

��,����
�����

− ���
������ (49) 

where ��,�,� ∈ ℝ is on the line segment between ��
�. �� and 

��
���. ��. Again applying the Taylor expansion and noting 

equ. (25) and equ. (49), we have 

�� ��(��
(���)�. ��

�

���

)� = ��(��
��. ��

�

���

)� 

+��
� ��(��

��. ��
�

���

)� � ��(��
����. ��

�

���
���

)���
(���)�

�

���

− ��
������ 

+ 
1
 2

� � � ��,�,�

�

���
����,��

� �����
(���)� − ���

�����������
(���)�

�

��,����
�����

− ���
������   

+ 
1
2

��
�����,�� ��(��

(���)�. ��
�

���

) − �(��
��. ��

�

���

)�

�

 (50) 

where ��,�,� ∈ ℝ is on the line segment between ��
�. �� and 

��
���. ��. for � = 2, 3, . . , �. 

By using equs. (15), (26) - (28), and Taylor expansion, we 
get 
���(���)�� = �(���) 

+ � ��
� ��(��

��. ��
�

���

)� � ��(��
����. ��

�

���
���

)���
(���)�

�

���

�

���

− ��
������ 

+
�
2

� � �
 �����

���

 � ���
���

� �⁄ + �′′���,�,����
�,��

�

���

�

���

��
�,� + ��

+ �� (51) 
where ��,�, ��,�,� ∈ ℝ line segment between ��

(���)�. �� and 

��
��. �,� �� = �

 �
∑ �∏ ��,�,�

�
���

����,��

� �����
(���)� −�

��,����
�����

���
�����������

(���)� − ���
������ and 

�� =  �
�

��
�����,�

� ��∏ (��
(���)�. ���

��� ) − ∏ (��
��. ���

��� )�
�
. 

Noticing by equ. (23) and equ. (24), easily to get 
 ��,�,� = ��,� +  ���,�,� − ��,��  
= ��,�

+ ��� ��
� ��(��

������. ��
�

���

)� �(��
������. ��)��

�

���
���

�

���

−  �  ��
� ��(��

��. ��
�

���

)� �(��
��. ��)

�

���
���

��
�

���
�   

+ �  �
 �′(��

������)
 2� �(��

������)� �⁄
−

 �′(��
��)

2� �(��
��)� �⁄

�� (52) 

It holds 
���(���)�� − �(���)  

= � ���
� ��(��

��. ��
�

���

)� �(��
����. ��

�

���
���

)��

�

���

+
 � �����

���

2 � � ���
���

� �⁄ � �����,� ∆��
������  − ����,�,��

�

���

� 

 +
�
2

� �′′
�

���

���,�,�����
�,��

�
+ �� + �� 

 = � ���
� ��(��

��. ��
�

���

)� �(��
����. ��

�

���
���

)��

�

���

+
 � �����

���

2 � ���
���

� �⁄ � �� ��,� ∆��
������

�

���

 

− �� � ��,�

�

���

 

 −��

�

�
�

�� ��
� ��(��

������. ��
�

���

)�
�

���

�(��
����. ��)��

�

���
���

− � �� ��(��
��. ��

�

���

)� �(��
��. ��)

�

���
���

��
�

���

 �  

 +  � �
 �′(��

������)
 2� �(��

������)� �⁄
−

 �′(��
��)

 2� �(��
��)� �⁄

��

+
�
2

� �′′
�

���

���,�,�����
�,��

�
+ �� + �� 

 = �� ��,�

�

���

� . �� ��,� ∆��
������

�

���

− �� � ��,�

�

���

− �� � ��,�,�

�

���

+ �� � ��,�

�

���

� 

 = �� ��,�

�

���

� �� ��,� ∆��
������

�

���

− �� � ��,�

�

���

− �� �(��,�,� + ��,�)
�

���

�

+
�
2

� �′′
�

���

���,�,�����
�,��

�
+ �� + �� 

where ��,�,� lies in between ��
��. �� and ��

(���)�. ��, and 
from equ. (25), equ. (28) and equ. (45), 

� = √�
��� , ��� �(�) ≡ ��(�)�

�
�. Note that 
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��(�) =
�′(�)

2��(�)
 

���(�) =
2���(�). �(�) − ��′(�)��

4��(�)�
�
�

 

≤
�′′(�)

2��(�)
≤

√6
2√��

 

By using equ. (32) and Lemma 5 for  
1 ≤ j ≤ J, 1 ≤ k ≤ N, m = 0, 1, 2, …, and Cauchy-Schwartz 
Theorem, we have 

 
�
2

� �′′
�

���

���,�,�����
�,��

�
≤ ������

�  ����,���
�

���

 

 ≤ �� ����,���
�

���

 (54) 

where �� = ���(1 + ��)�. 
by Assumption (A1), (A2), equ. (30), equ. (33) and Cauchy–
Schwarz for � = 2, 3, … .., we get 

|��| =
1
2

��  ��
�����,�� ��(��

(���)�. ��
�

���

) − �(��
��. ��

�

���

)�

��

���

� 

 ≤  
1
2

����
� (2 + ����)���

� ����,���
�

���

 

 ≤ ��� ����,���
�

���

 (55) 

where ��� = �
�

����
� (2 + ����)�. 

Using Assumption (A1), (A2), equ. (32), 0 ≤ �� ≤ 1 and 
Cauchy–Schwarz for � = 2, 3, … .., we have 

 |��| ≤
1
 2 ��� � �����

�,����� �����
�,����� 

�

��,����
�����

�

���

�� 

 ≤
1
 2

C(���)� � ����
�,��. ����

�,�� 
�

��,����
�����

 

 ≤
1
 2

C(���)�(1 − �)(1 + ��)� ��
� � �����,��

�

���

 �

��

���

  

 ≤ ��� ����,���
�

���

 (56) 

where ��� =  �
 �

C(���)�(1 − �)(1 + ��)� ��
� . Set  

 � = � + �� + �� + ��� + ��� (57)  
Obviously, � is a positive constant independent of the 
iteration �. 
Substituting Lemma 8 and 7, equs. (54)-(57) into equ. (53) 
immediately, i.e.,  

���(���)�� − �(���)

≤ −�� �� ��,�

�

���

�

�

 

+ (� + �� + �� + ���

+  ��� )��
� ����,���

�

���

 

 = −�� �� ��,�

�

���

�

�

+ ���
� ����,���

�

���

 (58) 

The proof it is completed. 
 
Lemma 9.  
 
Let Assumptions (A1) - (A3) be satisfied if there holds 

�� ��,�

�

���

�

�

≥ ��� ����,���
�

���

, � = 1, 2, … . (59) 

then 

�� ����,�

�

���

�

�

≥ ����� ������,���
�

���

, � = 1, 2, … . (60) 

 
Proof.  
 
By the mean value theorem 

 ����,� − ��,�  

= ���
� ��(��

������. ��
�

���

)� �(��
������. ��)��

�

���
���

−  ��
� ��(��

��. ��
�

���

)� �(��
��. ��)

�

���
���

��� 

 + � �
 �����

�������

 2� ����
�������

� �⁄ −
 �����

���

2� ����
���

� �⁄ � 

 =  ��
�����,�� �(��

������. ��
�

���

) ��(��
������. ��

�

���

)

− �(��
��. ��

�

���

)� ��

+
�
2�

������,�,�,�����
������ − ��

��� (61) 

where ��,� ∈ ℝ lies on the segment between ��
��. �� and 

��
(���)�. �� 

Applying the triangle inequality to equ. (61) and using equ. 
(36) and equ. (44), we have 
��(���)�� ≤ ‖���‖

+ �������� �� 2���,��
�

���

+  ����
�,��

�

���

�

+ �� (1 + ��) �� ���� �� 
�

���

 

 ≤ ‖���‖ + �������� �� 2���,��
�

���

+ ���� ����,��
�

���

�

+ �� (1 + ��) �� ���� �� 
�

���
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 ≤ ‖���‖ +  �������(2 + ����)

+ �� (1 + ��)� �� ���� �� 
�

���

  

 ≤ ‖���‖ +  ��� �� ���� �� 
�

���

 (62) 

where ��� = ������(2 + ����) + �� (1 + ��). 
Thus 

������,���
�

���

≤  ����,���
�

���

+ 2��� �� �‖���‖� 
�

���

+ ����
� ��

� �‖���‖� 
�

���

 

 ≤ �1 + �����(1 + ��)� ����,���
�

���

 (63) 

where ��� = ���{2���� �����
� }. Further, this together with 

equ. (61) yields 

1
���

�� ��,�

�

���

�

�

≤ �‖���‖� 
�

���

≤
1

1 + �����(1 + ��) ������,���
�

���

 

�� ��,�

�

���

�

�

≥ ��� �‖���‖� 
�

���

≤
���

1 + �����(1 + ��) ������,���
�

���

 (64) 

On the other hand, it follows from equ. (61) and 0 ≤ �� ≤
�� ≤ 1 that 

��‖���‖
�

���

�

�

≤ � �‖���‖� 
�

���

≤
1

���
�� ��,�

�

���

�

�

 (65) 

and 

�� �‖���‖ ≤ �
���

�

�

���

�� ��,�

�

���

� ≤ �
�
�

�� ��,�

�

���

� (66) 

A combination of equ. (31), 0 ≤ �� ≤ 1 and equ. (66) leads 
to 

 ���
�,�� ≤ ��  �� ��,�

�

���

� + ����
�  ����,��

�

���

≤ �1 + ���
�
�

� ��  �� ��,�

�

���

� (67) 

For equ. (59), we obtain by the triangle inequality, equ. (36) 
and equ. (67), that 

� ����,�

�

���

= � ��,�

�

���

+ ���������(2 + ����) ���� �� 
�

���

+ �����
�,�� 

�� ����,�

�

���

� ≥ �� ��,�

�

���

� − �����
�,��

≥ �1

− �� �1 + ���
�
�

� ��� �� ��,�

�

���

� (68) 

It can be easily verified that for any positive � ≥ � − �, then 
 �� ≥ �� − 2yz (69) 
Applying equ. (69) to equ. (68) and noting equ. (64), there 
holds 

�� ����,�

�

���

�

�

≥ (1 + �����) �� ��,�

�

���

�

�

 

≥
���(1 + ����)

1 + �����
������,���

�

���

 (70) 

Where ��� = ���1 + C��J γ⁄ �. 
Obviously, if 

���(1 + ����)
1 + �����(1 + ��) ≥ ����� (71) 

From this easy to get equ. (60) is proved. Hence we need 
only to verify equ. (71) under the assumptions presented in 
Lemma 9. 
Then we substituting equ. (21) into equ.(71), we get 

� − �� − �� ≥ (�� + ���)�� (72) 
Furthermore, if  �� and � in equ. (21) satisfy the conditions 
in Assumption (A2), there holds 

0 ≤ �� ≤ �� ≤
1
��

−
1
�

=
� − ��

���
 (73) 

That is equ. (70). 
Since equ. (72) and equ. (71) are identical, the inequality equ. 
(71) is thus proved. Hence, the inequality equ. (60) also has 
been proved. 
The next two Lemmas will be used to prove our convergence 
results. Their proofs are omitted since they are quite similar 
to those of Lemma 3.5 in [41] and theorem 3.5.10 in [43], 
respectively 
 
Lemma 10. 
Suppose that the series ∑ a�

� n⁄�
��ى� < ∞, �ℎ�� a� >

0 ��� � = 1, 2, … .. and that there exists a constant μ > 0 
such that |���� − ��| < � �⁄ , � = 1, 2, … then, we have 
lim�→� a� = 0. 
 
����� ��.  
Let �: Φ ⊂ �� → R (� ≥ 1) be continuous for a bounded 
closed region Φ. if the set Φ� = {� ∈ Φ: F�(x) = 0} has finite 
points and the sequence {��} ∈ Φ satisfy: 
(1) lim

�→�
‖��(��)‖ = 0,  

(2) lim
�→�

‖���� − ��‖ = 0. 
Then, there exists �∗ ∈ Φ� such that lim�→� �� = �∗ 
Now we are ready to prove the main theorems. 
 
Proof of Theorem 1. 
 
In virtue of equ. (48), if for any nonnegative integer � 
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�� ��,�

�

���

�

�

≥ ��� ����,���
�

���

 (74) 

Then theorem 1 is proved. 
For � = 0, if the left side of equ. (74) is zero, then equ. (11), 
����

(��) = ∑ ��,��
��� = 0. Hence, we have already reached a 

local minimum of the error function, and the iteration can be 
terminated. Otherwise, if  
 ����

(��) = ∑ ��,��
��� ≠ 0, then we choose �� > 0 such that 

�� ��,�

�

���

�

�

≥ ��� ����,���
�

���

 (75) 

Recalling Lemma 9, we know that inequality equ. (69) holds 
for all nonnegative. Hence, the monotonicity of the error 
sequence {�(���)} is proved. 
 
Proof of theorem 2.  
 
By using equ. (8) and theorem 1, we have 

����
���

�
�  ≤ E(ω��) ≤ ⋯ ≤ E(ω��), m = 0, 1, 2 … … … (76) 

Thus 

���
��� ≤

1
�� ��(��)�� ≡ ��, � = 0, 1, 2, … … … (77) 

This together with the definition of �� in equ. (36) indicates 

���,�� ≤  C� +
�
2�

 ��, j = 1, 2, … . . J (78) 

A combination of equ. (16), equ. (18), equ. (22), 0 ≤ �� ≤
1 and equ. (78) yields 
 ���

����� = ���
�� − ����,� + ��,� ∆�

���
��� 

 ≤ ���
��� + �����,�� + �+��

� ��,��

≤ �� + 2 �C� +
�
2J

 ��� ≡ M�, m

= 0, 1, 2, … (79) 
Similarly, we obtain 
���

�����  ≤ ���
����� + �����,���� + �+��

� ��,����

≤ �� + 2 �C� +
�
2J

 ��� ≡ M� 

and there are integers �� (3 ≤ � ≤ �) such that 
���

����� ≤ ��, � = 0, 1, 2, … . . ; � = 3, 4, … … . � (81) 
Setting � = max���, ��, … … . , ���, Equ. equ. (75) and equ. 
(76) lead to 
���

����� = �, � = 0, 1, 2, … … ; � = 1, 2, … . . � (82) 
Note that the constant � is independent of � and �. the 
boundedness of the weights {��} is thus proved. 
 
Proof of theorem 3.  
 
Denote  

�� ≤ −�� �� ��,�

�

���

�

�

− ���
� ����,���

�

���

 (83) 

By the proof of the theorem 1 and  �� > 0, it holds �� ≥ 0 
for all � = 0, 1, …. 
In view of Lemma 8 and theorem 1, we write 
���(���)�� ≤ �(���) − �� ≤ ⋯ .

≤ �(���) − � ��
�

���

 (84) 

Note that ��(���)�� ≥ 0 for any � ≥ 0.  
Setting � → ∞, we get 

� ��
�

���

≤ �(��) ≤ ∞. (85) 

A combination of equ. (78) and equ. (29) gives 

� ����
� ����,���

�

���

� ≤ ��� � ��
�

�

���

�

���

< ����� �
1

�� <
�

���

∞ (86) 

where ��� =  �� �C� + �
��

 ���
�
. A combination of equ. (84) 

and equ. (85) yields 

�  �� �� ��,�

�

���

�

�

< ∞ (87)
�

���

 

Thus, for any unit vector � ∈ ℝ� with ‖�‖ = 1, there holds 

�
1
�

‖�(���). � ‖�
�

���

≤ �
1
�

‖�(���). � ‖�
�

���

<
1
�

� ��

�

���

�� ��,�

�

���

�

�

< ∞ (��) 

In addition, by using equ. (44) and equ. (78) such that 

���
�,�� ≤  (1 + ��)  �� ���� �� 

�

���

<
���

�
, �

= 0, 1, 2 … . . (89) 
This together with equ. (19) and equ. (61) gives 
�����(���)��. � − ��(���). �� ≤  ��‖�‖ ���

�,��

<
���

�
, (90) 

where ��� = �����. The combination of equs. (88) - (90) and 
Lemma 10 gives 

lim
�→�

|��(���). � | = 0. (91) 
Since � is arbitrary in ℝ�, we have 

lim
�→�

|��(���) | = 0. (92) 
Similarly as equ. (90), there is ��� > 0 such that for all 
� = 1, 2, … , � − 1 

�����(���)��. � − ��(���). �� <
���

�
 (93) 

Thus 
 ���(�����). �� ≤ |��(���). �|

≤ |��(���). �| + ���(�����). ��
− |��(���). �| 

 < |��(���). �| +
���

�
→ 0 (� → ∞) (94) 

Again by the arbitrariness of equ. (92), we have 
lim

�→�
���(�����) � = 0.  � = 1, 2, … … , � − 1 (95) 

Noticing the non-negativeness of the sequences {��(�����)} 
for � = 1, 2, … … , �, we concluded by using equ. (92) and equ. 
(95) that 

lim
�→�

‖��(��)‖ = 0, (96) 
Next, we prove the strong convergence. By using equ. (89), 
we have 

lim
�→�

���
(���)� − ��

��� = lim
�→�

� ��
�,�� = 0 (97) 
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Recalling Lemma 11 and noting equ. (92), equ. (97) and 
assumption (A4) there exists �∗ ∈ Ω� such that 

lim
�→�

��� = �∗ , ‖��(�∗)‖ = 0 (98) 
Note that for � = 1, 2, … . . , �, there is ��� > 0 such that 

���
���� −  ��

���  

= ��∆�
���

�����
�

���

= ����,� ∆�
���

������  − ����,�,��
�

���
≤ ����� → 0 (99) 

Combining this with equ. (98) yields 
lim

�→�
���

���� −  ��
∗ � = 0, � = 1, 2, … . . � (100) 

Hence 
lim

�→�
�� = �∗ , ‖��(�∗)‖ = 0 (101) 

which completes the proof. 
 
5. Conclusions 
 
In this paper, the propose of L1\2 regularization penalty with 
smoothing term and momentum introduced into the batch 
gradient learning algorithm is calculated and a convergence 
of weak and strong theorem and boundedness are provide 
when it is used for PSNN. As shown using the same usefully 
lemmas we prove the monotonicity and then the boundedness 
of the synaptic weights and the gradient of error sequence 
convergence to zero as training iteration successfully.  
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