Split Line Domination in Graphs

M. H. Muddebihal¹, U. A. Panfarosh¹, ², Anil R. Sedamkar³

¹Professor, Department of Mathematics, Gulbarga University, Gulbarga – 585106, Karnataka, India
²Associate Professor, Department of Mathematics, Anjuman Arts, Science and Commerce College, Bijapur – 586104, Karnataka, India
³Lecturer, Department of Science, Government Polytechnic, Bijapur – 586101, Karnataka, India

Abstract: A line dominating set \(D \subseteq V(L(G)) \) is a split line dominating set, if the subgraph \(\{ V(L(G)) - D \} \) is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number in \(L(G) \) and is denoted by \(\gamma_{sl}(G) \). In this paper, we introduce the new concept in domination theory. Also, we study the graph theoretic properties of \(\gamma_{sl}(G) \) and many bounds were obtained in terms of elements of \(G \) and its relationships with other domination parameters were found.

Subject Classification Number: AMS 05C69, 05C70.

Keywords: Graph, Line graph, Dominating set, split line dominating set, split line domination number

1. Introduction

In this paper, we follow the notations of [1]. All the graphs considered here are simple and finite. As usual \(p = |V| \) and \(q = |E| \) denote the number of vertices and edges of a graph \(G \) respectively.

In general, we use \(\{ X \} \) to denote the subgraph induced by the set of vertices \(X \) and \(N(v) (N[v]) \) denote the open (closed) neighborhoods of a vertex \(v \).

The notation \(\alpha_0(G) (\alpha_1(G)) \) is the minimum number of vertices (edges) in a vertex (edge) cover of \(G \). The notation \(\beta_0(G) (\beta_1(G)) \) is the maximum cardinality of a vertex (edge) independent set in \(G \). Let \(\deg(v) \) is the degree of vertex \(v \) and as usual \(\delta(G) (\Delta(G)) \) is the minimum (maximum) degree. A vertex of degree one is called an end vertex and its neighbor is called a support vertex. The degree of an edge \(e = uv \) of \(G \) is defined by \(\deg(e) = \deg(u) + \deg(v) - 2 \) and \(\delta'(G) (\Delta'(G)) \) is the minimum (maximum) degree among the edges of \(G \).

A line graph \(L(G) \) is the graph whose vertices correspond to the edges of \(G \) and two vertices in \(L(G) \) are adjacent if and only if the corresponding edges in \(G \) are adjacent. We begin by recalling some standard definitions from domination theory.

A set \(S \subseteq V(G) \) is said to be a dominating set of \(G \), if every vertex in \(V - S \) is adjacent to some vertex in \(S \). The minimum cardinality of vertices in such a set is called the domination number of \(G \) and is denoted by \(\gamma(G) \). A dominating set \(S \) is called the total dominating set, if for every vertex \(v \in V \), there exists a vertex \(u \in S \) for \(u \neq v \) such that \(u \) is adjacent to \(v \). The total domination number of \(G \), denoted by \(\gamma_t(G) \) is the minimum cardinality of total dominating set of \(G \). A dominating set \(S \subseteq V(G) \) is a connected dominating set, if the induced subgraph \(\{ S \} \) has no isolated vertices. The connected domination number, \(\gamma_c(G) \) of \(G \) is the minimum cardinality of a connected dominating set of \(G \). A set \(D \subseteq V(L(G)) \) is said to be line dominating set of \(G \), if every vertex not in \(D \) is adjacent to a vertex in \(D \). The line domination number of \(G \), is denoted by \(\gamma_l(G) \) is the minimum cardinality of a line dominating set. The concept of domination in graphs with its many variations is now well studied in graph theory (see [2] and [3]).

Analogously, a line dominating set \(D \subseteq V(L(G)) \) is a split line dominating set, if the subgraph \(\{ V(L(G)) - D \} \) is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number of \(G \) and is denoted by \(\gamma_{sl}(G) \). In this paper, we introduce the new concept in domination theory. Also we study the graph theoretic properties of \(\gamma_{sl}(G) \) and many bounds were obtained in terms of elements of \(G \) and its relationships with other domination parameters were found. Throughout this paper, we consider the graphs with \(p \geq 4 \) vertices.

2. Results

Initially, we give the split line domination number for some standard graphs, which are straight forward in the following Theorem.
Theorem 1:
\[\gamma_{st}(C_p) = \begin{cases} \frac{p}{3} & \text{for } p \equiv 0 \pmod{3} \\ \frac{p}{3} & \text{otherwise.} \end{cases} \]

b. For any path \(P_p \) with \(p \geq 4 \) vertices,
\[\gamma_{st}(P_p) = n, \text{ for } p = 3n + 1, n = 1, 2, 3, \ldots, \]
\[= \frac{p}{3} \text{ for } p \equiv 0 \pmod{3}. \]
\[= \frac{p}{3} \text{ otherwise.} \]

Theorem 2: A split line dominating set \(D \subseteq V(L(G)) \) is minimal if and only if for each vertex \(x \in D \), one of the following conditions holds:

a. There exists a vertex \(y \in V(L(G)) - D \) such that \(N(y) \cap D = \{x\} \).

b. \(x \) is an isolated vertex in \(\{D\} \).

c. \(\{V(L(G)) - D\} \cup \{x\} \) is connected.

Proof: Suppose \(D \) is a minimal split line dominating set of \(G \) and there exists a vertex \(x \in D \) such that \(D - \{x\} \) is a split line dominating set of \(G \) and there exists a vertex \(y \in D - \{x\} \) such that \(y \) dominates \(x \). That is \(y \in N(x) \). Therefore, \(x \) does not satisfy (a) and (b), hence it must satisfy (c). Then there exists a vertex \(y \in V(L(G)) - D \) such that \(N(y) \cap D = \{x\} \). Since \(D - \{x\} \) is a split line dominating set of \(G \), then there exists a vertex \(z \in D - \{x\} \) such that \(z \in N(y) \). Therefore \(w \in N(y) \cap D \), where \(w \neq x \), a contradiction to the fact that \(N(y) \cap D = \{x\} \). Clearly, \(D \) is a minimal split line dominating set of \(G \).

The following Theorem characterizes the split line domination and domination number of graphs.

Theorem 3: For any connected graph \(G \), \(\gamma_{sl}(G) = \gamma_1(G) \) if \(L(G) \) contains the set of end vertices.

Proof: Let \(v \in V(L(G)) \) be an end vertex and there exists a support vertex \(u \in N(v) \). Further, let \(D \) be a split line dominating set of \(G \). Suppose \(u \in D \), then \(D \) is a \(\gamma_{sl} \) set of \(G \). Suppose \(u \notin D \), then \(v \in D \) and hence \(D - \{v\} \cup \{u\} \) forms a minimal \(\gamma_{sl} \) set of \(G \). Repeating this process for all end vertices in \(L(G) \), we obtain a \(\gamma_{sl} \) set of \(G \) containing all the end vertices and \(\gamma_{sl}(G) = \gamma_1(G) \).

The following Theorem relates the split line domination and domination number in terms of vertices of \(G \).

Theorem 4: For any connected \((p,q)\)-graph \(G \),
\[\gamma_{sl}(G) + \gamma(G) \leq p. \]

Proof: Let \(C = \{v_1, v_2, \ldots, v_n\} \subseteq V(G) \) be the set of all non end vertices in \(G \). Further, let \(S \subseteq C \) be the set of vertices with \(\text{diam}(u_i, v_j) \geq 3 \), \(\forall u_i, v_j \in S \), \(1 \leq i \leq k \). Clearly, \(N[S] = V(G) \) and \(S \) forms a \(\gamma \) set of \(G \). Suppose \(\text{diam}(u_i, v_j) < 3 \). Then there exists at least one vertex \(x \in V(G) - S \) such that, either \(x \in N(v) \) or \(x \notin N(v) \), \(v \in S \) and \(v \in S \cup \{x\} \). Then \(S \cup \{x\} \) forms a minimal dominating set of \(G \). Now in \(L(G) \), let \(F = \{u_1, u_2, \ldots, u_n\} \subseteq V(L(G)) \) be the set of vertices corresponding to the edges which are incident to the vertices of \(S \) in \(G \). Further, let \(D \subseteq F \) be the minimal set of vertices which covers all the vertices in \(L(G) \), also making the subgraph \(V(L(G)) - D \) contains at least two components. Clearly, \(D \) forms a minimal split line dominating set of \(G \). Hence, it follows that \(|D| \cup |S \cup \{x\}| \leq |V(G)| \) and gives \(\gamma_{sl}(G) + \gamma(G) \leq p \).

The following Theorem relates the split line domination and total domination number of \(G \).

Theorem 5: For any connected graph \(G \),
\[\gamma_{sl}(G) + \gamma_1(G) \leq \alpha_0(G) + \beta_0(G) + 1. \]

Proof: Let \(C = \{v_1, v_2, \ldots, v_n\} \subseteq V(G) \) be the minimal set of vertices with \(\text{dist}(u, v) \geq 2 \) for all \(u, v \in C \), covers all the edges in \(G \). Clearly, \(|C| = \alpha_0(G) \). Further, if any vertex \(x \in C, N(x) \in V(G) - C \). Then \(C \) itself is an independent vertex set. Otherwise, \(C_1 \cup C_2 \) where \(C_1 \subseteq C \) and \(C_2 \subseteq V(G) - C \), forms a maximum independent set of vertices \(|C_1 \cup C_2| = \beta_0(G) \). Now, let \(S = C' \cup C'' \), where \(C' \subseteq C \) and \(C'' \subseteq V(G) - C \), be the minimal set of vertices with \(N[S] = V(G) \) and \(\text{deg}(x) \geq 1 \), \(\forall x \in S \) in the sub graph \(S \). Clearly, \(S \) forms a minimal total dominating set in \(G \). Now by the definition of line graph, let \(F = \{u_1, u_2, \ldots, u_n\} \subseteq V(L(G)) \) be the set of vertices corresponding to the edges which are incident with the vertices of \(S \) in \(G \). Let there exists a set \(D \subseteq F \) of vertices

Volume 3 Issue 8, August 2014

Paper ID: 02015294
www.ijsr.net

Impact Factor (2012): 3.358

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
which are minimally independent and covers all the vertices in line graph. Clearly, γ^*_d itself is a γ_d - set of G. Therefore, it follows that $|D||C|\subseteq |C|\cup C_1\cup C_2|$ and hence $\gamma_d(G)+\gamma_c(G)\leq \alpha_0(G)+\beta_0(G)+1$.

The following Theorem relates the split line domination, connected domination and domination number of G.

Theorem 6: For any connected graph G, $\gamma_d(G)+\gamma_c(G)\leq diam(G)+\gamma(G)+\alpha_0(G)$.

Proof: Let $C \subseteq V(G)$ be the minimal set of vertices which covers all the edges in G with $|C|=\alpha_0(G)$. Further, there exists an edge set $J \subseteq J$, where J is the set of edges which are incident with the vertices of C, constituting the longest path in G such that $|J|=diam(G)$. Let $S=\{v_1,v_2,\ldots,v_k\} \subseteq C$ be the minimal set of vertices which covers all the vertices in G. Clearly, S forms a minimal dominating set of G. Suppose the subgraph (S) is connected, then S itself is a γ_c - set. Otherwise, there exists at least one vertex $x \in V(G)-S$ such that $S_1=S \cup \{x\}$ forms a minimal connected dominating set of G. Now, in $L(G)$, let $F=\{u_1,u_2,\ldots,u_k\} \subseteq V(L(G))$ be the set of vertices such that $\{u_j\}=\{e_j\} \in E(G)$, $1 \leq j \leq k$, which $\{e_j\}$ are incident with the vertices of S. Further, let $D \subseteq F$ be the set of vertices with $N[D]=\gamma_d(G)$ and if the subgraph $V[L(G)]-D$ contains more than one component. Then D forms a split line dominating set of G. Otherwise, there exists at least one vertex $\{u\} \in V(L(G))-D$ such that $V[L(G)]-D-\{u\}$ yields more than one component. Clearly, $D \cup \{u\}$ forms a minimal γ_d - set of G. Therefore, it follows that $|D|\cup |u\cup S_1|\subseteq |F|\cup |S|\cup |C|$ and hence $\gamma_d(G)+\gamma_c(G)\leq diam(G)+\gamma(G)+\alpha_0(G)$.

In the following Theorems we give lower bounds to split line domination number of graphs.

Theorem 7: If every non end vertex of a tree T is adjacent to at least one end vertex with T containing at least two cut vertices, then $\gamma_d(T)\leq e-1$, where c is the number of cut vertices in T.

Proof: Let $F=\{v_1,v_2,\ldots,v_m\} \subseteq V(T)$ be the set of all cut vertices in T with $|F|=c$. Further, let $A=\{e_1,e_2,\ldots,e_x\}$ be the set of edges which are incident with the vertices of F. Now by the definition of line graph, suppose $D=\{u_1,u_2,\ldots,u_c\} \subseteq A$ be the set of vertices which covers all the vertices in $L(T)$. Clearly, D forms a minimal split line dominating set of $L(T)$. Therefore, it follows that $|D|\leq |F|-1$ and hence $\gamma_d(T)\leq e-1$.

Theorem 8: For any connected (p,q) - graph G, $\gamma_d(G)\leq \frac{p}{2}$.

Proof: Let $D=\{v_1,v_2,\ldots,v_n\} \subseteq V(L(G))$ be the minimal split line dominating set of G. Suppose $|V[L(G)]-D|=0$. Then the result follows immediately. Further, if $|V[L(G)]-D|\geq 2$, then $V[L(G)]-D$ contains at least two vertices such that $2n<p$. Clearly, it follows that $\gamma_d(G)=n<\frac{p}{2}$.

Theorem 9: For any connected (p,q) - tree T, $\gamma_d(T)\leq q-\Delta(T)$.

Proof: Let $A=\{v_1,v_2,\ldots,v_q\} \subseteq V(L(T))$ be the set of all support vertices. Suppose there exists a set of vertices $A_1=\{u_1,u_2,\ldots,u_m\} \subseteq V(L(T))-A$ such that $dist(u_j,v_j)\geq 2$, $\forall u_j \in A_1$, $v_j \in A$, $1 \leq i \leq m$, $1 \leq j \leq n$. Then, clearly $S=A \cup A_1$ forms a split line dominating set of T. Otherwise, if $A \not\subseteq V(L(T))$, then select the set of vertices $S=A_1$ such that $N[S]=V[L(T)]$ and the subgraph $V[L(T)]-S$ is disconnected. Clearly, in any case S forms a minimal split line dominating set of T. Since for any tree T, there exists at least one edge $e \in E(T)$ with $deg(e)=\Delta(T)$, we obtain $|S|\leq |E(T)|-\Delta(T)$. Therefore, $\gamma_d(T)\leq q-\Delta(T)$.

Theorem 10: For any connected unicyclic graph $G=(V,E)$, $\gamma_d(G)\leq q-\Delta(G)+1$, if one of the following conditions hold:

b. $G=C_3(u_1,u_2,\ldots,u_n)$, $deg(u_i)\geq 3$,
\[\text{deg}(u_2)=\text{deg}(u_3)=2\], $diam(u_1,w)\leq 2$ for all vertices w not on C_3 and $\text{deg}(w)\geq 3$ for at most one vertex w not on C_3.

c. $G=C_3$, $deg(u_1)\geq 3$, $deg(u_2)\geq 3$, $deg(u_3)\geq 2$, all vertices not on C_3 adjacent to u_1 have degree at most 2 and all vertices whose distance from u_1 is 2 are end vertices.

d. $G=C_3$, $deg(u_1)\geq 3$, $deg(u_2)\geq 3$, $deg(u_3)\geq 3$ and all vertices not on C_3 are end vertices.

e. $G=C_4$, either exactly one vertex of C_4 or two vertices of C_4 have degree at least 3 and all vertices not on C_3 are end vertices.

Proof: Assume $\gamma_d(G)=q-\Delta(G)+1$. Let A denote the set of all end vertices of $L(G)$ with $|A|=m$. Since
\(V(L(G)) - (A \cup \{v_i\}) \) is a split line dominating set for any vertex \(v_i \) of \(C \), \(\gamma_d(G) \leq q - m \) so that \(m \leq \Delta'(G) \). Let \(e \) be an edge of maximum degree \(\Delta'(G) \). Analogously in \(L(G), e = u \in V(L(G)) \) such that \(|v| = \Delta(L(G)) \). If \(u \) is not on \(C \), then \(m = \Delta'(G) \) and there exists vertices \(v_1 \) and \(v_2 \) on \(C \) such that \(V(L(G)) - (A \cup \{v_1, v_2\}) \) is a split line dominating set of cardinality \(q - \Delta'(G) \), which is a contradiction. Hence \(u \) lies on \(C \) and \(m \geq \Delta'(G) - 1 \), we now consider the following cases.

Case 1: \(m = \Delta'(G) - 1 \). In this case, all vertices other than \(u \) and \(v \) have degree either one or two. Hence \(C = C_3 \) or \(C_4 \) and \(G \) is isomorphic to one of the graphs described in (a) to (e).

Case 2: \(m = \Delta'(G) \). In this case, there exists a unique vertex \(u \) on \(C \) such that \(V(L(G)) - (A \cup \{u\}) \) is a minimum split line dominating set of \(G \). It follows that \(C = C_3 \) and \(G \) is isomorphic to the graph described in (d).

References