Split Line Domination in Graphs

M. H. Muddebihal¹, U. A. Panfarosh^{1, 2}, Anil R. Sedamkar³

¹Professor, Department of Mathematics, Gulbarga University, Gulbarga – 585106, Karnataka, India

²Associate Professor, Department of Mathematics, Anjuman Arts, Science and Commerce College, Bijapur – 586104, Karnataka, India

³Lecturer, Department of Science, Government Polytechnic, Bijapur - 586101, Karnataka, India

Abstract: A line dominating set $D \subseteq V(L(G))$ is a split line dominating set, if the subgraph $\langle V(L(G)) - D \rangle$ is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number in L(G) and is denoted by $\gamma_{sl}(G)$. In this paper, we introduce the new concept in domination theory. Also, we study the graph theoretic properties of $\gamma_{sl}(G)$ and many bounds were obtained in terms of elements of G and its relationships with other domination parameters were found.

Subject Classification Number: AMS 05C69, 05C70.

Keywords: Graph, Line graph, Dominating set, split line dominating set, split line domination number

1. Introduction

In this paper, we follow the notations of [1]. All the graphs considered here are simple and finite. As usual p = |V| and q = |E| denote the number of vertices and edges of a graph *G* respectively.

In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v)(N[v]) denote the open (closed) neighborhoods of a vertex v.

The notation $\alpha_0(G)(\alpha_1(G))$ is the minimum number of vertices (edges) in a vertex (edge) cover of G. The notation $\beta_0(G)(\beta_1(G))$ is the maximum cardinality of a vertex (edge) independent set in G. Let deg(v) is the degree of vertex v and as usual $\delta(G)(\Delta(G))$ is the minimum (maximum) degree. A vertex of degree one is called an end vertex and its neighbor is called a support vertex. The degree of an edge e = uv of G is defined by deg(e) = deg(u) + deg(v) - 2 and $\delta'(G)(\Delta'(G))$ is the minimum (maximum) degree among the edges of G.

A line graph L(G) is the graph whose vertices correspond to the edges of G and two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. We begin by recalling some standard definitions from domination theory.

A set $S \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V-S is adjacent to some vertex in S. The minimum cardinality of vertices in such a set is called the domination number of G and is denoted by $\gamma(G)$. A dominating set *S* is called the total dominating set, if for every vertex $v \in V$, there exists a vertex $u \in S$, $u \neq v$ such that *u* is adjacent to *v*. The total domination number of *G*, denoted by $\gamma_t(G)$ is the minimum cardinality of total dominating set of *G*. A dominating set $S \subseteq V(G)$ is a connected dominating set, if the induced subgraph $\langle S \rangle$ has no isolated vertices. The connected domination number, $\gamma_c(G)$ of *G* is the minimum cardinality of a connected dominating set of *G*. A set $D \subseteq V(L(G))$ is said to be line dominating set of *G*, if every vertex not in *D* is adjacent to a vertex in *D*. The line domination number of *G*, is denoted by $\gamma_l(G)$ is the minimum cardinality of a line dominating set. The concept of domination in graphs with its many variations is now well studied in graph theory (see [2] and [3]).

Analogously, a line dominating set $D \subseteq V(L(G))$ is a split line dominating set, if the subgraph $\langle V(L(G)) - D \rangle$ is disconnected. The minimum cardinality of vertices in such a set is called a split line domination number of G and is denoted by $\gamma_{sl}(G)$. In this paper, we introduce the new concept in domination theory. Also we study the graph theoretic properties of $\gamma_{sl}(G)$ and many bounds were obtained in terms of elements of G and its relationships with other domination parameters were found. Throughout this paper, we consider the graphs with $p \ge 4$ vertices.

2. Results

Initially, we give the split line domination number for some standard graphs, which are straight forward in the following Theorem. Theorem 1:

a. For any cycle C_p with $p \ge 4$ vertices,

$$\gamma_{sl}(C_p) = \frac{p}{3} \text{ for } p \equiv 0 \pmod{3}$$

= $\left\lceil \frac{p}{3} \right\rceil$ otherwise.

b. For any path P_p with $p \ge 4$ vertices,

$$\gamma_{sl}(P_p) = n, \text{ for } p = 3n+1, n = 1, 2, 3, ..$$
$$= \frac{p}{3} \text{ for } p \equiv 0 \pmod{3}.$$
$$= \left\lceil \frac{p}{3} \right\rceil \text{ otherwise.}$$

Theorem 2: A split line dominating set $D \subseteq V(L(G))$ is minimal if and only if for each vertex $x \in D$, one of the following condition holds:

a. There exists a vertex $y \in V(L(G)) - D$ such that $N(y) \cap D = \{x\}$.

b. x is an isolated vertex in $\langle D \rangle$.

c. $\langle (V(L(G)) - D) \cup \{x\} \rangle$ is connected.

Proof: Suppose *D* is a minimal split line dominating set of *G* and there exists a vertex $x \in D$ such that *x* does not hold any of the above conditions. Then for some vertex *v*, the set $D_1 = D - \{v\}$ forms a split line dominating set of *G* by the conditions (a) and (b). Also by (c), $\langle V(L(G)) - D \rangle$ is disconnected. This implies that D_1 is a split line dominating set of *G*, a contradiction.

Conversely, suppose for every vertex $x \in D$, one of the above statements hold. Further, if D is not minimal, then there exists a vertex $x \in D$ such that $D - \{x\}$ is a split line dominating set of G and there exists a vertex $y \in D - \{x\}$ such that y dominates x. That is $y \in N(x)$. Therefore, x does not satisfy (a) and (b), hence it must satisfy (c). Then there exists a vertex $y \in V(L(G)) - D$ such that $N(y) \cap D = \{x\}$. Since $D - \{x\}$ is a split line dominating set of G, then there exists a vertex $z \in D - \{x\}$ such that $z \in N(y)$. Therefore $w \in N(y) \cap D$, where $w \neq x$, a contradiction to the fact that $N(y) \cap D = \{x\}$. Clearly, D is a minimal split line dominating set of G.

The following Theorem characterizes the split line domination and line domination number of graphs.

Theorem 3: For any connected graph G, $\gamma_{sl}(G) = \gamma_l(G)$ if L(G) contains the set of end vertices.

Proof: Let $v \in V(L(G))$ be an end vertex and there exists a support vertex $u \in N(v)$. Further, let D be a split line

dominating set of *G*. Suppose $u \in D$, then *D* is a γ_{sl} -set of *G*. Suppose $u \notin D$, then $v \in D$ and hence $(D - \{v\}) \cup \{u\}$ forms a minimal γ_{sl} -set of *G*. Repeating this process for all end vertices in L(G), we obtain a γ_{sl} -set of *G* containing all the end vertices and $\gamma_{sl}(G) = \gamma_l(G)$.

The following Theorem relates the split line domination and domination number in terms of vertices of G.

Theorem 4: For any connected (p,q)- graph G, $\gamma_{sl}(G) + \gamma(G) \le p$.

Proof: Let $C = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the set of all non end vertices in G. Further, let $S \subseteq C$ be the set of vertices with $diam(u_i, v_i) \ge 3$, $\forall u_i, v_i \in S$, $1 \le i \le k$. Clearly, N[S] = V(G) and S forms a γ - set of G. Suppose $diam(u_i, v_i) < 3$. Then there exists at least one vertex $x \in V(G) - S$ such that, either $x \in N(v)$ or $x' \in N(v')$, where $v \in S$ and $v' \in S \cup \{x\}$. Then $S \cup \{x\}$ forms a minimal dominating set of G. Now in L(G), let $F = \{u_1, u_2, \dots, u_n\} \subseteq V(L(G))$ be the set of vertices corresponding to the edges which are incident to the vertices of S in G. Further, let $D \subseteq F$ be the minimal set of vertices which covers all the vertices in L(G), also making the subgraph $\langle V(L(G)) - D \rangle$ contains at least two components. Clearly, D forms a minimal split line dominating set of G. Hence, it follows that $|D| \cup |S \cup \{x\}| \le |V(G)|$ and gives $\gamma_{sl}(G) + \gamma(G) \le p$.

The following Theorem relates the split line domination and total domination number of G.

Theorem 5: For any connected graph G, $\gamma_{sl}(G) + \gamma_t(G) \le \alpha_0(G) + \beta_0(G) + 1$.

Proof: Let $C = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the minimal set of vertices with $dist(u, v) \ge 2$ for all $u, v \in C$, covers all the edges in G. Clearly, $|C| = \alpha_0(G)$. Further, if for any vertex $x \in C$, $N(x) \in V(G) - C$. Then C itself is an independent vertex set. Otherwise, $C_1 \cup C_2$ where $C_1 \subseteq C$ and $C_2 \subseteq V(G) - C$, forms a maximum independent set of vertices $|C_1 \cup C_2| = \beta_0(G)$. Now, let $S = C' \cup C''$, where $C' \subseteq C$ and $C' \subseteq V(G) - C$, be the minimal set of vertices with N[S] = V(G) and $deg(x) \ge 1$, $\forall x \in S$ in the sub graph $\langle S \rangle$. Clearly, S forms a minimal total dominating set in G. Now by the definition of line graph, let $F = \{u_1, u_2, ..., u_n\} \subseteq V(L(G))$ be the set of vertices corresponding to the edges which are incident with the vertices of S in G. Let there exists a set $D \subseteq F$ of vertices

which are minimally independent and covers all the vertices in line graph. Clearly, *D* itself is a γ_{sl} - set of *G*. Therefore, it follows that $|D| \cup |S| \le |C| \cup |C_1 \cup C_2| \cup 1$ and hence $\gamma_{sl}(G) + \gamma_t(G) \le \alpha_0(G) + \beta_0(G) + 1$.

The following Theorem relates the split line domination, connected domination and domination number of G.

Theorem 6: For any connected graph
$$G$$
,
 $\gamma_{sl}(G) + \gamma_c(G) \le diam(G) + \gamma(G) + \alpha_0(G)$.

Proof: Let $C \subseteq V(G)$ be the minimal set of vertices which covers all the edges in G with $|C'| = \alpha_0(G)$. Further, there exists an edge set $J' \subseteq J$, where J is the set of edges which are incident with the vertices of C', constituting the longest path in G such that |J'| = diam(G). Let $S = \{v_1, v_2, ..., v_k\} \subseteq C$ be the minimal set of vertices which covers all the vertices in G. Clearly, S forms a minimal dominating set of G. Suppose the subgraph $\langle S \rangle$ is connected, then S itself is a γ_c - set. Otherwise, there exists at least one vertex $x \in V(G) - S$ such that $S_1 = S \cup \{x\}$ forms a minimal connected dominating set of G. Now, in L(G), let $F = \{u_1, u_2, \dots, u_k\} \subseteq V(L(G))$ be the set of vertices such that $\{u_i\} = \{e_i\} \in E(G), 1 \le j \le k$, where $\{e_i\}$ are incident with the vertices of S. Further, let $D \subseteq F$ be the set of vertices with N[D] = V(L(G)) and if the subgraph $\langle V(L(G)) - D \rangle$ contains more than one component. Then D forms a split line dominating set of G. least Otherwise, there exists at one vertex $\{u\} \in V(L(G)) - D$ such that $\langle V(L(G)) - D - \{u\} \rangle$ yields more than one component. Clearly, $D \cup \{u\}$ forms a minimal γ_{sl} - set of G. Therefore, it follows that $|D \cup \{u\}| \cup |S_1| \le |J'| \cup |S| \cup |C'|$ and hence $\gamma_{sl}(G) + \gamma_{c}(G) \leq diam(G) + \gamma(G) + \alpha_{0}(G).$

In the following Theorems we give lower bounds to split line domination number of graphs.

Theorem 7: If every non end vertex of a tree T is adjacent to at least one end vertex with T containing at least two cut vertices, then $\gamma_{sl}(T) \le c-1$, where c is the number of cut vertices in T.

Proof: Let $F = \{v_1, v_2, ..., v_m\} \subseteq V(T)$ be the set of all cut vertices in T with |F| = c. Further, let $A = \{e_1, e_2, ..., e_k\}$ be the set of edges which are incident with the vertices of F. Now by the definition of line graph, suppose $D = \{u_1, u_2, ..., u_i\} \subseteq A$ be the set of vertices which covers all the vertices in L(T). Clearly, D forms a minimal split line dominating set of L(T). Therefore, it follows that $|D| \le |F| - 1$ and hence $\gamma_{sl}(T) \le c - 1$.

Theorem 8: For any connected (p,q)- graph G, $\gamma_{sl}(G) \leq \left\lceil \frac{p}{2} \right\rceil$.

Proof: Let $D = \{v_1, v_2, ..., v_n\} \subseteq V(L(G))$ be the minimal split line dominating set of *G*. Suppose |V(L(G)) - D| = 0. Then the result follows immediately. Further, if $|V(L(G)) - D| \ge 2$, then V(L(G)) - D contains at least two vertices such that 2n < p. Clearly, it follows that $\gamma_{sl}(G) = n < \lceil p/2 \rceil$.

Theorem 9: For any connected (p,q)- tree T, $\gamma_{sl}(T) \le q - \Delta'(T)$.

Proof: Let $A = \{v_1, v_2, ..., v_n\} \subseteq V(L(T))$ be the set of all support vertices. Suppose there exists a set of vertices $A_1 = \{u_1, u_2, \dots, u_m\} \subseteq V(L(T)) - A$ such that $dist(u_i, v_i) \ge 2$, $\forall u_i \in A_1$, $v_i \in A$, $1 \le i \le m$, $1 \le j \le n$. Then, clearly $S = A \cup A_1$ forms a split line dominating set of T. Otherwise, if $A \not\subset V(L(T))$, then select the set of vertices $S = A_1$ such that N[S] = V(L(T)) and the subgraph $\langle V(L(T)) - S \rangle$ is disconnected. Clearly, in any case S forms a minimal split line dominating set of T. Since for any tree T, there exists at least one edge $\deg(e) = \Delta'(T),$ $e \in E(T)$ with we obtain $|S| \leq |E(T)| - \Delta'(T)$. Therefore, $\gamma_{sl}(T) \leq q - \Delta'(T)$.

Theorem 10: For any connected unicyclic graph G = (V, E), $\gamma_{sl}(G) \le q - \Delta'(G) + 1$, if one of the following conditions hold:

- a. $G = C_4$.
- b. $G = C_3(u_1, u_2, ..., u_n), \deg(u_1) \ge 3,$ $\deg(u_2) = \deg(u_3) = 2, \ diam(u_1, w) \le 2$ for all vertices w not on C_3 and $\deg(w) \ge 3$ for at most one vertex w not on C_3 .
- c. $G = C_3$, $\deg(u_1) \ge 3$, $\deg(u_2) \ge 3$, $\deg(u_3) = 2$, all vertices not on C_3 adjacent to u_1 have degree at most 2 and all vertices whose distance from u_1 is 2 are end vertices.
- d. $G = C_3$, $\deg(u_1) = 3$, $\deg(u_2) \ge 3$, $\deg(u_3) \ge 3$ and all vertices not on C_3 are end vertices.
- e. $G = C_4$, either exactly one vertex of C_4 or two vertices of C_4 have degree at least 3 and all vertices not on C_3 are end vertices.

Proof: Assume $\gamma_{sl}(G) = q - \Delta'(G) + 1$. Let A denote the set of all end vertices of L(G) with |A| = m. Since

 $V(L(G)) - (A \cup \{v_1\})$ is a split line dominating set for any vertex v_1 of C, $\gamma_{sl}(G) \le q - m$ so that $m \le \Delta'(G)$. Let ebe an edge of maximum degree $\Delta'(G)$. Analogously in L(G), $e = u \in V(L(G))$ such that $|u| = \Delta(L(G))$. If u is not on C, then $m = \Delta'(G)$ and there exists vertices v_1 and v_2 on C such that $V(L(G)) - (A \cup \{v_1, v_2\})$ is a split line dominating set of cardinality $q - \Delta'(G)$, which is a contradiction. Hence u lies on C and $m \ge \Delta'(G) - 1$, we now consider the following cases.

Case 1: $m = \Delta'(G) - 1$. In this case, all vertices other than u and v have degree either one or two. Hence $C = C_3$ or C_4 and G is isomorphic to one of the graphs described in (a) to (e).

Case 2: $m = \Delta'(G)$. In this case, there exists a unique vertex u on C such that $V(L(G)) - (A \cup \{u\})$ is a minimum split line dominating set of G. It follows that $C = C_3$ and G is isomorphic to the graph described in (d).

References

- [1] F. Harary, Graph theory, Adison Wesley, Reading mass, 1972.
- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, New York, Marcel Dekker, Inc., 1998.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs, Advanced Topics, New York, Marcel Dekker, Inc., 1998.