On Some New Results of a Subclass of Univalent Functions Defined by Ruscheweyh Derivative

Waggas Galib Atshan¹, Ali Hussein Battor², Amal Mohammed Dereush³

¹Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya-Iraq
²,³Department of Mathematics, College of Education for Girls, University of Kufa, Najaf – Iraq

Abstract: In this paper, we introduce a new class of univalent functions defined by Ruscheweyh derivative in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1 \}$. We obtain basic properties, like, coefficient inequality, distortion and covering theorem, radii of starlikeness, convexity and close-to-convexity, extreme points, Hadamard product, closure theorems and convolution operator for functions belonging to the class $\Sigma^+(\sigma, c, \beta, \lambda)$.

Keywords: Univalent function, Ruscheweyh derivative, Distortion theorem, Radius of starlikeness, Extreme points, Hadamard product.

2014 Mathematics Subject Classification: 30C45.

1.Introduction

Let Σ denote the class of functions of the from:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (1)$$

which are analytic and univalent in the open unit disk \mathbb{D}.

If a function f is given by (1) and g is defined by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad (2)$$

is in the class Σ, then the convolution (or Hadamard product) of f and g is defined by

$$(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in \mathbb{D}. \quad (3)$$

Let Σ^+ denote the subclass of Σ consisting of functions of the from

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (a_n \geq 0, n \in \mathbb{N}). \quad (4)$$

We aim to study the subclass $\Sigma^+(\sigma, c, \beta, \lambda)$ consisting of function $f \in \Sigma^+$ and satisfying the condition:

$$\frac{\sigma [z(D^2 f(z))^" - ((D^2 f(z))^\prime - 1)]}{cz(D^2 f(z))^" + ((1-\sigma)(D^2 f(z))^\prime + 1)} < \beta, \quad z \in \mathbb{D}, \quad (5)$$

where $0 \leq \sigma < 1, 0 \leq c < 1, 0 < \beta < 1$ and $D^2 f(z)$ is the Ruscheweyh derivative [6], [7] of f of order λ defined as follow:

$$D^2 f(z) = z + \sum_{n=2}^{\infty} a_n A_n(\lambda) z^n, \quad (6)$$

where

$$A_n(\lambda) = \frac{\lambda + 1)(\lambda + 2) \ldots (\lambda + n - 1)}{(n - 1)!}, \lambda > -1, \quad z \in \mathbb{D}. \quad (7)$$

Another classes studied by several authors, like, [2] and [4] consisting of functions of the from (4).

2.Coefficient Inequality

In the following theorem, we obtain necessary and sufficient condition to be the function in the class $\Sigma^+(\sigma, c, \beta, \lambda)$.

Theorem 1: Let the function f be defined by (4). Then $f \in \Sigma^+(\sigma, c, \beta, \lambda)$ if and only if

$$\sum_{n=2}^{\infty} \left| n (\sigma(n + \beta) - \beta(c(n - 1) + 1)) A_n(\lambda) a_n \right| \leq \beta (2-\sigma). \quad (7)$$

where $0 < \beta < 1, 0 < \sigma < 1, 0 \leq c < 1, \lambda > -1$. The result (7) is sharp for the function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (n \geq 2). \quad (8)$.

Proof: Suppose that the inequality (7) holds true and $|z| = 1$.

Then we have

$$\left| \frac{\sigma [z(D^2 f(z))^" - ((D^2 f(z))^\prime - 1)]}{cz(D^2 f(z))^" + ((1-\sigma)(D^2 f(z))^\prime + 1)} - \beta \right| \leq 0,$$

by hypothesis, hence, by maximum modulus principle $f \in \Sigma^+(\sigma, c, \beta, \lambda)$.

Conversely, assume that $f \in \Sigma^+(\sigma, c, \beta, \lambda)$.

$$\sum_{n=2}^{\infty} \left| n (\sigma(n + \beta) - \beta(c(n - 1) + 1)) A_n(\lambda) a_n z^n \right| \leq 0,$$

by hypothesis, hence, by maximum modulus principle $f \in \Sigma^+(\sigma, c, \beta, \lambda)$.
Therefore, we get
\[
\left| \sigma \left[D^4 f(z) \right] - \left(D^3 f(z) \right) - 1 \right| - \beta \left| \frac{c z D^4 f(z)}{D^3 f(z)} \right| + \left(1 - \sigma \right) \left(D^3 f(z) \right) + 1 \right|.
\]

Thus, we get
\[
\sum_{n=2}^{\infty} (\sigma n^2) A_n(\lambda) a_n z^{n-2} < \beta \sum_{n=2}^{\infty} (n - \sigma) A_n(\lambda) a_n z^{n-2} + (2 - \sigma),
\]

so that
\[
\sum_{n=2}^{\infty} \frac{n(\sigma + n - \sigma + 1)}{A_n(\lambda)} A_n(\lambda) a_n \leq \beta(2 - \sigma).
\]

Corollary 1: Let the function \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then
\[
a_n \leq \frac{\beta(2 - \sigma)}{\left| \sum_{n=2}^{\infty} \frac{n(\sigma + n - \sigma + 1)}{A_n(\lambda)} A_n(\lambda) a_n \right|},
\]

3. Distortion and Covering Theorems

We introduce the growth and distortion theorems for the function \(f \) in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \).

Theorem 2: Let the function \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then
\[
|z| - \frac{1}{\beta} \left| \sum_{n=2}^{\infty} \frac{n(\sigma + n - \sigma + 1)}{A_n(\lambda)} A_n(\lambda) a_n \right| z^2 \leq |f(z)|
\]

The result is sharp and attained.

\[
f(z) = z + \frac{\beta(2 - \sigma)}{\left| \sum_{n=2}^{\infty} \frac{n(\sigma + n - \sigma + 1)}{A_n(\lambda)} A_n(\lambda) a_n \right|} z^2.
\]

Proof: Notice that
\[
\sum_{n=2}^{\infty} \frac{n(\sigma + n - \sigma + 1)}{A_n(\lambda)} A_n(\lambda) a_n \leq \beta(2 - \sigma),
\]

and this completes the proof.

4. Radii of starlikeness, convexity and close-to-convexity:

In the following theorems, we obtain the radii of starlikeness, convexity and close-to-convexity for the class \(\Sigma^+(\sigma, c, \beta, \lambda) \).

Theorem 4: Let \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then \(f \) is starlike in the disk \(|z| < R_\alpha \), where
\[
R_\alpha = \inf \left[1 - \frac{\alpha}{\beta} \left(\frac{n(\sigma(n - 2) + \beta(c + 1))}{A_n(\lambda)} \right) \right]^{1/3},
\]

\[
\geq 2. \tag{12}
\]

Proof: If \(f \) is starlike in the disk \(|z| < R_\alpha \), then
\[
R_\alpha \geq 2.
\]

Indeed, we have
\[
|zf'(z)| - 1 \leq |z| - 1 - \alpha,
\]

and this completes the proof.
Theorem 5: Let \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then \(f \) is convex in \(|z| < R_2\), of order \(\alpha \), \(0 \leq \alpha < 1 \), where

\[
R_2 = \inf \left\{ \frac{n(\sigma(n + \beta) - \beta(c(n - 1) + 1))A_n(\lambda)}{(n - \alpha)\beta(2 - \sigma)} \right\}^{\frac{1}{n - 1}}.
\]

\[
\geq 2 \quad (15)
\]

Proof: \(f \) is convex of order \(\alpha \), \(0 \leq \alpha < 1 \), if

\[
\frac{zf''(z)}{f'(z)} \leq 1 - \alpha,
\]

for \(|z| < R_2\).

Indeed we have

\[
\frac{zf''(z)}{f'(z)} \leq \frac{\sum_{n=2}^{\infty} n(n-1)\alpha_n|z|^{n-1}}{1 - \sum_{n=2}^{\infty} n\alpha_n|z|^{n-1}} \leq 1 - \alpha, \quad (0 \leq \alpha < 1) \quad (16)
\]

Hence by Theorem 1, (16) will be true if

\[
\frac{zf''(z)}{f'(z)} \leq \frac{\sum_{n=2}^{\infty} n(n-1)\alpha_n|z|^{n-1}}{1 - \sum_{n=2}^{\infty} n\alpha_n|z|^{n-1}} \leq 1 - \alpha, \quad (0 \leq \alpha < 1) \quad (16)
\]

Thus it is enough to show that

\[
\frac{zf''(z)}{f'(z)} \leq 1 - \alpha,
\]

5. Extreme Points:

In the following theorem, we obtain extreme points for the class \(\Sigma^+(\sigma, c, \beta, \lambda) \).

Theorem 7: Let \(f_1(z) = z \) and

\[
f_n(z) = z + \frac{\beta(2 - \sigma)}{n(\sigma(n + \beta) - \beta(c(n - 1) + 1))A_n(\lambda)}z^n, \quad \text{for } n = 2, 3, \ldots
\]

Then \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \) if and only if it can be expressed in the form

\[
f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z),
\]

where

\[
\begin{align*}
\mu_n &\geq 0 \\
\sum_{n=1}^{\infty} \mu_n &= 1 \\
1 &= \mu_1 + \sum_{n=2}^{\infty} \mu_n.
\end{align*}
\]

Proof: Let \(f(z) = \sum_{n=1}^{\infty} \mu_n f_n(z) \).

Thus

\[
\begin{align*}
f(z) &= z + \sum_{n=2}^{\infty} \frac{\beta(2 - \sigma)}{n(\sigma(n + \beta) - \beta(c(n - 1) + 1))A_n(\lambda)}z^n \mu_n A_n(\lambda) \\
&= z + \sum_{n=2}^{\infty} \frac{\beta(2 - \sigma)}{n(\sigma(n + \beta) - \beta(c(n - 1) + 1))A_n(\lambda)}z^n \mu_n A_n(\lambda) \\
&= z + \sum_{n=2}^{\infty} \frac{\beta(2 - \sigma)}{n(\sigma(n + \beta) - \beta(c(n - 1) + 1))A_n(\lambda)}z^n \mu_n A_n(\lambda)
\end{align*}
\]

6. Hadamard Product

In the following theorem, we obtain the convolution result for function belong to the class \(\Sigma^+(\sigma, c, \beta, \lambda) \).
Theorem 8: Let \(f \) and \(g \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then \(f \ast g \in \Sigma^+(\sigma, c, \delta, \lambda) \) for

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n,
\]

where

\[
\delta \leq \frac{\beta^2(2-\sigma)[n(\sigma(n+\beta)) \beta(c(n-1)+1)]^2 - \beta^2(2-\sigma)[n(\sigma-c(n-1)+1)]}{A_n(\lambda)}.
\]

Proof: Since \(f, g \in \Sigma^+(\sigma, c, \beta, \lambda) \), then we have

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\beta) - \beta(c(n-1)+1)) \right] A_n(\lambda) \leq 1 \quad (21)
\]

and

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\beta) - \beta(c(n-1)+1)) \right] A_n(\lambda) b_n \leq 1 \quad (22)
\]

We must find the smallest number \(\delta \) such that

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\delta) - \delta(c(n-1)+1)) \right] A_n(\lambda) a_n b_n \leq 1 \quad (23)
\]

By Cauchy-Schwarz inequality, we have

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\delta) - \delta(c(n-1)+1)) \right] A_n(\lambda) a_n b_n \leq 1 \quad (24)
\]

Thus, it is enough to show that

\[
\delta \leq \frac{\beta^2(2-\sigma)[n(\sigma(n+\beta)) \beta(c(n-1)+1)]^2 - \beta^2(2-\sigma)[n(\sigma-c(n-1)+1)]}{A_n(\lambda)}.
\]

This complete the proof.

Theorem 9: Let \(h \in \Sigma^+(\sigma, c, \beta, \lambda) \). Then

\[
h(z) = z + \sum_{a_2}^{\infty} (a_2^2 + b_2^2) z^n
\]

belong to the class \(\Sigma^+(\sigma, c, \delta, \lambda) \), where

\[
\delta \geq \frac{2\beta^2(2-\sigma)n\sigma}{A_n(\lambda)}.
\]

Proof: Since \(f, g \in \Sigma^+(\sigma, c, \beta, \lambda) \) so by Theorem 1, yields

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\beta) - \beta(c(n-1)+1)) \right] A_n(\lambda) \leq 1 \quad (25)
\]

and

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\beta) - \beta(c(n-1)+1)) \right] A_n(\lambda) b_n \leq 1 \quad (26)
\]

we obtain from the last two inequalities

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\delta) - \delta(c(n-1)+1)) \right] A_n(\lambda) (a_n^2 + b_n^2) \leq 1 \quad (27)
\]

but \(h(z) \in \Sigma^+(\sigma, c, \delta, \lambda) \) if and only if

\[
\sum_{n=2}^{\infty} \left[n(\sigma(n+\delta) - \delta(c(n-1)+1)) \right] A_n(\lambda) (a_n^2 + b_n^2) \leq 1 \quad (28)
\]

where \(0 < \delta < 1 \), however (27) implies (28) if

\[
\frac{\delta(2-\sigma)}{A_n(\lambda)} \leq \frac{\beta^2(2-\sigma)[n(\sigma(n+\beta)) \beta(c(n-1)+1)]^2 - \beta^2(2-\sigma)[n(\sigma-c(n-1)+1)]}{A_n(\lambda)}.
\]

Simplifying, we get

\[
\delta \geq \frac{2\beta^2(2-\sigma)n\sigma}{A_n(\lambda)}.
\]

7. Closure theorems

We shall prove the following closure theorems for the class \(\Sigma^+(\sigma, c, \beta, \lambda) \), let the function \(f_i(z) \) be defined by

\[
f_i(z) = z + \sum_{n=2}^{\infty} a_{n,i} z^n, \quad (a_{n,i} \geq 0, n \in N, n \geq 2) \quad (29).
\]

Theorem 10: Let the functions \(f_i(z) \) defined by (29) be in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \) for every \(i = 1, 2, \ldots, m \). Then the function \(h(z) \) defined by

\[
h(z) = z + \sum_{n=2}^{\infty} c_n z^n, \quad (c_n \geq 0, n \in N, n \geq 2)
\]

also belongs to the class \(\Sigma^+(\sigma, c, \beta, \lambda) \), where

\[
c_n = \frac{1}{m} \sum_{i=1}^{m} a_{n,i}.
\]

Proof: Since \(f_i(z) \in \Sigma^+(\sigma, c, \beta, \lambda) \), therefore from Theorem 1, we obtain

\[
\sum_{n=2}^{\infty} n(\sigma(n+\beta) - \beta(c(n-1)+1)) A_n(\lambda) a_{n,i} \leq \beta(2-\sigma), \quad (29)
\]
For every \(\beta \leq 1 \).

The Gaussian hypergeometric function is defined by

\[
\sum_{n=0}^{\infty} \frac{[n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)c_n}
\]

\[
= \sum_{n=0}^{\infty} [n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda) \left(\frac{1}{m} \sum_{i=1}^{m} a_{n,i} \right)
\]

\[\leq \beta(2 - \sigma).\]

Hence \(h(z) \in \Sigma^+(\sigma, c, \beta, \lambda). \)

Theorem 11: Let the functions \(f_i(z) \) defined by (29) be in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \), for every \(i = 1, 2, \ldots, m \). Then the function \(h(z) \) defined by

\[h(z) = \sum_{i=1}^{m} d_i f_i(z) \text{ and } d_i = 1, d_i \geq 0 \]

in the class \(\Sigma^+(\sigma, c, \beta, \lambda). \)

Proof: By definition of \(h(z) \), we have

\[h(z) = \sum_{i=1}^{m} d_i z^i + \sum_{n=1}^{\infty} \sum_{i=1}^{m} d_i a_{n,i} z^n, \]

since \(f_i(z) \) are in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \), for every \(i = 1, 2, \ldots, m \), we obtain

\[\sum_{n=0}^{\infty} [n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)a_{n,i} \]

\[\leq \beta(2 - \sigma) \]

for every \(i = 1, 2, \ldots, m \), hence we can see that

\[\sum_{n=0}^{\infty} [n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda) \left(\sum_{i=1}^{m} d_i a_{n,i} \right)
\]

\[= \sum_{i=1}^{m} d_i \left(\sum_{n=0}^{\infty} [n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)a_{n,i} \right)
\]

\[\leq \beta(2 - \sigma) \sum_{i=1}^{m} d_i = \beta(2 - \sigma). \]

Thus \(h(z) \in \Sigma^+(\sigma, c, \beta, \lambda). \)

8. Convolution Operator

Definition 1 [2,5]: The Gaussian hypergeometric function denoted by

\[
\sum_{|z| < 1}
\]

\[
\frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!} [z] \leq 1,
\]

where \(c > b > 0, c > a + b \) and

\[
(x)_n = \begin{cases} (x(x + 1)(x + 2) \ldots (x + n - 1)) & \text{for } n = 1, 2, 3, \ldots \\ 1 & \text{otherwise} \end{cases}
\]

Definition 2 [3]: For every \(f \in \Sigma^+ \), we defined the convolution operator \(W_{a,b,c}(f)(z) \) as below:

\[
W_{a,b,c}(f)(z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!} [z] \leq 1,
\]

where \(z^2 f_1(a, b; c; z) \) is Gaussian hypergeometric function (see[2] and [5]) introduced in Definition 1.

Theorem 12: Let \(f \) be given by (4) be in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \). Then the convolution operator \(W_{a,b,c}(f) \) is in the class \(\Sigma^+(\sigma, c, \beta, \lambda) \) for \(|z| \leq r(\beta, \delta) \), where

\[
r(\beta, \delta) = \inf \left[\frac{\delta \left[n\sigma(n + \beta) - \beta(c(n - 1) + 1) \right]}{\beta \left[n\sigma(n + \beta) - \beta(c(n - 1) + 1) \right]} \right]^\frac{1}{n+1}.
\]

The result is sharp for the function

\[
f_n(z) = z + \sum_{n=0}^{\infty} \frac{n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)}{\beta(2 - \sigma)} \]

\[\geq z \]

\[\sum_{n=0}^{\infty} \frac{n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)}{\beta(2 - \sigma)} \]

Proof: Since \(f \in \Sigma^+(\sigma, c, \beta, \lambda) \), we have

\[\sum_{n=0}^{\infty} \frac{n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)}{\beta(2 - \sigma)} \]

\[\leq \beta(2 - \sigma) \]

\[n \leq 1. \]

Note that (30) is satisfied if

\[\sum_{n=0}^{\infty} \frac{n\sigma(n + \beta) - \beta(c(n - 1) + 1)]]A_n(\lambda)}{\beta(2 - \sigma)} \]

\[= \beta(2 - \sigma) \sum_{n=0}^{\infty} a_n \]

\[\leq \beta(2 - \sigma) \sum_{n=0}^{\infty} a_n \]

solving for \(|z| \) we get the result.

Reference

Author Profile

Waggas Galib Atshan, Assist. Prof. Dr. in Mathematics (Complex Analysis), teacher at University of Al-Adisiya, College of Computer Science & Mathematics, Department of Mathematics, has 90 papers published in various journals in Mathematics till now, he taught seventeen subjects in mathematics till now (undergraduate, graduate), he is supervisor on more than 25 students till now, he attended more than 20 international and national conferences.

Ali Hussein Battor, Prof. Dr. in Mathematics (Functional Analysis), at University of Kufa, College of Education for Girls, Department of Mathematics, he has many papers published in various journals in mathematics, he taught number of subjects in mathematics(undergraduate, graduate), he is supervisor on more than 25 students till now, he attended more than 30 international and national conferences.