
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Strategy Design Pattern

Renu Bala1, Kapil Kumar Kaswan2

1Department of Computer Science and Application, Chaudhary Devi Lal University, Sirsa, Haryana, India

2Department of Computer Science and Application, Chaudhary Devi Lal University, Sirsa, Haryana, India

Abstract: Design patterns usually describe abstract systems of interaction between classes, objects, and communication flows. So, a
description of a set of interacting classes that provide a generalized solution framework to a generalized/specific design problem in a
specific context can be said as a design pattern. There are many design patterns that can be used to solve real-life problems, but it
remains very difficult to design, implement and reuse software for complex applications. Examples of these include enterprise system,
real-time market data monitoring and analysis system. Design patterns provide an efficient way to create more flexible, elegant and
ultimately reusable object-oriented software. Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without
ever doing it the same way twice”. The solutions of the given problems are expressed in terms of objects and interfaces. Among 23 design
patterns, Strategy pattern defines an interface common to all supported algorithms. Context uses this interface to call the algorithm
defined by a Concrete Strategy. In accounting framework one thing is mostly needed that is tax calculation. To solve this problem author
in the current study has
chosen the strategy pattern.

Keywords: Design Pattern, Context, Strategy, Object, Concrete Strategy

1. Introduction

A design pattern is a generic solution that has been observed
in multiple instances to help resolve a particular problem
within a known context. Design patterns provide an efficient
way to create more flexible, elegant and ultimately reusable
object-oriented software. Design methods are supposed to
promote good design, to teach new designers how to design
well and to standardize the way designs are developed.
Typically, a design method comprises a set of syntactic
notations usually graphical and a set of rules that govern
how and when to use each notation. It will also describe
problems that occur in a design, how to fix them, and how to
evaluate a design. Each pattern describes a problem which
occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a
way that you can use this solution a million times over,
without ever doing it the same way twice [1]. The solutions
of the given problems are expressed in terms of objects and
interfaces. Design patterns are being increasingly used in
software design. Design patterns are a good means for
recording design experience as they systematically name,
explain and evaluate important and recurrent designs in
software systems. They describe problems that occur
repeatedly, and describe the core of the solution to that
problem, in such a way that this solution can be used many
times in different contexts and applications. A good design
is a good solution regardless of the technology. And no
matter how good the technology may be, it is only as good
as its design, and specifically the implementation of that
design. In fact, a great design with older technology may
still be good, but a bad design with new technology is
usually just bad. A design pattern is a form of design
information and the design that worked well in past will be
used in future in any application similar to existing
application which uses these designs. These design
information can help both the experienced and the novice
designer to recognize situations in which these designs can

be reused. There are three categories of design patterns:
Creational, structural and Behavioral.

2. .Net Framework

A .net is a new software platform for the desktop and the
Web. The .NET Framework is an integral Windows
component that supports building and running the next
generation of applications. The .NET Framework has two
main components: the common language runtime and the
.NET Framework class library. The common language
runtime is the foundation of the .NET Framework [2]. The
.NET Framework is designed to fulfill the following
objectives:
 To provide a consistent object-oriented programming

environment whether object code is stored and executed
locally, executed locally but Internet-distributed, or
executed remotely.

 To provide a code-execution environment that minimizes
software deployment and versioning conflicts.

 To provide a code-execution environment that promotes
safe execution of code, including code created by an
unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates
the performance problems of scripted or interpreted
environments.

 To make the developer experience consistent across
widely varying types of applications, such as Windows-
based applications and Web-based applications.

 To build all communication on industry standards to
ensure that code based on the .NET Framework can
integrate with any other code [2].

3. Strategy Pattern

Strategy - defines an interface common to all supported
algorithms. Context uses this interface to call the algorithm
defined by a Concrete Strategy.

Paper ID: 02015263 385

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Concrete Strategy - each concrete strategy implements an
algorithm.

Context
 contains a reference to a strategy object.
 may define an interface that lets strategy accessing its

data.

The Context objects contains a reference to the
ConcreteStrategy that should be used. When an operation is
required then the algorithm is run from the strategy object.
The Context is not aware of the strategy implementation. If
necessary, addition objects can be defined to pass data from
context object to strategy.
The context object receives requests from the client and
delegates them to the strategy object. Usually the
ConcreteStrategy is created by the client and passed to the
context. From this point the clients interact only with the
context. In other words, it defines a family of algorithms,
encapsulate each one and make them interchangeable. In
computer programming, the strategy pattern also known as
the policy pattern is a software design pattern that enables an
algorithm's behavior to be selected at runtime. The strategy
pattern
 defines a family of algorithms,
 encapsulates each algorithm, and
 makes the algorithms interchangeable within that family.

Strategy lets the algorithm vary independently from clients
that use it. Strategy is one of the patterns included in the
influential book Design Patterns by Gamma et al. that
popularized the concept of using patterns in software design.
For instance, a class that performs validation on incoming
data may use a strategy pattern to select a validation
algorithm based on the type of data, the source of the data,
user choice, or other discriminating factors. These factors
are not known for each case until run-time, and may require
radically different validation to be performed. The validation
strategies, encapsulated separately from the validating
object, may be used by other validating objects in different
areas of the system (or even different systems) without code
duplication. The essential requirement in the programming
language is the ability to store a reference to some code in a
data structure and retrieve it. This can be achieved by
mechanisms such as the native function pointer, the first-
class function, classes or class instances in object-oriented
programming languages, or accessing the language
implementation's internal storage of code via reflection.

4. Structure

5. Related Work

There are various design patterns that can be used to solve
any of the industrial application. Here in this paper work,
strategy pattern is used to build a framework. In accounting
framework, one thing is mostly needed that is tax
calculation. To solve this problem author in the current
study has chosen the strategy pattern. Using these patterns,
design solution of the industrial problem will be described.
The father of the pattern concept, proposed a description
template stating nine essential pattern elements. These
patterns element describes the design patterns effectively;
also describe how these patterns are useful to solve the
problem. Industrial applications typically require different
kinds of interfaces to the data they store and the logic they
implement are data loaders, user interface and integration
gateways and others. Instead of using for different purpose,
these interfaces often need common interactions with the
application to access and manipulate its data and invoke its
business logic. These interactions may be complex,
involving transaction across multiple resources and the
coordination of several responses to an action. These
interfaces decide the interaction between different layers of
the application; how user interacts with middleware layer
and the database layer. The framework is implemented in
.Net. As we are using the design patterns to build this
framework hence the developer can use this framework to
build any kind of industrial application and can implement it
in any other programming language using object-oriented
concepts. Using the concept of design patterns. There are
various classes with their methods and properties [5].

6. Analyze Strategy Pattern by Example

Strategy pattern is used when we have multiple algorithms
for a specific task and client decides the actual
implementation to be used at runtime. Strategy pattern is
also known as Policy Pattern. We define multiple algorithms
and let client application pass the algorithm to be used as a
parameter. One of the best example of this pattern is
Collections.sort () method that takes Comparator parameter.
Based on the different implementations of Comparator
interfaces, the Objects are getting sorted in different ways
[8].

7. Simulation Strategy Design Pattern

One common usage of the strategy pattern is to define
custom sorting strategies e.g. to sort a list of strings by
length in Java, passing an anonymous inner class (an
implementation of the strategy interface) [7]:
List<String> names = Arrays.asList ("Anne", "Joe",
"Harry");
Collections. Sort (names, new Comparator<String> () {

Paper ID: 02015263 386

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 public int compare (String o1, String o2) {
 return o1.length () - o2.length ();
 }
});
Assert.assertEquals (Arrays.asList ("Joe", "Anne", "Harry"),
names);

8. Conclusion

Although the belief of utilizing design patterns to create
better quality software is fairly widespread, there is
relatively little research objectively indicating that their
usage is indeed beneficial. In this paper we try to reveal the
connection between design patterns and software
maintainability. It is very hard to understand better what the
patterns are and how they relate to each other. At this point
there is a fundamental picture as reacting to an event to
produce accounting entries. We used our probabilistic
quality model for estimating the maintainability. We found
that every introduced pattern instance caused an
improvement in the different quality attributes. Moreover,
the average design pattern line density showed a very high,
0.89 Pearson correlations with the estimated maintainability
values. Design patterns are outstanding communication tool
and help to make the design process faster. This allows
solution providers to take the time to concentrate on the
business implementation. Patterns help the design to make it
reusable. Reusability not just applies to the component, but
also the stages of the design that must go from a problem to
final solution. The ability to apply a pattern that provides a
repeatable solution is worth the little time spent learning
formal patterns. There are some promising results showing
that applying design patterns improve the different quality
attributes according to our maintainability model. In
addition, the ratio of the source code lines taking part in
some design patterns in the system has a very high
correlation with the maintainability. However, these results
are only a small step towards the empirical analysis of
design patterns and software quality [4].Design patterns
shall support reuse of software architecture in different
application domains as well as reuse of flexible components
[6].

References

[1] http://blogs.infragistics.com/blogs/ux/archive/2009/02/03

/what-is-a-design -pattern-and-why-use-them-for-
quince.aspx.

[2] Bertrand Meyer, Karine Arnout, Componentization: The
Visitor Example, to appear in Computer (IEEE), 2006.

[3] http://www.oodesign.com/abstract-factory-pattern.html
[4] P´eter Heged˝us, D´enes B´an, Rudolf Ferenc, and Tibor

Gyim´othy University of Szeged, Department of
Software Engineering ´Arp´ad t´er 2. H-6720 Szeged,
Hungary {hpeter,zealot,ferenc,gyimothy}@inf.u-
szeged.hu

[5] Meyer, Bertrand "Componentization: The Visitor
Example". IEEE computer (IEEE) 39 (7): 23–30.

[6] Jurgen Dorn and Tabbasum Naz,Institute of Information
Sysytems 184/2 Technical University Vienna
,Favoritenstrabe 9-11, Vienna A-1040, Austria
{dorn/naz}@dbai.tuwien.ac.at

[7] http://stackoverflow.com/questions/370258/real-world-
example-of-the-strategy-pattern

[8] http://www.journaldev.com/1827/java-design-patterns-
example-tutorial#strategy-pattern

Paper ID: 02015263 387

