International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

On a Subclass of Multivalent Harmonic Functions Defined by a Linear Operator

Waggas Galib Atshan¹, Huda Khalid Abid Zaid²

¹Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya-Iraq

Abstract. In this paper, we define a subclass of p-valent harmonic functions defined by a linear operator and study some results as coefficient inequality, convolution property and convex set.

Keywords: Multivalent harmonic function, convolution, linear operator.

AMS Subject Classification: 30C45.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a complex $\mathbb C$ if both u and v are real harmonic in \mathbb{C} . In any simple connected domain $D \subset \mathbb{C}$ we can write $f = h + \bar{g}$, where h and g are analytic in D, we call h the analytic part and g the co –analytic part of f.

A necessary and sufficient condition for f to be locally univalent and sense -preserving in D is that |h'(z)| >|g'(z)| in D, see Clunie and Sheil –Small [3].

Denote by M(p) the class of functions $f = h + \bar{q}$ that are harmonic multivalent and sense –preserving in the unit disk $U = \{z : |z| < 1\}$. For $f = h + \bar{g} \in M(p)$, we may express the analytic function h and g as:

$$f(z) = z^p + \sum_{k=n+p}^{\infty} a_k z^k,$$

$$g(z) = \sum_{k=n+p-1}^{\infty} b_k z^k,$$

$$|b_k| < 1.$$
(1.1)

Let N(p) denote the subclass of M(p) consisting of functions $= h + \bar{g}$, where h and g are given by:

$$f(z) = z^{p} + \sum_{k=n+p}^{\infty} |a_{k}| z^{k},$$

$$g(z) = \sum_{k=n+p-1}^{\infty} |b_{k}| z^{k},$$

$$|b_{k}| < 1.$$
(1.2)

We introduce here a class $N_{\lambda}(p,\alpha)$ of harmonic functions of

the form (1.1) that satisfy the inequality
$$Re\left\{\frac{z^{p-1}}{[\mathcal{L}_{p}(h*\emptyset_{1})(z)]' - \overline{[\mathcal{L}_{p}(g*\emptyset_{1})(z)]'}}\right\} > \alpha ,$$
 where $0 \le \alpha < \frac{1}{p}$, $\lambda \ge 0$, $p \in \mathbb{N}$ and
$$\mathcal{L}_{p}f(z) = \mathcal{L}_{p}h(z) + \overline{\mathcal{L}_{p}g(z)} . \tag{1.3}$$

The operator \mathcal{L}_p denotes the linear operator introduced in [6]. For h and g given by (1.1), we obtain

$$\mathcal{L}_{p}h(z) = z^{p} + \sum_{k=n+p}^{\infty} \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_{1})_{k-p}}{(c_{1})_{k-p}} \ a_{k}z^{k} ,$$

$$\mathcal{L}_{p}g(z) = -\sum_{k=n+n-1}^{\infty} \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_{2})_{k-p}}{(c_{2})_{k-p}} b_{k} z^{k},$$

where a_1, a_2, c_1, c_2 are positive real numbers, $\lambda \ge 0, p \in \mathbb{N}$. Now, the convolution of h, g is given by (1.2) and

$$\phi_1(z) = z^p + \sum_{k=n+n}^{\infty} |A_k| z^k$$
, $\phi_2(z) = \sum_{k=n+n-1}^{\infty} |B_k| z^k$

$$(h * \phi_1)(z) = z^p + \sum_{k=n+p}^{\infty} |A_k| |a_k| z^k$$

$$(g * \phi_2)(z) = \sum_{k=n+p-1}^{\infty} |B_k| |b_k| z^k, |b_k| < 1,$$

we further denote by $N_{\lambda}(p,\alpha)$ the subclass of $M_{\lambda}(p,\alpha)$ that satisfies the relation

$$N_{\lambda}(p,\alpha) = N_{\lambda} \bigcap M_{\lambda}(p,\alpha).$$

Lemma (1.1)[1]: If $\alpha \ge 0$, then $Re w > \alpha$ if and only if $|w-(1+\alpha)| < |w+(1-\alpha)|$, where w be any complex number.

2. Main Results

Theorem 2.1: Let $f = h + \bar{g}$ (h and g are given by (1.1)). If

$$\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}-1\right)+1\right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k|$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}+1\right)\right]$$

$$-1 \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| \le p, \qquad (2.1)$$
where $(0 \le \alpha < \frac{1}{p}, \lambda \ge 0, p \in \mathbb{N}, z \in U)$, then f is

harmonic p -valent sense -preserving in U and $f \in M_{\lambda}(p, \alpha)$

Proof. Let
$$w(z) = \left\{ \frac{z^{p-1}}{[\mathcal{L}_p(h * \emptyset_1)(z)]' - \overline{[\mathcal{L}_p(g * \emptyset_1)(z)]'}} \right\} = \frac{A(z)}{B(z)}.$$

By using the fact that in Lemma (1.1) $Re(w) \ge \alpha$ if and only if $|w - (1 + \alpha)| < |w + (1 - \alpha)|$, it is sufficient to show

$$|A(z) - (1 + \alpha)B(z)| - |A(z) + (1 - \alpha)B(z)| \le 0$$
. (2.2)

Volume 3 Issue 8, August 2014

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

Substituting for A(z) and B(z) the appropriate expressions (2.2), we get

$$|A(z) - (1+\alpha)B(z)| - |A(z) + (1-\alpha)B(z)|$$

$$= \begin{vmatrix} z^{p-1} - (1+\alpha) & pz^{p-1} \end{vmatrix}$$

$$+ \sum_{k=n+p}^{\infty} k \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k| z^{k-1}$$

$$- \sum_{k=n+p-1}^{\infty} k \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| z^{k-1}$$

$$- \left[z^{p-1} + (1-\alpha) \left[pz^{p-1} + \sum_{k=n+p}^{\infty} k \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k| z^{k-1} \right]$$

$$- \sum_{k=n+p-1}^{\infty} k \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| z^{k-1}$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k|$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| - p \le 0,$$

by inequality (2.1), which implies that $f \in N_{\lambda}(p, \alpha)$. The harmonic functions

$$f(z) = z^{p} + \sum_{k=n+p}^{\infty} \frac{x_{k}}{k\alpha \left[\lambda \left(\frac{k}{p} - 1\right) + 1\right] \frac{(a_{1})_{k-p}}{(c_{1})_{k-p}}} z^{k} + \sum_{k=n+p-1}^{\infty} \frac{\overline{y_{k}}}{k\alpha \left[\lambda \left(\frac{k}{p} + 1\right) - 1\right] \frac{(a_{2})_{k-p}}{(c_{2})_{k-p}}} (\bar{z})^{k},$$
(2.3)

$$\sum_{k=n+p}^{\infty} |x_k| + \sum_{k=n+p-1}^{\infty} |\overline{y_k}| = p,$$

show that the coefficients bounds given by (2.1) is sharp. The function of the form (2.3) are in $M_{\lambda}(p,\alpha)$ because in view of (2.3) we infer that

$$\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k|$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k|$$

$$= \sum_{k=n+p}^{\infty} |x_k| + \sum_{k=n+p-1}^{\infty} |\overline{y_k}| = p.$$

Now, we need to prove that the condition (2.1) is also necessary for function of (1.2) to be in the class $N_{\lambda}(p,\alpha)$.

Theorem 2.2. Let $f = h + \bar{g}$ (h and g are given by (1.2)). Then $f \in N_{\lambda}(p, \alpha)$ if and only if

$$\begin{split} \sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] & \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k| \\ & + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) \right. \\ & \left. - 1 \right] & \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| \leq p \,, \end{split}$$

where $(0 \le \alpha < \frac{1}{n}, \lambda \ge 0, p \in \mathbb{N}, z \in U)$.

Proof. By notation $N_{\lambda}(p,\alpha) \subset M_{\lambda}(p,\alpha)$, the sufficient part

monic functions

Thom: By notation
$$N_{\lambda}(p, \alpha) \subseteq M_{\lambda}(p, \alpha)$$
, the sufficient part of Theorem (2.2) follows at once from Theorem (2.1), we get
$$Re\left\{\frac{z^{p-1}}{[\mathcal{L}_{p}(h*\emptyset_{1})(z)]' - [\mathcal{L}_{p}(g*\emptyset_{1})(z)]'}\right\}$$

$$= Re\left\{\frac{z^{p-1}}{pz^{p-1} + \sum_{k=n+p}^{\infty} k\left[\lambda\left(\frac{k}{p}-1\right) + 1\right]\frac{(a_{1})_{k-p}}{(c_{1})_{k-p}}|A_{k}||a_{k}|z^{k-1} + \sum_{k=n+p}^{\infty} k\left[\lambda\left(\frac{k}{p}+1\right) - 1\right]\frac{(a_{2})_{k-p}}{(c_{2})_{k-p}}|B_{k}||b_{k}|z^{k-1}}\right\}$$

if we choose z to be real and let $z \rightarrow 1^-$, we obtain the condition (2.1).

Theorem 2.3. The class $N_{\lambda}(p, \alpha)$ is a convex set.

Paper ID: 02015197

Proof. Let the function $f_i(z)(j=1,2)$ be in the class $N_{\lambda}(p,\alpha)$. It is sufficient to show that the function H defined

$$H(z) = (1 - \gamma)f_1(z) + \gamma f_2(z)$$
, $(0 \le \gamma < 1)$ is in the class $N_{\lambda}(p, \alpha)$, where $f_j = h_j + \overline{g_j}$ and

 $h_j(z) = z^p + \sum_{k=1,\dots,p} |a_{k,j}| z^k ,$ $g_j(z) = \sum_{k} |b_{k,j}| (\bar{z})^k.$

Since for $0 \le \gamma < 1$

Volume 3 Issue 8, August 2014

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

$$\begin{split} H(z) &= z^p + \sum_{k=n+p}^{\infty} \left((1-\gamma) \big| a_{k,1} \big| - \gamma \big| a_{k,2} \big| \right) z^k \\ &- \sum_{k=n+p-1}^{\infty} \left((1-\gamma) \big| b_{k,1} \big| - \gamma \big| b_{k,2} \big| \right) (\bar{z})^k \ . \end{split}$$

In view of Theorem (2

n view of Theorem (2.2), we have
$$\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| \left((1-\gamma) |a_{k,1}| - \gamma |a_{k,2}| \right) \\ + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| \left((1-\gamma) |b_{k,1}| - \gamma |b_{k,2}| \right) \\ = (1-\gamma) \left(\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_{k,1}| + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_{k,1}| \right) \\ + \gamma \left(\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_{k,2}| + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) - 1 \right] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_{k,2}| \right)$$

 $\leq (1 - \gamma)p + \gamma p = p ,$

hence $H(z) \in N_{\lambda}(p, \alpha)$. For harmonic functions

$$= z^{p} + \sum_{k=n+p}^{\infty} |a_{k}| z^{k}$$

$$+ \sum_{k=n+p-1}^{\infty} |b_{k}| (\bar{z})^{k}$$
(2.4)

and

$$F(z) = z^{p} + \sum_{k=n+p}^{\infty} |r_{k}| z^{k} + \sum_{k=n+p-1}^{\infty} |s_{k}| (\bar{z})^{k} , \qquad (2.5)$$

$$(f * F)(z) = z^{p} + \sum_{k=n+p}^{\infty} |a_{k}r_{k}|z^{k} + \sum_{k=n+p-1}^{\infty} |b_{k}s_{k}|(\bar{z})^{k}. (2.6)$$

In the following theorem, we examine the convolution property of the class $N_{\lambda}(p, \alpha)$.

Theorem 2.4. If f and F are in $N_{\lambda}(p,\alpha)$, then $(f*F) \in$ $N_{\lambda}(p,\alpha)$.

Proof. Let f and F of the forms (2.4) and (2.5) belongs to $N_{\lambda}(p,\alpha)$. Then the convolution of f and F is given by (2.6). Note that $|r_k| \le 1$ and $|s_k| \le 1$, since $F \in N_{\lambda}(p, \alpha)$. Then

$$\begin{split} \sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] & \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k r_k| \\ & + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) \right. \\ & - 1 \left] \frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k s_k| \\ & \leq \sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} - 1 \right) + 1 \right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k| \\ & + \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p} + 1 \right) \right. \\ & - 1 \left[\frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k|. \end{split}$$

The right hand side of the above inequality is bounded by pbecause $f \in N_{\lambda}(p, \alpha)$. Therefore $(f * F) \in N_{\lambda}(p, \alpha)$.

Now, we will examine the closure property of the class $N_{\lambda}(p,\alpha)$ under the generalized Bernardi –Libera –Livingston integral operator (see [2],[4] and [5]) $D_{c,p}(f)$ which is defined by

$$D_{c,p}(f)(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt, \quad (c - p).$$
 (2.7)

Theorem 2.5. Let $f \in N_{\lambda}(p,\alpha)$. Then $D_{c,p}(f)$ belong to the class $N_{\lambda}(p,\alpha)$.

Proof. From the representation of $D_{c,p}(f)$, it follows that

$$D_{c,p}(f) = \frac{c+p}{z^c} \int_0^z t^{c-1} \{h(t) + \overline{g(t)}\} dt$$

$$= \frac{c+p}{z^c} \left\{ \int_0^z t^{c-1} \left(t^p + \sum_{k=n+p}^{\infty} |a_k| t^k \right) dt + \int_0^z t^{c-1} \left(\sum_{k=n+p-1}^{\infty} |b_k| t^k \right) dt \right\}$$

$$= z^p + \sum_{k=n+p}^{\infty} v_k z^k$$

$$+ \sum_{k=n+p-1}^{\infty} w_k(\overline{z})^k,$$
where $v_k = \frac{c+p}{2} |a_k| and w_k = \frac{c+p}{2} |b_k|$. Therefore

where $v_k = \frac{c+p}{c+k} |a_k|$ and $w_k = \frac{c+p}{c+k} |b_k|$. Therefore

Volume 3 Issue 8, August 2014

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

$$\sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}-1\right)+1\right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| \left(\frac{c+p}{c+k}\right) |a_k|$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}+1\right)\right]$$

$$-1 \left[\frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| \left(\frac{c+p}{c+k}\right) |a_k|\right]$$

$$\leq \sum_{k=n+p}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}-1\right)+1\right] \frac{(a_1)_{k-p}}{(c_1)_{k-p}} |A_k| |a_k|$$

$$+ \sum_{k=n+p-1}^{\infty} k\alpha \left[\lambda \left(\frac{k}{p}+1\right)\right]$$

$$-1 \left[\frac{(a_2)_{k-p}}{(c_2)_{k-p}} |B_k| |b_k| \leq p.$$
see $\in N_{\lambda}(p,\alpha)$, by Theorem (2.2), we have $D_{c,n}(p,\alpha)$

Since $\in N_{\lambda}(p,\alpha)$, by Theorem (2.2), we have $D_{c,p}(f) \in N_{\lambda}(p,\alpha)$.

References

- [1] E. S. Aqlan, Some problems connected with geometric function theory, Ph.D. Thesis (2004), Pune university, Pune.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc, 135(1969), 429-446.
- [3] J. Clunie and T. Shell –Small, Harmonic univalent function, Ann. Acad. Aci. Fenn. Ser. AI Math ,9(1984),3-25.
- [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755-758.
- [5] A. E. Livingston, On the radius of univalence of certain analytic function, Proc. Amer. Math. Soc., 17(1966), 325-327.
- [6] E. Yasar and S. Yalcn, Properties of a subclass of multivalent harmonic functions defined by a linear operator, Gen. Math., 13(1)(2012), 10-20.

Author Profile

Paper ID: 02015197

Waggas Galib Atshan, Assist. Prof. Dr. in Mathematics (Complex Analysis), teacher at University of Al-Qadisiya, College of Computer Science & Mathematics, Department of Mathematics, he has 90 papers published in various journals in

mathematics till now, he teached seventeen subjects in mathematics till now (undergraduate , graduate),he is supervisor on 20 students (Ph.D. , M.Sc.) till now, he attended 23 international and national conferences.