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1. Introduction

A continuous function f=u+iv is a complex valued
harmonic function in a complex C if both u and v are real
harmonic in C. In any simple connected domain D < C we
can write f = h + g, where h and g are analytic in D, we
call h the analytic part and g the co —analytic part of f.

A necessary and sufficient condition for f to be locally
univalent and sense —preserving in D is that |h'(z)| >
|g'(2)| in D, see Clunie and Sheil —Small [3].

Denote by M(p) the class of functions f = h + g that are
harmonic multivalent and sense —preserving in the unit disk
U={z:|z| <1}. For f =h+ g € M(p), we may express
the analytic function h and g as:

(1.1)
Let N(p) denote the subclass of M(p) consisting of
functions = h + g, where h and g are given by:

F2) =27 + Z la|z*,

k=n+p
[ee]

gD = ) Ihls,

k=n+p-1
|bel < 1. (1.2)
We introduce here a class N, (p, @) of harmonic functions of

the form (1.1) that satisfy the inequality
zP~1

Re{ - ——,} >a,
[£p(h* 01)(2)] — [£,(g * 81)(2)]
where0 < <%,/’l =>0,p€eN and

L,f(z) = L,h(2) + Lpg(2) . (1.3)
The operator £,, denotes the linear operator introduced in [6].
For h and g given by (1.1), we obtain

L,h(z) = zP + Z [/1(——1)+1 (@) P a,z®,

(Cl)k -p

k=n+p

L£,9(z) = — Z [/1( + 1) - 1] E(Z)): : b.z*,

k=n+p-1
where a4, a,, ¢, ¢, are positive real numbers , 1 > 0,p € N .
Now, the convolution of h, g is given by (1.2) and
[oe] [ee)

D@ =2+ D Al h@)= ) Bl

k=n+p k=n+p-1
is defined by
(hedp)@ =20+ ) | Ayl al*
k=n+p
(g *d)(2) = | Bl bilz®, | bl <1,
k=n+p-1

we further denote by N, (p, @) the subclass of M, (p, &) that
satisfies the relation

M@, = N | Mao, ).
Lemma (1.1)[1]:If « = 0 , then Rew > «a if and only if

lw—-(1+a)| <|w+ (1-a)l, where w be any complex
number.

2. Main Results

Theorem 2.1: Let f = h + g (h and g are given by (1.1)). If

i ka[l(%—l) ]E“gl’jzmknau

k=n+p
+ z ka[z( +1)
k=n+p-1
(z)kp
-1 @) | Bell byl < p, (2.1)
C2)k- -p
where (0Sa<;,/120,pEN,zEU) , then f s

harmonic p —valent sense —preserving in U and f € M, (p, @)

Proof. Let
A(2)

zP71
w(z) = —— .
® {[‘Cp(h *01)(2)] — [£Lp(g * (31)(2)]’} B(2)
By using the fact that in Lemma (1.1) Re(w) = « if and only
if w—>0+a)|<|w+ (1—a)l, it is sufficient to show
that
|A(z) — (1 + a)B(2)| -

|A(z) + (1 — a)B(2)| <0. (2.2)
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Substituting for A(z) and B(z) the appropriate expressions f(2)
(2.2), we get > Xk
() — (1 + @BG)| - 1A + (1 - DBE) =+ ) —— e
ka2 (5 -1) + 1] 22
p (Cl)k—p
= [z -1+ a)|pzP?t ® e
k, 2.3
- R Y e V=
k kenap-1 KEAG -
+ 2, kpG-1) : ”
D where
k=n+p © ©
" 1] (al)k—p | Ak” aklzk_l Z |xk| + Z |W| =D
(Cl)k—p k=n+p k=n+p-1
i k show that the coefficients bounds given by (2.1) is sharp.
- Z k [/1 (—+ 1) The function of the form (2.3) are in M;(p, @) because in
k=mip-1 P view of (2.3) we infer that
S k (@)
ay)p— K
1w gy 2, (G-1)+ gt iaad
(Cz)k—p k=n+p p (Cl)k—p
C k
— |2+ (A - a) |pzPt " _Z ke [/1 (; ¥ 1)
k=n+p-1

+ i k|2 (g - 1) - 1];3::: | Bk'L”'f'
k=n+p —_
(@)k—p = z 2| + z [vel =p.

+ 1] (Cl)k | Ak” aklzk_1 k=n+p k=n+p-1
-p
Kl k 1 Now , we need to prove that the condition (2.1) is
B Z [ (5 + ) also necessary for function of (1.2) to be in the class
k=n+p-1 N/l(p; (X).
(a2)k-p et Theorem 2.2. Let f = h+ g (h and g are given by (1.2)).
- 1] (i | Bill b |z Then f € N, (p, @) if and only if
c k )
SN @iy > ka[1(5-1) ¢ 1] gy
< ka (A (=—1)+ 1| —"L] 4|l axl 4 p (c)k—p
p 1)k fe=n+p
k=n+p -p © K
i k + ) ke|a(S+1)
+ Z ka [A (E + 1) k=n+p-1 p
k=n+p-1 (a ) -
(@), — 1| SBEL Bl bl <,
_1] — LBl byl —p <0, (€2)k—p
(Cz)k—p

Where(0$a<%,/120,p€N,z€U).

Proof. By notation Ny (p, @) € M,(p, @) , the sufficient part
of Theorem (2.2) follows at once from Theorem (2.1), we get

by inequality (2.1), which implies that f € N;(p, ). The
harmonic functions

Re{ Zp_l—_}
[£p(h* 01)(2)] = [£Lyp(g * 1))

zP71
= Re
-1 N k_ (@k-p k-1 N 2 _ 1| @2k k-1
- > kG- adiada ot 3 k|2 (+1) - 1] SR Bl bl )
k=n+p k=n+p
>a,
if we choose z to be real and let z — 17, we obtain the e
condition (2.1). hj(z) = zP + Z |awj|2*
Theorem 2.3. The class N; (p, @) is a convex set. k=n+p
Proof. Let the function f;(2)(j =1,2) be in the class = .
N;(p, @). It is sufficient to show that the function H defined g;j(2) = Z |bi | (D"
by : k=n+p-1
H@) = A-NA@+7LE), 0<y<D Since for 0 <y <1

is in the class N; (p, @), where f; = h; + g, and
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HE) =22+ ) (=Pl - vla]) 2+

k=n+p

N Z ((1_y)|bk,1|_l’|bk,2|) (D*

k=n+p-1
In view of Theorem (2.2), we have

5w a0
—)’lak2|)
+k ; lka[/l( +1)
1] E‘:)" 21 Byl (@ = V)|l
—Vlbk,ZD
=1-y) ka [/1(——1)+1] Ecgk plAk||ak1|
k= n+p
+ Z ka [,1( +1)
k=n+p-1
— I]E 3: :lBk”bkll)
+y i ka [A(E—l)ﬂ] (al)k_plAkHak,Zl
k=m+p (€
+k ; 1ka[/1( +1)
- 1] E 2):_: | Bkllbk2|>

sA-yp+yw=p,
hence H(z) € N,(p, @). For harmonic functions

IO

=zP + z la|z*

k=n+p

+ Z bl @) @24)
k=n+p-1
and

) @k (25)

k=n+p-1
we define the convolution of f and F as
[oe]

FeP@ =2+ ) lanlzt

k=n+p
[oe]

+ ) sl @.26)

k=n+p-1

In the following theorem , we examine the convolution
property of the class N;(p, ).
Theorem 2.4. If f and F are in Ny(p,a), then (f *F) €

Ny(p, ).

Proof. Let f and F of the forms (2.4) and (2.5) belongs to
N, (p, @). Then the convolution of f and F is given by (2.6).
Note that || <1 and |s,| < 1, since F € Ny(p, «). Then
we can write

ka [A (—— 1) + 1] (@1)ip | Agl lagmicl

k= n+p l)k P
+ Z ka[/l( +1)
k=n+p-1
(az)
— 1| 2| Byl
( Z)k P

[oe]

< Z ka[z(——1)+1]%l’:}’:h4kllakl

k=n+p
+ z ka [,1( + 1)
k=n+p-1
(a;)
~ 1| G5 Bl
Z)k -p
The right hand side of the above inequality is bounded by p

because f € N,(p,a). Therefore (f * F) € Ny(p, @).

Now, we will examine the closure property of the class
N, (p, @) under the generalized Bernardi —Libera —Livingston
integral operator (see [2],[4] and [S]) D.,(f) which is
defined by

+p

Doy (@) = 2 f € F(Odt, (e
0

> —p). 2.7)
Theorem 2.5. Let f € Ny(p,a). Then D, (f) belong to the
class N; (p, o).

Proof. From the representation of D, ,,(f), it follows that

D.,(f) = H—Cpf e H{h() + g(O)}dt

c+ z
= Zcp ftc Her + Z la, |tk | dt

k=n+p
z [ee)
+ftc—1 Z |b |tk | dt
0 k=n+p-1
[oe]
=zP + Z v 2"
k=n+p
[ee)
+ z wy (2)¥
k ’
k=n+p-1

c+p

where v, = <2 |a,|and w;, = Z2 |b,|. Therefore
k c+k k k c+k k
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ka [/1 (— - 1) + 1] @iy ) (C - p) ||

kn+p (c)k-p c+k
* Z kaiGe)
18 () o

< i k(l[)l(——1>+1](i)):_::lAk”akl

k=n+p
+ Z ka [,1( +1)
k=n+p-1
_ 1]( Z)k 14
Z)k -p
Since € Ny(p,a) , by Theorem (2.2) , we have D.,(f) €

N;(p, a).

| Billbe|l < p.
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