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Abstract: Antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) comprise a structurally diverse class of proteins that have in 
common the ability to bind to ice and inhibit its growth. This action at the surface of ice in contact with a solution of AFP leads to a 
lowering of the freezing point (non-equilibrium) below the melting point, referred to as thermal hysteresis (in °C). AFPs are 
incorporated within ice when it freezes because of their affinity for its surface. There, even in the frozen state, they inhibit the growth of 
large ice crystals at the expense of small ones (recrystallization inhibition), particularly when ice approaches the melt temperature and 
becomes more fluid. As a result of these beneficial properties, AFPs and AFGPs have been incorporated into the freeze-resistance or 
freeze-tolerance strategies of many organisms such as marine fishes, insects, plants and bacteria. 
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1. Introduction 
 
Birds, fishes, amphibians, insects and plants have evolved 
several strategies to cope with extreme low temperature in 
their natural habitat. Mechanisms involved in their cold 
tolerance provide valuable clues to the studies on bacterial 
cold tolerance. One of the major strategies adopted by the 
cold-tolerant fishes, insects and plants is the production of 
specific proteins, which help them to maintain their body 
fluid in the liquid state at sub-zero temperatures. In general, 
they are called antifreeze proteins (AFPs), though other 
terms such as antifreeze glycoproteins, antifreeze 
polypeptides are also used to denote the structural features 
of these antifreeze proteins.AFPs protect the organisms (Fig 

1) from freezing at temperature below 1°C by binding with 
ice crystals and modify their growth through an adsorption-
inhibition mechanism [1]. Marine teleosts living in polar 
waters have a body temperature of about ±1.90C, the same as 
the ambient temperature of the surrounding seawater. 
However, their body fluids are hypoosmotic to sea water and 
have a melting point of approximately ±0.70C. Thus, the 
polar teleosts are super-cooled by more than 10C[2]-[3].One 
could therefore predict that the fish sooner or later would 
experience a lethal freezing. Polar fish are protected against 
freezing by thepresence in their body fluids of antifreeze 
proteins,which display a capacity to inhibit ice growth when 
partly frozen fluid samples are cooled. 
 

 

 
Figure 1: The antifreeze molecules allow ice fish to live in subfreezing water by plugging gaps in existing small ice crystals 

and preventing the attachment of more ice molecules. Ice crystal growth is thus effectively stopped [4]. 
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Through this unique technique, they protect themselves from 
cell membrane damage and some other harmful physical and 
chemical changes. Though, AFPs were first identified in 
fishes [5], they also have been found in plants [6], fungi [7] 
and bacterial species [8]-[6]-[9]. Beside their diversified 
sources various structurally distinct AFPs have evolved 
independently [10]. A total of 5 structurally distinct 
antifreeze proteins are identified in fish so far and classified 
as Antifreeze glycoprotein (AFGP) and antifreeze protein 
type I, type II, type III, and type IV based on their distinct 
physicochemical and structural features [11]. Antifreeze 
activity of AFPs attracts a lot of attention due to their wide 
potential commercial applications including preservation, 
transgenic production [12] and cryosurgery. AFPs have 
potential applications in fisheries for the production of 
economically valuable fishes against low temperature. 
 
2. History 
 
In the 1950s, Canadian scientist Scholander set out to 
explain how Arctic fish can survive in water colder than the 
freezing point of their blood. His experiments led him to 
believe there was “antifreeze” in the blood of Arctic fish. 
Then in the late 1960s, animal biologist Arthur DeVries was 
able to isolate the antifreeze protein through his 
investigation of Antarctic fish [13]. These proteins were 
later called antifreeze glycoproteins (AFGPs) or antifreeze 
glycopeptides to distinguish them from newly discovered 
non-glycoprotein biological antifreeze agents (AFPs). 
DeVries worked with Robert Feeney [14] to characterize the 
chemical and physical properties of antifreeze proteins. 
Duman and Olsen [15] noted AFPs had also been discovered 
in over 23 species of angiosperms, including ones eaten by 
humans. As well, they reported their presence in fungi and 
bacteria. 

3. Diversity and origins of fish antifreeze 
proteins 

 
There are two categories of fish antifreeze proteins – the 
AFGPs (antifreeze glycoproteins) and the AFPs (Table 1). 
AFGPs of the unrelated antarcticnotothenioids and northern 
cods occur as family of size isoforms composed of various 
number of a simple tri-peptide repeat, Ala-Ala-Thr, with 
each Thr linked to a disaccharide, galactose-N-
acetylgalactosamine. The cod AFGPs differ only in an 
occasional Thr ->Arg substitution [16]. Through 
comparative analyses of the sequence and structure of AFGP 
gents from the two fishes, a common ancestry was ruled out. 
Thenotothenioid AFGP gene was derived from a 
trypsinogen-like serine protease gene [17]. The cod AFGP 
gene is not homologouswith trypsinogen and thus must arise 
from different genomic origin[18]. 
 
AFPs are sequentially numbered type I, II, III and IV in the 
order of their discovery. Type IAFPs of flat fishes 
(pleuronectids) and unrelated sculpins (cottidae) are small α-
helical molecules comprising three or four of an 11 residue 
repeat. Type II AFPs are Cys-rich folded proteins identified 
in three very divergent fishes - searaven, smelt and herring–
and the homologous to the carbohydrate recognition domain 
of calcium-dependent (C-type) lectins[19]. Type III AFPs 
are small globular proteins with unbiased amino acids from 
eel pouts and wolf-fish (zoarcoids). The 12.3 kDa typeIV 
AFP of the longhorn sculpin is the newly discovered fish 
AFP and it shares around 20% sequence identity with 
members of the exchangeable apolipo protein super family 
[20]. 
 

 
Table 1: Structures and origins of antifreeze proteins 

 
Protein sequence Mr Protein structure 

Evolutionary 
precursor/homolog 

Fish antifreeze proteins 
 AFGP 
 
 Type I AFP 
 Type II AFP 
 Type III AFP 
 Type IV AFP 

 
3-residue repeats AAT-disaccharide 
 
1 1 -residue repeats Txx D/N xxxxxxx 
Non-repetitive 8% cysteine 
Non-repetitive Unbiased aa 
22.residue repeats 

 
2.7-34 kDa
 
3-5 kDa 
14-24 kDa 
7 kDa 
12.3 kDa 

Amphipathic Extended
polyproline II-type helix 
Amphipathic α-helix 
Globular 
Globular 
Single helix? 
4-helix bundle? 

Trypsinogen-type 
serine protease 
Unknown 
C-type lectin 
Unknown 
Apolipoprotein 

Insect antifreeze proteins 
 Beetle AFP 
Moth AFP 

 
12-, 13-residue repeats CTxSxxCxxAxTx
Non-repetitive Cys-, Thr-, Ser-rich 

 
9 kDa 
9 kDa 

Undetermined 
Undetermined 

Unknown 
Unknown 

 
4. Sub-classification of AFPs 
 
Type I AFPs are long, single α helices found in several close 
relatives of the longhorn sculpin (including the shorthorn 
sculpin, Myoxocephalusscorpius) and in the unrelated 
righteye flounders. They exist in solution as 3-5 kDa 
monomers and are unrelated to type IV AFPs. Their helicity 
can be attributed to a high content of alanine (60%), 
stabilizing N- and C-terminal cap structures [22] a 
reinforcement of the helix dipole by complementary charged 
groups at both termini, and internal salt bridges [23]. The 
main difference between the flounder and sculpin subtypes 
is that the former is built up of a clearly defined repeat of 11 

amino acids (TxxNxxxxxxx, where x is principally alanine, 
and N is sometimes aspartate or threonine [24], and the latter 
is non-repetitive and more amphipathic, with several lysine 
and arginine sidechains projecting from the same face of the 
helix. The two subtypes also bind to different planes of ice 
[25] and, if their high amino acid identity is attributed to the 
need for alanine for helix stabilization, there is some 
question whether the subtypes are in fact homologous. 
 
Interestingly, Gong et al. [26] have now discovered two 
subtypes within the winter flounder, 
Pleuronectesamericanus. The repetitive type is only 
expressed in the liver and is exported to the circulation by 
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be noted that insect antifreezes are considerably more active 
than those from fishes. At a concentration of 20 µ M, AFP 
from the spruce budworm Choristoneurafumiferana 
(CfAFP) has roughly four times the thermal hysteresis 
activity of a 400 µ M solution of type I AFP from winter 
flounder [46]. We suspect that this difference in species 
activity relates more to the ice crystal morphology than to 
the AFP’s affinity for ice. CfAFP produce a hexagonal ice 
crystal that bursts along the a-axes, whereas all fishAFPs 
shape ice into a hexagonal bipyramid that typically bursts 
out of the tips along the c-axis. We suggest that the tips of 
the hexagonal bipyramid are the weak spots for containment 
of growth of the crystal. Thus, ice crystal shape may account 
for the lower species activity of fish AFPs compared with 
insect AFPs. One explanation for the difference in ice crystal 
morphology is that we findCfAFP binds to the basal plane as 
well as the primary prism planes. This was demonstrated by 
ice etching studies [46]. 
 
8. Conclusion 
 
Various organisms inhabiting cold environments produce a 
certain type of protein in their bodies during winter. The 
proteins are known as antifreeze proteins (AFPs) or 
antifreeze glycoproteins (AFGPs). Thus far, these proteins 
have been found in various species of fish, insects, bacteria 
and plants (hereafter, AFPs and AFGPs are collectively 
referred to as AFPs). AFPs function as inhibitors of ice 
growth. Consequently, liquid water does not completely 
freeze if it contains dissolved AFPs, even at temperatures 
lower than the melting point Tm of ice. AFPs have received 
considerable attention with regards to freeze tolerance and 
freeze avoidance in organisms, food 
processing,cryopreservation and ice slurries. AFPs are of 
interest with respect to not only ice crystals, but also other 
types of crystals. For example, elucidating the mechanism 
whereby AFPs control ice growth might aid the 
understanding of the control of bio-mineral crystal growth 
by organic molecules, and might also be useful for 
developing crystal growth technologies such as crystal 
morphology engineering, as well as for designing novel 
composite materials. Waters of the southern ocean are so 
cold that temperate and tropical fish would freeze if they 
were placed in this environment. The presence of salt in sea 
water allows it to remain liquid until about -1.90C, almost 2 
degrees below the freezing temperature of freshwater. The 
antifreeze proteins, along with normal body salts, depress 
the freezing point of blood and body fluids to 2.50C, slightly 
below the freezing point of sea water. These proteins bind to 
and inhibit growth of ice crystals within body fluids through 
an absorption-inhibition process. The proteins attach to 
small ice crystals, stemming their growth. This mechanism 
that inhibits further growth of the ice crystal remains under 
study, but apparently Antarctic fish are able to survive with 
very small ice crystals present in their body fluids. 
 
There may be several commercial applications of these 
antifreeze proteins. These compounds are about 300 times 
more effective in preventing freezing than conventional 
chemical antifreezes at the same concentrations. The 
effectiveness of the fish antifreeze proteins in inhibiting ice 
growth suggests that they could be used to prevent freezing 
of food and freezing injury in several applications. For 

example, they could be used in the cryopreservation of 
foods that normally are rendered inedible due to ice crystal 
damage or to engineer cold resistance in living plants, as 
well as for the cryopreservation of tissues and organs. The 
study of the mechanism of how antifreezes bind to ice and 
inhibit its growth also provides insights into how other 
biomolecules affect growth of such pathogenic (harmful) 
bio-crystals as those associated with gout, kidney, and gall 
stones. Lastly, these proteins may have applications as non-
polluting de-icing agents. To date, NSF-funded investigators 
have successfully introduced two of the four different types 
of fish antifreeze proteins into yeast and bacteria through 
recombinant DNA technology. Using these cloned genes 
and molecular technology, researchers can produce large 
quantities of antifreeze proteins through large-scale 
fermentation. 
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10. Future scope of the study 
 
Antifreezing proteins play a very important role in 
protecting the fishes from freezing of their blood and it also 
helps in maintenance of normal homeostasis. So, further 
work is needed to identify proteins or compound which 
might be playing an important role in the survival of cold 
water fishes. 
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