
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Algorithms used for Updates in Streaming Data
Warehouses by Scalable Scheduling

Shraddha S. Deshpande1, S. A. Kinariwala2

1PG Student, Department of Computer Science and Engineering, Dr. BAMU University, Aurangabad, India

2Professor, Department of Computer Science and Engineering, Dr. BAMU University, Aurangabad, India

Abstract: This project includes jobs correspond to processes that load new data into tables, and whose objective is to minimize data
staleness over time. The proposed framework handles the complications encountered by a stream warehouse: view hierarchies and
priorities, data consistency, inability to preempt updates, heterogeneity of update jobs caused by different interarrival times and data
volumes among different sources, and transient overload. A novel feature of our framework is that scheduling decisions depend on the
effect of update jobs on data staleness.

Keywords: Data Stream Management Systems (DSMS), Update scheduling, warehouse maintenance, Data streaming, Scalable
scheduling.

1. Introduction

Data mining is the process by which accurate and previously
unknown information is extracted from large volumes of
data. This information should be in a form that can be
understood, acted upon, and used for improving decision
processes that can be used to increase revenue, cuts costs, or
both. Data mining software is one of a number of analytical
tools for analyzing data. It allows users to analyze data from
many different dimensions or angles, categorize it, and
summarize the relationships identified. Technically, data
mining is the process of finding correlations or patterns
among dozens of fields in large relational databases.
Traditional data warehouses are updated during downtimes
and store layers of complex materialized views over
terabytes of historical data. On the other hand, Data Stream
Management Systems (DSMS) support simple analyses on
recently arrived data in real time. Streaming warehouses
such as DataDepot [15] combine the features of these two
systems by maintaining a unified view of current and
historical data. Applications include:
 Online stock trading, where recent transactions generated

by multiple stock exchanges are compared against
historical trends in nearly real time to identify profit
opportunities;

 Credit card or telephone fraud detection, where streams of
point-of-sale transactions or call details are collected in
nearly real time and compared with past customer
behavior;

 Network data warehouses maintained by Internet Service
Providers (ISPs), which collect various system logs and
traffic summaries to monitor network performance and
detect network attacks.

The goal of a streaming warehouse is to propagate new data
across all the relevant tables and views as quickly as
possible. Once new data are loaded, the applications and
triggers defined on the warehouse can take immediate
action. This allows businesses to make decisions in nearly
real time, which may lead to increased profits, improved
customer satisfaction, and prevention of serious problems
that could develop if no action was taken. Recent work on

streaming warehouses has focused on speeding up the
Extract-Transform-Load (ETL) process.

Figure 1: Data warehousing with ETL Process

 There has also been work on supporting various warehouse
maintenance policies, such as immediate deferred and
periodic. There has been little work on choosing, of all the
tables that are now out-of-date due to the arrival of new
data, which one should update next. This is exactly the
problem we study in this paper. Instant view maintenance
appears to be a reasonable solution for a stream. Whenever
new data arrive, we instantly update the corresponding
“base” table T. after T has been updated; we activate the
updates of all the materialized views sourced from T,
followed by all the views defined over those views, and so
on. The problem with this approach is the new data may
arrive on multiple streams, but there is no mechanism for
restraining the number of tables that can be updated
simultaneously. Running too many parallel updates can
degrade performance due to memory and CPU-cache
thrashing, disk-arm thrashing, context switching etc.

Paper ID: 02015162 203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Scheduling metric: Many metrics have been considered in
the real-time scheduling literature. In a typical hard real time
system, jobs must be completed before their deadlines a
simple metric to understand and to prove results about. In a
firm real-time system, jobs can miss their deadlines, and if
they do, they are discarded. The performance metric in a
firm real-time system is the fraction of jobs that meet their
deadlines. However, a streaming warehouse must load all of
the data that arrive therefore no updates can be discarded. In
a soft real-time system, late jobs are allowed to stay in the
system, and the performance metric is lateness which is the
difference between the completion times of late jobs and
their deadlines. Instead, we will define a scheduling metric
in terms of data staleness, roughly defined as the difference
between the current time and the time stamp of the most
recent record in a table.
1. Data consistency: We want to ensure that each view

reflects a “consistent” state of its base data.
2. Hierarchies and priorities: A data warehouse stores

multiple layers of materialized views, e.g., a fact table of
fine grained performance statistics, the performance
statistics rolled up to a coarser granularity, the rolled-up
table joined with a summary of error reports, and so on.
Some views are more important than others and are
assigned higher priorities. For example, in the context of
network data, responding to error alerts is critical for
maintaining a reliable network, while loading
performance statistics is not. We also need to prioritize
tables that serves as sources to a large number of
materialized views. If such a table is updated, not only
does it reduce its own staleness, but it also leads to
updates of other tables.

3. Heterogeneity and nonpreemptibility: Different streams
may have widely different interarrival times and data
volumes. For example, a streaming feed may produce
data every minute, while a dump from an OLTP database
may arrive once per day. This kind of heterogeneity
makes real time scheduling difficult. One way to deal
with a heterogeneous workload is to allow preemptions.
However, data warehouse updates are difficult to
preempt for several reasons. For one, they use significant
non-CPU resources such as memory, disk I/Os, file
locks, and so on. Also, updates may involve complex
ETL processes, parts of which may be implemented
outside the database. Another solution is to schedule a
bounded number of update jobs in parallel. There are two
variants of parallel scheduling. In partitioned scheduling,
we cluster similar jobs together (e.g., with respect to
their expected running times) and assign dedicated
resources (e.g., CPUs and/or disks) to each cluster. In
global scheduling, multiple jobs can run at the same
time, but they use the same set of resources. Clustering
jobs according to their lengths can protect short jobs
from being blocked by long ones, but it is generally less
efficient than global scheduling since one partition may
have a queue of pending jobs while another partition is
idle. Furthermore, adding parallelism to scheduling
problems generally makes the problems more difficult;
tractable scheduling problems become intractable, real-
time guarantees loosen, and so on. The real-time
community has developed the notion of Pfair scheduling
for real-time scheduling on multiprocessors. However,
Pfair scheduling requires preemptible jobs.

4. Transient overload: Streaming warehouses are inherently
subject to overload in the same way that DSMSs are. For
example, in a network data warehouse, a network
problem will generally lead to a significantly increased
volume of data (system logs, alerts, etc.) flowing into the
warehouse. At the same time, the volume of queries will
increase as network managers attempt to understand and
deal with the event. However, all the data must be loaded
into a warehouse, so we cannot drop updates, just defer
their execution. During overload, a reasonable scheduler
defers the execution of update jobs corresponding to
low-priority tables in favor of high-priority jobs. When
the overload subsides and low-priority tables can finally
be scheduled, they may have accumulated a large amount
of work (i.e., multiple “chunks” of new data may have
arrived). As a result, these low-priority jobs become
long-running and may now starve incoming high-priority
updates.

2. Literature Survey

2.1 Soft Real-Time Database System

The Proposed efficiently export a materialized view but to
knowledge none have studied how to efficiently import one.
To install a stream of updates, a real-time database system
must process new updates in a timely fashion to keep the
database fresh, but at the same time must process
transactions and meet their time Constraints. Various
properties of updates and views that affects this trade-off.
Examining through simulation, four algorithms for
scheduling transactions and installing updates in a soft real
time database.[2]

2.2 Multiple View Consistency for Data Warehouse

The proposed data warehouse stores integrated information
from multiple distributed data sources. In effect, the
warehouse stores materialized views over the source data.
The problem of ensuring data consistency at the warehouse
can be divided into two components: ensuring that each
view reflects a consistent stare of the base data, and ensuring
that multiple views are mutually consistent. Guarantying
multiple view consistency (MVC) and identify and define
formally three layers of consistency for materialized views
in a distributed environment.[3]

2.3 Synchronizing a Database to Improve Freshness

The proposed a method to refresh a local copy of an
autonomous data source to maintain the copy up-to-date. As
the size of the data grows, difficult to maintain the fresh
copy making it crucial to synchronize the copy electively.
Two fresh Metrics, such as change models of the underlying
data and synchronization policies.[4]

2.4 Operator Scheduling For Memory

The proposed many applications involving continuous data
streams, data arrival are busty and data rate fluctuates over
time. Systems that seek to give rapid or real-time query
responses in such an environment must be prepared to deal
gracefully with bursts in data arrival without compromising

Paper ID: 02015162 204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

system performance. Strategies for processing burst streams
adaptive, load-aware scheduling of query operators to
minimize resource consumption during times of peak load.
Chain scheduling, an operator scheduling strategy for data
stream systems that is near-optimal in minimizing run-time
memory usage for any collection of single stream queries
involving selections, projections, and foreign-key joins with
stored relations. Chain scheduling also performs well for
queries with sliding-window joins over multiple streams,
and multiple queries of the above types.[5]

a) Existing System Model

The existing system that is traditional datawarehouse
does not support the accuracy in data warehouse
maintenance. The system does not support to make
decisions in real time . This system is not suitable for
online scheduling problem. Because it does not allow to
take immediate decisions. The problem with this system
approach is that new data may arrive on multiple
streams, but there is no mechanism for limiting the
number of tables that can be updated simultaneously.

b) Proposed System Model

A streaming data warehouse. Each data stream is
generated by an external source, with a batch of new
data, consisting of one or more records, being pushed to
the warehouse with period Pi[1]. If the period of a stream
is unknown or unpredictable, we let the user choose a
period with which the warehouse should check for new
data. Examples of streams collected by an Internet
Service Provider include router performance statistics
such as CPU usage, system logs, routing table updates,
link layer alerts, etc. An important property of the data
streams in our motivating applications is that they are
append-only, i.e., existing records are never modified or
deleted. For example, a stream of average router CPU
utilization measurement may consist of records with
fields, and a new data file with updated CPU
measurement for each router may arrive at the warehouse
every 5 minutes. Warehouse Consistency Following the
previous work on data warehousing, we want derived
tables to reflect the state of their sources as of some point
in time[9]. Suppose that D is derived from T1 and T2,
which were last updated at times 10:00 and 10:05,
respectively as shown in figure 2. If T1 and T2 incur
arbitrary insertions, modifications, and deletions, it may
not be possible to update D such that it is consistent with
T1 and T2 as of some point in time, say, 10.00.However,
tables in a streaming warehouse are not “snapshots” of
the current state of the data, but rather they collect all the
(append-only) data that have arrived over time. Since the
data are append-only, each record has exactly one
“version.” For now, suppose that data arrive in time
stamp order. We can extract the state of T2 as of time
10:00 by selecting records with time stamps up to and
including 10:00. Using these records, we can update D
such that it is consistent with T1 and T2 as of time 10:00.

Figure 2: Streaming Data Warehouse

Figure2 shows T1 and T2 are Base Tables, Derived table has
been created from based tables namely T3 and again created
another derived table T4 created from table T3. Data
Staleness we illustrate the staleness as a function of time for
a base table Ti. Suppose that the first batch of new data
arrives at time 4. Assume that this batch contains records
with time stamps up to time 3.Staleness accrues linearly
until the completion of the first update job at time 5. At that
time, Ti has all the data up to time 3, and therefore its
staleness drops to 2.

3. Scheduling Model

3.1.1 Prioritized EDF (EDF-P)
In this technique jobs are ordered by their assigning
priorities and ties are breaking by deadline. We estimate the
deadline ri +Pi where ri is the last time Ti’s freshness delta
changed from zero to nonzero, Pi is period of derived table.

3.1.2 Max benefit
 In this context, the benefit of executing a job Ji may be
defined as piΔFi, i.e., its priority weighted freshness delta
(decrease in staleness). Similarly, the marginal benefit of
executing Ji is its benefit per unit of execution time: piΔ
Fi/EΔ(Fi). A natural online greedy heuristic is to order the
jobs by the marginal benefit of executing them. We will
refer to this heuristic as Max Benefit. Since marginal benefit
does not depend on the period, we can use Max Benefit for
periodic and a periodic update jobs. one may argue that Max
Benefit ignores useful information about the release times of
future jobs. This algorithm is used to minimize the weighted
staleness.

3.1.3 EDF-Partitioned
This algorithm assigns jobs to tracks such that each track
has a feasible nonpreemptive EDF schedule. A feasible
schedule means that if the local scheduler were to use the
EDF algorithm to decide which job to schedule next, all jobs
would meet their deadlines.

3.1.4 Proportional Partitioning Strategy
In this algorithm, clusters of similar jobs are indentified and
choosing a small value of k may create many small clusters
of jobs whose execution times and periods are similar; as
with the EDF-partitioned algorithm, if any tracks are left
over, they are free tracks. In this case the scheduling
algorithm will need to share the track among the clusters.

Paper ID: 02015162 205

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The Proportional strategy uses the following scheduling
algorithm:
1. Sort the released jobs using the local algorithm.
2. For each job Ji in sorted order,

a) Let j be the cluster of Ji.
b) If a track between track_lo[j]+1..track_hi[j] is

available, schedule Ji on that track.
c) Else, if track track_lo[j] is available, schedule Ji on that

track.
d) Else, if a free track is available, schedule Ji on that

track.
e) Else, if there is an available track r numbered between0

and track_ lo[j]- 1 such that there is no released job
remaining in the sorted list that would be scheduled on
r, schedule Ji on r.

f) Else, delay the execution of Ji.

3.1.5 Round Robin
Each job is assigned a time interval, called its quantum,
which is allowed to run. If the job is still running at the end
of quantum, the CPU is preempted and given to another job.
If the job has blocked or finished before the quantum has
elapsed, the CPU switching is done. Of course, round robin
is easy to implement.

4. Conclusion

We solved the problem of non preemptively scheduling
updates in a real-time streaming warehouse. We projected
the notion of averages staleness as a scheduling metric and
presented various scheduling algorithms such as max
benefit, round robin, EDF-P, EDF-Partitioned, proportional
partitioning designed to handle complex environment of a
streaming data warehouse. We then proposed a scheduling
framework that assigns jobs to processing tracks and also
uses the basic algorithms to schedule jobs within a track.
The main feature of framework is the ability to reserve
resources for short jobs that often correspond to important
frequently refreshed tables, while avoiding the inefficiencies
associated with partitioned scheduling techniques.

5. Acknowledgement

The authors express gratitude to Principal, Head of
Department (CSE) Dr. Radhakrishna Naik. Marathwada
Institute of Technology College of Engineering,
Aurangabad, and Maharashtra India. They also express their
sincere thanks all the faculty members of CSE Department
MIT College of Engineering, Aurangabad, and Maharashtra,
India for their constant support and enthusiasm.

References

[1] Lukas Golab, Theodore Johnson, and Vladislav

Shkapenyuk,” Scalable Scheduling of Updates in
Streaming Data Warehouses”, IEEE Transactions On
KDE, Vol/24, No.6, June2012.

[2] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying
Update Streams in a Soft Real-Time Database System,”
Proc.ACM SIGMOD Int’l Conf. Management of Data,
pp. 245-256,1995.

[3] Y. Huge, J. Wiener, and H. Garcia-Molina, “Multiple
View Consistency for Data Warehousing,” Proc. IEEE
13th Int’l Conf. Data Eng. (ICDE), pp. 289-300, 1986.

[4] J. Cho and H. Garcia-Molina, “Synchronizing a Database
to Improve Freshness,” Proc. ACMSIGMOD Int’l Conf.
Management of Data, pp.117-128, 2000.

[5] B.Babcock, S.Babu, M.Datar, and R.Motwani, “Chain:
Operator Scheduling for Memory Minimization in Data
Stream Systems,” Proc.ACM SIGMOD Int’l Conf.
Management of Data, pp. 253- 264, 2003.

[6] Bolla Saikiran, Kolla Morarjee, “An Efficient Algorithm
for Update Scheduling in Streaming Data Warehouses”
(IJCSIT) International Journal of Computer Science and
Information Technologies, Vol. 5 (2) ,pp. 1082-
1085,2014.

Author Profile

Shraddha S. Deshpande received the B.E degree in
computer Science from P.E.S. College of Engineering
from Aurangabad in 2010, at present appearing for
M.E degree in Computer Science and Engineering

department at Marathwada Institute of Technology, Aurangabad.
Her research interest in Algorithms used for updates in streaming
data warehouses by scalable scheduling.

Paper ID: 02015162 206

