
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Graph-based Attack Detection in Cloud using KDD
CUP 99 Dataset

Swapnali G. Game1, S. B. Natikar2

1, 2Department of Computer Engineering, VACOE, Ahmednagar, University of Pune, India

Abstract: In the area of research and development effort for cloud computing, Cloud security is considered as one of challenging
issues. Most commonly faced attacks are Distributed Denial-of-Service (DDoS) attacks. DDoS attacks are variation of DOS attack at
distributed and large-scale level. Firstly attacker tries to discover the vulnerabilities or we can say loopholes of a cloud system and takes
control over the virtual machines. And then gets success in deploying DDoS at large scale. Such attacks includes certain actions at
initial stage such as exploitation in multiple steps, scanning for uncommon or less occurring vulnerabilities, identified vulnerabilities
are utilized against virtual machines to use them as zombies and finally DDOS is achieved through these compromised zombies. To
avoid vulnerable virtual machines from being compromised in the cloud system, proposed approach uses multiphase vulnerability
detection at distributed level, measurement, countermeasure selection mechanism called as NICE, which is based on attack graph based
models and reconfigurable virtual network based countermeasures. Use of standard dataset KDD Cup 99 dataset helps to cover most of
the types of intrusion signatures and features. There is a need of processing encrypted traffic also together with plain traffic flowing
through the cloud system. As included in the proposed system, host-based intrusion detection system implementation gives more benefits
as compare to NIDS based implementation.

Keywords: DDos, IDS, Attack Graph, KDD Cup 99 Dataset, Zombie

1. Introduction

Recent studies have shown that users migrating to the cloud
consider security as the most important factor. A recent
Cloud Security Alliance (CSA) survey shows that among all
security issues, abuse and nefarious use of cloud computing
is considered as the top security threat [2], in which
attackers can exploit vulnerabilities in clouds and utilize
cloud system resources to deploy attacks. In traditional data
centers, where system administrators have full control over
the host machines, vulnerabilities can be detected and
patched by the system administrator in a centralized manner.
However, patching known security holes in cloud data
centers, where cloud users usually have the privilege to
control software installed on their managed VMs, may not
work effectively and can violate the service level agreement
(SLA). Furthermore, cloud users can install vulnerable
software on their VMs, which essentially contributes to
loopholes in cloud security. The challenge is to establish an
effective vulnerability/attack detection and response system
for accurately identifying attacks and minimizing the impact
of security breach to cloud users.

The aim of Intrusion Detection is Detecting and reacting to
an attack. But the current solution by IDS as well as firewall
does not work very well in real life. For any IDS
implementations the large volume of raw alerts from IDS
and false alarms are two major problems. For signature-
based IDSs (one of the method of IDS) there will be gag
between a new threat discovery and its signature being used
by the IDS. But in meanwhile the IDS will be unable to
identify the threat whose signature is not available with
current IDS.

It is usual practice to implement a firewall or a security
policy, but experience has shown IDS and firewall both as
alone are dramatically insufficient as we can see the current
security scenarios in IT world.

2. Literature Survey

Now we discuss literatures of several highly related research
areas to IDS, Zombie detection and prevention techniques,
their drawbacks.

A considerable amount of research has been done towards
detecting malicious behavior. Here different methods and
techniques are discussed. Detecting malicious behavior has
been well explored by Z. Duan, P. Chen, F. Sanchez, Y.
Dong, M. Stephenson, and J. Barker [3] discuss detection of
compromised machines that have been chosen to serve as
spam zombies. Their approach called as SPOT, is based on
sequentially scanning outgoing messages while employing a
statistical method Sequential Probability Ratio Test (SPRT),
to quickly determine whether a host has been compromised
or not. Antonio Bianchi, Yan Shoshitaishvili, Christopher
Kruegel, Giovanni Vigna [4] detect compromised machines
by comparing images of physical memory taken from
similar machines to identify differences associated with
rootkit infections. G. Gu, P. Porras, V. Yegneswaran, M.
Fong, and W. Lee [5] detect compromised machines through
malware infection process which has a number of well-
defined stages that allow correlating the intrusion alarms
triggered by inbound traffic with resulting outgoing
communication patterns. G. Gu, J. Zhang, and W. Lee [6]
first exploit uniform spatial-temporal behavior
characteristics of compromised machines and then detect
zombies by grouping flows by considering server
connections and searching for similar behavior in the flow.

Each path in an attack graph is a series of exploits or actions
that leads to an undesirable state. We can say an undesirable
state is a state where the intruder has obtained administrative
access to a critical host. Firstly, scanning tools determine
vulnerabilities of individual hosts. Then the analyst produces
an attack graph using local vulnerability information along
with other information about the network like connectivity
between hosts [7]. There are many automation tools are

Paper ID: 02015161 511

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

available to construct attack graph. O. Sheyner, J. Haines, S.
Jha, R. Lippmann, and J.M. Wing [8] constructs attack graph
using a technique based on Binary Decision Diagrams
(BDDs) and modified symbolic model checking NuSMV
[9]. Although their model can generate all possible attack
paths, the scalability is a big issue for their solution. P.
Ammann, D. Wijesekera, and S. Kaushik [10] considered
the assumption of monotonicity, which explains that the
precondition of a given exploit is never invalidated by the
successful application of another exploit. It means attackers
never need to backtrack. With this assumption, it becomes
possible to obtain a scalable and concise graph
representation for encoding attack tree. X. Ou, S.
Govindavajhala, and A.W. Appel [11] present MulVAL
(Multihost, multistage Vulnerability Analysis), a framework
for modelling the interaction of software bugs with system
and network configurations. MulVAL uses Datalog as its
modelling language. MulVAL comprises a scanner which
tests a machine for vulnerable software. MulVAL aims at
detecting potential attack paths before an attack happens.
But to provide the security assessment and alert correlation
features it is possible to modify and extend MulVAL’s
attack graph structure [1]. Kyle Ingols, Matthew Chu,
Richard Lippmann, Seth Webster, Stephen Boyer [12]
describe substantial enhancements to the NetSPA attack
graph system required to model additional present-day
threats and countermeasures like host-based vulnerability
scans, intrusion prevention systems, proxy firewalls and
personal firewalls.

The aim of Intrusion Detection is Detecting and reacting to
an attack. But the current solution by IDS as well as firewall
does not work very well in real life. For any IDS
implementations the large volume of raw alerts from IDS
and false alarms are two major problems. For signature-
based IDSs (one of the method of IDS) there will be gag
between a new threat discovery and its signature being used
by the IDS. But in meanwhile the IDS will be unable to
identify the threat whose signature is not available with
current IDS. Alert correction tool plays an important role in
identify the source or target of the intrusion in the network
and also specially to detect multistep attack.

Many attack graph-based alert correlation techniques have
been proposed recently. S. Roschke, F. Cheng, and C.
Meinel [13] proposed an AG based correlation algorithm
that overcomes the limitations in applying the nested loop-
based correlation methods and proposed a QG called queue
graph approach to remove this limitation. The algorithm is
able to identify multiple attack scenarios of the same
anatomy by using an attack graph. Once any exploit is
examined QG is used to trace alerts matching each exploit in
the attack graph. But the algorithm needs some computing
power to consume and algorithm needs to be tested using
larger data sets. L. Wang, A. Liu, and S. Jajodia [14] extend
the basic QG approach to a unified method to hypothesize
missing alerts and to predict future alerts and propose a
compact representation for the result of alert correlation. But
the limitations of this method are overcome in [13].

Once the possible attack scenarios are known, selecting and
then applying countermeasure is the next important step.
Selecting optimal countermeasures depends on attack path

and cost benefit analysis so that final solution cost can be
optimal as much as possible. N. Poolsappasit, R. Dewri, and
I. Ray [15] proposed a Bayesian attack graph (BAG) model
of the network which enables to better understand the causal
relationships between pre-conditions, vulnerability
exploitations, and post-conditions. They proposed a genetic
algorithm capable of performing both single and multi-
objective optimization of the system administrator’s
objectives. Using a BAG, the system administrator performs
risk assessment and risk mitigation and uses genetic
algorithm for giving solution to the countermeasure
optimization problem. A. Roy, D.S. Kim, and K. Trivedi
[16] proposed an attack countermeasure tree (ACT) which is
considering both attacks and its countermeasures. They used
greedy and branch and bound techniques to minimizing the
number of countermeasures. This approach aims for
minimizing security investment cost and maximizing the
benefit from implementing a certain countermeasure set in
the ACT.

In implemented system, while implementing the protection
model, we are having both the options host-based IDS or
network-based IDS. HIDS is appropriate for protecting an
individual computer systems and the information it contains
as the name itself indicates. However it doesn’t provide data
security on the network as a whole. Also the security
systems take on considerable processing resource of the host
like RAM, CPU and storage. NIDS monitor and analyze
network traffics on a designated network segment. It can be
categorized as knowledge or behavior based. But for
knowledge based NIDS, system can generate few false
positives, good packets are labelled as bad packets and
transmission could be interrupted due to poorly defined
signature one more important thing to consider is NIDS is
unable to stop encrypted packets of system attack from
intruders. To overcome the limitations of HIDS or NIDS, it
is possible to combine the strength of both systems by
forming hybrid systems that is HIDS. But we need to work
for reducing false alarms and the large volume of raw alerts
generated by IDS system. So, as per need NICE is
implemented with host based IDS.

Multiple tools are available in the market for handling
functions of constructing attack graphs, updating attack
graphs, selecting optimal cost countermeasures then finally
applying selected countermeasures successfully by reducing
overall solution cost.

There are plenty of IDS tools available in the market, for
example SNORT & BRO are popular IDS systems available
in the market. But Bro is the suitable IDS system for users
those are UNIX experts. It plays supporting role to the main
IDS system. Bro is a good choice if user wants to customize
IDS according to his/her network. As compared to Snort Bro
is more effective for Gbps networks. For high speed
networks snort is a good choice. Snort mainly focuses on
simplicity and performance accuracy. This is the main plus
point which makes the snort best choice to run on any
operating system. But main parameter of comparison is false
alarm rate which significantly affect the overall system
performance.

Paper ID: 02015161 512

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Design Overview

The implemented NICE framework is illustrated in figure 1.
It shows the NICE framework within one cloud server
cluster. Major components in this framework are distributed
and light-weighted NICE-A on each physical cloud server, a
network controller, a VM profiling server, and an attack
analyzer. The latter three components are located in a
centralized control center connected to software switches on
each cloud server (i.e., virtual switches built on one or
multiple Linux software bridges).

NICE-A is a software agent implemented in each cloud
server connected to the control center through a dedicated
and isolated secure channel, which is separated from the
normal data packets using OpenFlow tunneling or VLAN
approaches. The network controller is responsible for
deploying attack countermeasures based on decisions made
by the attack analyzer.

In the following description, terminologies are based on the
XEN virtualization technology. NICE-A is a network
intrusion detection engine that can be installed in either
Dom0 or DomU of a XEN cloud server to capture and filter
malicious traffic. Intrusion detection alerts are sent to
control center when suspicious or anomalous traffic is
detected. After receiving an alert, attack analyzer evaluates
the severity of the alert based on the attack graph, decides
what countermeasure strategies to take, and then initiates it
through the network controller. An attack graph is
established according to the vulnerability information
derived from both offline and real-time vulnerability scans.
Offline scanning can be done by running penetration tests
and online real-time vulnerability scanning can be triggered
by the network controller (e.g., when new ports are opened
and identified by OFSs) or when new alerts are generated by
the NICE-A. Once new vulnerabilities are discovered or
countermeasures are deployed, the attack graph will be
reconstructed. Countermeasures are initiated by the attack
analyzer based on the evaluation results from the cost-
benefit analysis of the effectiveness of countermeasures.
Then, the network controller initiates countermeasure
actions by reconfiguring virtual or physical OFSs.

Since the attack graph provides details of all known
vulnerabilities in the system and the connectivity info, we
get an entire picture of current security situation of the
system, where we can guess the likely extortions and attacks
by correlating detected events or actions. If an incident is
recognized as a possible attack, we can apply precise
countermeasures to moderate its impact or take actions to
prevent it from contaminating the cloud system. To signify
the attack and the consequence of such activities, we
extended the scheme of MulVAL logic attack graph as

presented by X. Ou, S. Govindavajhala, and A.W. Appel
[11] and define as Scenario Attack Graph (SAG).
Definition: SAG: An SAG is a tuple SAG = (V, E), where
1) V = NC U ND U NR denotes a set of vertices that

include three types namely conjunction node NC to
denote exploit, dislocation node ND to denote outcome
of exploit, and root node NR for viewing initial step of
an attack scenario.

2) E = Epre U Epost denotes the set of directed edges. An
edge e € Epre ND × NC represents that ND must be
satisfied to achieve NC. An edge e € Epost NC × ND
means that the consequence shown by ND can be
obtained if NC is satisfied.
Node vc € NC is defined as a three tuple (Hosts, vul,
alert) representing a set of IP addresses, vulnerability
information such as CVE [18], and alerts related to vc,
respectively. ND behaves like a logical OR operation and
contains details of the results of actions. NR represents
the root node of the SAG.
For correlating the alerts, we have referred to the
approach described in [13] and defined a new Alert
Correlation Graph (ACG) to map alerts in ACG to their
respective nodes in SAG. To retain track of attack
growth, we track the source and destination IP addresses
for attack activities.

Definition: ACG: An ACG is a three tuple ACG = (A, E, P),
where
1) A is a set of aggregated alerts. An alert from set A, a € A

is a data structure (src, dst, cls, ts) representing first
source IP address, second destination IP address, third
type of the alert that is generated, and lastly time stamp
of the alert respectively.

2) Each alert a maps to a pair of vertices (vc, vd) in SAG
using map(a) function, i.e., map(a) : a →{(vc, vd) | (a.src
€ vc.Hosts) ^ (a.dst € vd.Hosts) ^ (a.cls = vc.vul)}.

3) E is a set of directed edges representing correlation
between two alerts (a, a’) if criteria below satisfied:
a. (a.ts < a’.ts) ^ (a’.ts – a.ts < threshold).
b. ᴲ(vd, vc) € Epre: (a.dst € vd.Hosts ^ a’.src € vc.Hosts).

4) P is set of paths in ACG. A path Si i.e. subset of P is a
set of related alerts in chronological order.

It is assumed that A contains aggregated alerts rather than
the raw alerts. Raw alerts having identical destination and
source IP addresses, time stamp within a specified window
and attack type are aggregated as Meta Alerts. Each ordered
pair (a, a’) in ACG maps to two neighbor vertices in SAG
with time stamp difference of two alerts within a predefined
threshold values. ACG demonstrations dependency of alerts
in consecutive order and we can find related alerts in the
same attack scenario by searching the alert path in Attack
Correlation Graph. A set P is mainly used to store all paths
from root alert node to the target alert node in the SAG, and
each path Si i.e. subset of P represents alerts that belong to
the same attack scenario.

Paper ID: 02015161 513

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Proposed NICE (RB-A) Architecture

4. System Components

A. RB-A or NICE-A

The NICE-A is a Network-based Intrusion Detection
System (NIDS) agent (also called as Request Broker-
Agent) installed in either Dom0 or DomU in each cloud
server. Main task handled by it is, it scans the traffic
passing through Linux bridges that regulate all the traffic
among VMs and in as well as out from the physical cloud
servers. In the implemented system, to implement NICE-
A in Dom0, Snort is used.

B. VM Profiling
Virtual machines in the cloud can be profiled to get
precise information related to their state, open ports,
services running, and so on. One key factor that counts
toward a VM profile is its connectivity with other virtual
machines. Also required is the knowledge of services
running on a VM so as to verify the authenticity of alerts
related to that VM. Port-scanning program can be used
by an attacker to perform detail inspection of the network
to find open ports on any VM. Information about any
open ports on a VM and the history of ports those are
opened plays important role in determining how
vulnerable the VM is. By combining all these factors will
form the VM profile.

C. Attack Analyzer
The key functions of NICE system are done by attack
analyzer, including procedures such as attack graph
construction and update, alert correlation, and
countermeasure selection. The process of constructing
and utilizing the SAG consists of three phases: 1.
Information gathering, 2. Attack graph construction, and
3. potential exploit path analysis. By using this
information, attack paths can be demonstrated using
SAG. Each node in the attack graph represents an exploit
by an attacker. Every single path from an initial node to a
goal node denotes a successful attack. The attack
analyzer also handles alert correlation and analysis
operations. It is having two main functions: 1. Constructs
ACG, 2. Provides threat information and appropriate
countermeasures to network controller for virtual
network reconfiguration.

D. Network Controller
Network controller is also responsible for applying the
countermeasure from attack analyzer. Countermeasures
are selected by NICE based on severity of an alert and
VM Security Index (VSI), and executed by the network
controller. In case of a severe alert is generated and finds
some known attacks, or a VM is noticed as a zombie, the
network controller will block the VM immediately.

E. KDD Cup 99 dataset
A well-known data mining competition called KDD Cup
is the annual ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD cup set is
the data set used 1999 KDD intrusion detection contest.
This dataset is defined by Stolfo et al. and is designed
based on the data captured in 1998 DARPA Intrusion
Detection Evaluation Program by MIT Lincoln Labs
called as DARPA’98. DARPA’98 is 4 gigabytes of
compressed raw tcpdump data of duration of 7 weeks of
network traffic, which can be processed into about 5
million connection records, each with near about 100 of
bytes. KDD training dataset consists of around 4,900,000
single connection vectors (record) where each of which
contains 41 features (column) and is labeled as either
normal or an attack, with exactly one specific attack type
[17].

5. Result Analysis

We evaluate system performance to provide guidance on
how much traffic NICE can handle for one cloud server and
use the evaluation metric to scale up to a large cloud system.
To demonstrate the feasibility of the implemented work,
comparative studies were conducted with several parameters
like bandwidth utilization, no. of packets used, time required
to handle no. of packets etc.

We are also considering system performance in both traffic
capturing mechanism mirror-based traffic capturing
mechanism and proxy based traffic capturing mechanism.
Again true positive and false positive probability in both
type of traffic capturing mechanism is also considered.

Paper ID: 02015161 514

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

For evaluating the NICE system’s performance we have
tested the system with the help of five nodes and according
to their response we got the following graphs of result or
performance analysis.

Probability of True positive and False positive alert
detection in NICE, Mirror-based and Proxy-based traffic
capturing mechanisms

First we see what is TP and FP,

 True positive (TP): The amount of attack detected
when it is actually attack.

 False positive (FP): The amount of attack detected
when it is actually normal called as false alarm.

In this scenario X-axis shoes the no. of packets and Y-axis
shows the detection rate of intrusions then it may False
positive (FP) or True positive (TP).

After observing the following graphs, we can say that the
performance of the NICE system as compare to remaining
two approaches is good. Because probability of TP get
increases as the no. of packets get increased.

Figure 2: TP and FP detection rate vs no. of Packets in

mirror-based approach

Figure 3: TP and FP detection rate vs no. of Packets in

proxy-based approach

Figure 4: TP and FP detection rate vs no. of Packets in

NICE

6. Conclusion

NICE is mainly implemented to detect and mitigate
collaborative attacks in the cloud virtual networking
operating environment. NICE uses the attack graph model to
perform attack detection and prediction. By adding the
concept of honeypot it tried to prevent the attacks before
actually it happens. NICE has used KDD Cup 99 standard
dataset of intrusions and developed its own KDD format
through which it can read the data extracted from standard
dataset files. To improve the detection accuracy and to cover
the whole spectrum of IDS in the cloud system, NICE has
incorporated host-based IDS solutions. For KDD extraction
process and storing purpose NICE has used MySQL, which
reduces the overall processing time for the dataset. The
system performance evaluation demonstrates the feasibility
of NICE and implemented solution can considerably
moderate the risk of the cloud system from being exploited
and misused by internal and external attackers.

7. Future Enhancement

As in the fastest growing IT world none of the system we
can say is the 100 percent secure. Means every security
system newly developed, one day definitely it will not be
enough to fight with new security challenges and attacks.
So, we can test implemented system with the help of more
no. of security algorithms. NICE has used KDD Cup 99
Dataset which is inherited form DAPRA. So the
implemented work can be extended with the direct use of
DAPRA. But it’s really a challenging job of handing such a
huge amount of data. Also by incorporating concept of
attaching mobile agent, it is possible to improve the
intrusion detection probability and accuracy efficiently.
Because of the use of mobile agent, black list present on one
node can be easily be circulated to remaining nodes in the
system. So that they will get intimated in advance before
dealing with actual intrusion.

References

[1] Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing,

Jeongkeun Lee, Dijiang Huang, “NICE: Network
Intrusion Detection and Countermeasure Selection in
Virtual Network Systems”, IEEE transactions on
dependable and secure computing, vol. 10, no. 4,
July/August 2013.

[2] Cloud Security Alliance, “Top Threats to Cloud
Computing v1.0,”
https://cloudsecurityalliance.org/topthreats/csathreats.
v1.0.pdf, Mar. 2010.

[3] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson,
and J. Barker, Detecting Spam Zombies by Monitoring
Outgoing Messages,IEEE Trans. Dependable and
Secure Computing, vol. 9, no. 2, pp. 198-210, Apr.
2012.

[4] Antonio Bianchi, Yan Shoshitaishvili, Christopher
Kruegel, Giovanni Vigna, Blacksheep: Detecting
Compromised Hosts in Homogeneous Crowds, CCS’12,
October 16–18, 2012, Raleigh, North Carolina, USA.

[5] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W.
Lee,BotHunter: Detecting Malware Infection through

Paper ID: 02015161 515

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

IDS-driven Dialog Correlation,Proc. 16th USENIX
Security Symp. (SS '07), pp. 12:1-12:16, Aug. 2007.

[6] G. Gu, J. Zhang, and W. Lee,BotSni_er: Detecting
Botnet Command and Control Channels in Network
Tra_c,Proc. 15th Ann. Network and Distributed System
Security Symp. (NDSS '08), Feb. 2008.

[7] Oleg Sheyner, JeannetteWing, F.S. de Boer et al. (Eds.):
FMCO 2003, LNCS 3188, pp. 344–371, 2004.

[8] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M.
Wing, Automated Generation and Analysis of Attack
Graphs, Proc. IEEE Symp. Security and Privacy, pp.
273-284, 2002.

[9] NuSMV: A New Symbolic Model
Checker,http://afrodite.itc. it:1024/nusmv. Aug. 2012.

[10] P. Ammann, D. Wijesekera, and S. Kaushik, Scalable,
graphbased network vulnerability analysis, Proc. 9th
ACM Conf. Computer and Comm. Security (CCS '02),
pp. 217-224, 2002.

[11] X. Ou, S. Govindavajhala, and A.W. Appel, MulVAL:
A Logic- Based Network Security Analyzer, Proc. 14th
USENIX Security Symp., pp. 113-128, 2005.

[12] Kyle Ingols, Matthew Chu, Richard Lippmann, Seth
Webster, Stephen Boyer, Modeling Modern Network
Attacks and Countermeasures Using Attack Graphs

[13] S. Roschke, F. Cheng, and C. Meinel,A New Alert
Correlation Algorithm Based on Attack Graph, Proc.
Fourth Int'l Conf. Computational Intelligence in
Security for Information Systems, pp. 58-67, 2011.

[14] L. Wang, A. Liu, and S. Jajodia, Using Attack Graphs
for Correlating, Hypothesizing, and Predicting Intrusion
Alerts, Computer Comm., vol. 29, no. 15, pp. 2917-
2933, Sept. 2006.

[15] N. Poolsappasit, R. Dewri, and I. Ray, Dynamic
Security Risk Management Using Bayesian Attack
Graphs, IEEE Trans. Dependable and Secure
Computing, vol. 9, no. 1, pp. 61-74, Feb. 2012.

[16] A. Roy, D.S. Kim, and K. Trivedi,Scalable Optimal
Countermeasure Selection Using Implicit Enumeration
on Attack Countermeasure Trees,Proc. IEEE Int'l Conf.
Dependable Systems Networks (DSN '12), June 2012.

[17] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali
A. Ghorbani “A Detailed Analysis of the KDD CUP 99
Data Set”, Proceedings of the 2009 IEEE Symposium
on Computational Intelligence in security and Defense
Applications (CISDA 2009).

[18] Mitre Corporation, “Common Vulnerabilities and
Exposures, CVE,” http://cve.mitre.org/, 2012.

Paper ID: 02015161 516

