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Abstract: The MHD turbulent flow past a porous vertical plate is solved using FTCS finite difference method. Turbulence is treated 
using Prandtl’s mixed lengths theorem. Factored into the model are mass transfer, Hall currents and Joule’s heating. All these factors 
are found to have a profound effect on the primary and secondary velocity profiles, temperature profiles and concentration profiles. 
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1. Introduction 
 
While electromagnetism majorly deals with conducting 
solids, the study of the flow of conducting fluids defines a 
different field called magnetohydrodynamics (MHD). Such 
flows are important in that they find applications in MHD 
generators, liquid metal levitation and as a basis for plasma 
studies. 
 
The study of MHD can be traced back to Faraday’s 
experiment to determine the current generated by the flow of 
River Thames in the earth’s magnetic field. It was the effort 
of Prandtl [1] that unified the engineering fluid dynamics 
experiments and the theory by introducing the boundary 
layer theory. Hartmann [2] then engineered the Hartmann 
pump and described the theory of mercury dynamics. The 
desire to understand the sustenance of the geomagnetic field 
led to the development of more theories. However, it was 
Alfven’s [3] frozen field theory that revolutionized the study 
of MHD. 
 
Later, Hasimoto [4] studied boundary layer growth on a flat 
plate with uniform suction or injection. Following this Gupta 
and Soundalgekar [5] studied the hydromagnetic flow and 
heat transfer in an infinite plate past a rotating porous wall. 
Then Mansuti et al [6] discussed the steady flow of a non–
Newtonian fluid past a porous plate with suction or injection. 
Kinyanjui et al [7] followed this with the study of the 
Stoke’s problem of convective flow from a vertical infinite 
plate in a rotating fluid. Sharma and Pareek [8] then 
explained the behaviour of steady free convective MHD flow 
past a vertical porous moving surface. Kwanza et al [9] 
analyzed MHD Stokes free convection flow past an infinite 
vertical porous plate subjected to constant heat flux with ion 
slip current and radiation absorption. Following these, 
Makinde et al [10] discussed the unsteady free convective 
flow with suction on an accelerating porous plate. Chaudhary 
[11] carried out studies on combined heat and mass transfer 
effects on MHD free convection flow past an oscillating 
plate imbedded in porous medium. Das et al [12] followed 

this up with a numerical investigation of the unsteady free 
convective flow past an accelerated vertical porous plate 
with suction and heat flux. Then Ghosh and Ghosh [13] 
studied the hydromagnetic rotating flow of a dusty fluid near 
a pulsating plate with several limiting case studies. Das et al 
[14] followed up their earlier work by studying the mass 
transfer effects on unsteady hydromagnetic convective flow 
past a vertical porous plate in a porous medium with heat 
source. Lately, Mutua et al [15] studied the Stokes problem 
of a free convective flow past a vertical infinite plate in a 
rotating fluid with hall currents in the presence of a variable 
magnetic field. 
 
MHD is an active field and there are many studies that have 
been carried out and are still being carried out. The present 
study is based on the works of Das et al [14] and Mutua et al 
[15]. A combination the rotation and mass transfer effects 
studied by the two has been sought in the present paper. 
 
2. Geometry of the Flow Problem 
 
The fluid is assumed to flow in the x  and z -plane with 
velocities U  and W , respectively. A strong constant 

magnetic field 0H  is applied along the y -direction. The 

fluid is in a constant rotation with velocity,  . A porous 
plate in the xz  plane is initially in a rigid body rotation with 
the fluid. The temperature on the plate is initially 

instantaneously raised to wT  and the vertical velocity is also 

instantaneously raised oW . A drift velocity 0u  due to 

injection or suction is implied. The concentration at the plate 

is instantaneously set to wC . The effect of these changes is 

studied with time within the boundary layer of the fluid. 
Figure 1 summarizes the problem specification. 
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Figure 1: A diagrammatic representation of the MHD 

problem 
 
3. Mathematical Formulation 
 
3.1 General Governing Equations 
 
Considering an incompressible fluid with steady flow the 
equation of continuity reduces to: 

0  V                                  (1) 
The momentum equation taking into account the body forces 
and the surface forces is given as: 
 

2
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The electrostatic force q E  is negligibly small when 

compared to the Lorentz force, J B , and can thus be 
omitted from equation (2). This together with the Corioli’s 
force, 2 Ω V , due to rotation, results in the momentum 
equation as: 
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The energy equation is the conduction equation taking into 
account viscous dissipation and Joule’s heating. This is given 
as: 
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The mass transfer equation is a diffusion equation given as: 
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3.2 Component Form of the Governing Equations 
 
Equations (1), (3), (4) and (5) are in vector form. Upon 
solving the components of the vectors, we have the 

continuity equation reducing to: 
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Using the Boussinesq’s approximation taking the thermal 
and concentration coefficients of expansion, the momentum 
equation in component form becomes: 
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(7) 
 
In the pair of equations (7) the momentum equation split to 
give the two components of velocity being the primary, w , 
and the secondary, u , velocities. 
 
Solving the component form of the energy equation yields: 
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The mass transfer equation, upon solving the component 
form, becomes: 
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                                       (9) 

 
3.3 Turbulence Effects 
 
Although there are many approaches to handle turbulence, 
the Reynold’s Averaged Navier Stokes (RANS) approach is 
the easiest to employ in computation (Del Sordo et al [16]). 
In this approach a flow variable, say,  , is broken as: 

 

      (10) 

 

Where   is the time averaged variable while   is the 

perturbation from the average value. 
 
Employing the RANS approach, the equation of continuity 
decomposes into: 
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When the same averaging is used together with Prandtl 
mixing length hypothesis (McComb [17]) the two 
components of velocity are obtained as: 
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When turbulence is factored into equation (8), the energy 
equation becomes: 
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Employing the RANS method to the mass transfer equation 
(9) yields: 
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3.4 Hall Current Effect 
 
The Generalized Ohm’s law with Hall currents, ion slip 
currents and electron pressure gradient is given as: 
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Since 
2

2
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1
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V
V c

c
� � , the last parenthesis term 

reduces to 1 . The problem is a short circuit one and hence 
the implied electric field, 0E . Also the ion slip current 

term, 1i i
B

� . With these estimations equation (15) 

simplifies to: 
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In equation (16) above we used the definition eB H  and 

hence 0 0eB H B . 

 
Solution of the component form of equation (16) results in 
the two components of current as: 
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The Hall currents affect the pair of continuity equations (12) 
and the energy equation (13). Putting relations (17) into the 
two equations yields: 
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and 
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3.5 Non–Dimensionalization 
 
The dimensional form of equations (11), (18), (19) and (14), 
which are, respectively, the equation of continuity, equation 
of momentum, equation of energy and equation of mass 
transfer is obtained by replacing every flow variable,   with 

* . The bars above some of the variables are neglected. 
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These variables are , , , ,t y u w T  and C . The dimensional 

initial and boundary conditions are given as: 
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We define the following non–dimensional variables: 
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We also define the following useful non–dimensional 
numbers and parameters for the present problem. 
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Using (21) we reduce the dimensional equations into non–
dimensional form. Further simplification is obtained by using 
the relations (22). We then end up with the final set of 
equations as: 
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Equations (23), (24) and (25) are the final set of non–
dimensional governing equations for secondary velocity, u , 
primary velocity, w , temperature,   and concentration, C . 
The corresponding set of non–dimensional boundary 
conditions is: 
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(26) 
 
4. Numerical Method 
 
Equations(23), (24) and (25) are highly coupled and non–
linear. Obtaining a closed form of the solutions to such type 
of equations is difficult. With the help of the boundary 
conditions (26) it is possible to set up numerical solutions. 
Since all the flow variables are functions of y  and t , a two 

dimensional grid was set up. A finite difference method 
(FDM) was used to solve the MHD problem at the set grid 
points. The forward time central space (FTCS) model was 
used to solve the final set of equations. This is because other 
FDM methods are very difficult to use for such highly 
coupled and non–linear set of partial differential equations. 
 
The resulting set of difference equations for the primary 
velocity, secondary velocity, temperature and concentration 
is respectively: 

Paper ID: 02015159 76



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 8, August 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

     

          

2
1 0 1

1 1 2

2 22 2 3
2 1 1 1 1 1 1 1 1

2
2 1

2 2 2
4 2

k k k k k k k k k
j j j j j j j L j C j

k k k k k k k k k k
j j j j j j j j j j j j

v r M t
w w w w Er t u mu w t Gr Gr C

m
r r

r w w w y w w y w w w w w






 

       


          


          

 (27) 
 

     

        

2
1 0 1

1 1 2 1 12

2 22 2 3
1 1 1 1 1 1

2 2
2 1

2 2
4 2

k k k k k k k k k k
j j j j j j j j j j

k k k k k k k
j j j j j j j j j

v r M t
u u u u Er tw mw u r u u u

m
r r

y u u y u u u u u


   

     


         


        

 
(28) 

 

 

 

   

 
   

1 0 1
1 1

2
1 1

2 2
2

1 1 1 1

2
2 2

22

2

2

4

1

k k k k
j j j j

k k k
j j j

k k k k
j j j j

k k k k
j j j j

v r

r

Pr
Ecr

u u w w

EcM t
mu w mw u

m

   

  


 

 

   

   

  

      
      

 (29) 

 

 

 

1 0 1
1 1

2
1 1

2

2

k k k k
j j j j

k k k
j j j

v r
C C C C

r
C C C

Sc


 

 

   

 
             

 (30) 

 
In the relations (27), (28), (29) and (30) we made use of the 

substitution 1

t
r

y





, 
 2 2

t
r

y





 and 

 3 3

t
r

y





. 

Although the spatial dimensions are to run to infinity, within 
the time of observation 4y   was chosen as the limit of the 

boundary layer. The time of observation was limited to unit. 
 
Although the algorithm for the FTCS is relatively easy to 
formulate, it requires many more grid points for accurate 
results. The more the number of grid points the lengthier the 
computation required. A computer program in matlab was 
developed to solve the difference equations above. 
 
5. Results and Discussions 
 
The three dimensional mesh plots generated (Figure 2) show 
the decay of the primary velocity, temperature and 
concentration profiles along the y  and t  axes. The growth, 

then decay of the secondary velocity is also observed. This is 
in agreement with the boundary conditions and the general 
trend of the transfer of the wall properties into the boundary 
layer. We next vary each fluid property while maintaining 
the other properties at their default values and observe the 
effect on the four flow variables. The default values are: 

0.71Pr  , 1LGr  , 1CGr  , 1Ec  , 2.5Sc  , 
2 1M  , 0.1m  , 1Er   and 0 0.5v   

 
The effect of the Prandtl number, Pr , is reflected in Error! 
Reference source not found.. It accelerates both the primary 
velocity and secondary velocities. Temperature decreases 
with increase in Prandtl number since this leads to a smaller 
temperature boundary layer relative to momentum boundary 
layer. 
 

The thermal variant of the Grashof number, LGr , generally 

enhances both primary and secondary velocities but has a 
diminished effect on the temperature profiles (Figure 4). The 

concentration variant of the Grashof number, CGr , has a 

similar effect to that of the thermal variant (Figure 5). The 
Grashof numbers generally enhance buoyancy and hence 
velocity. 
 
The Eckert number, Ec , has a very slight effect on both 
primary and secondary velocity but a more appreciable 
advancing effect on the temperature profiles (Figure 6). The 
Eckert number implies increased kinetic energy and less 
enthalpy, hence the accelerating effect on temperature. The 
Schmidt number, Sc , diminishingly affects mostly the 
concentration profiles (Figure 7). Increased Schmidt 
numbers imply less mass diffusivity and hence the decline in 
concentration profiles. 
 

The magnetic parameter, 2M , decreases both primary and 
secondary velocities due to retarding effect of the Lorentz 
force but increases the temperature profiles due to Joule’s 
resistive heating (Figure 8). The Hall parameter, m , slightly 
enhances both primary and secondary velocities due to the 
cyclotron effect (Figure 9). 
 
The rotational parameter, Er , interestingly diminishes the 
primary velocity profiles while accelerating the secondary 
velocity profiles (Figure 10). This is due to the rotational 
transfer of magnitude from the primary to the secondary 
velocity. The slight temperature increase is attributed to the 
increased turbulence due to rotation. 
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Lastly, the mass transfer velocity, 0v , accelerates all the flow 

variables (Figure 11). This is because increased injection 
rates enhance transfer from the plate to the rest of the fluid 
which leads to enhanced boundary layers. 
 

 
 
 
 

Figure 2: Three dimensional mesh plots for the four flow variables
 

Figure 3: Fluid flow profiles for various Prandtl numbers
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Figure 4: Fluid flow profiles for various thermal Grashof numbers. 
 

Figure 5: Flow profiles for various concentration Grashof numbers.
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Figure 6: Flow profiles for various Eckert numbers.
 

Figure 7: Flow profiles for various Schmidt numbers
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Figure 8: Flow profiles for various magnetic parameter values.
  

Figure 9: Flow profiles for various Hall parameter values.
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Figure 10: Flow variables for various rotational parameters.
 

Figure 11: Flow profiles for various mass transfer velocities
  

6. Conclusion 
 
The MHD problem in a rotating frame and porous medium 
has been solved with Hall currents, mass transfer, Joule’s 
resistive heating and turbulence has been investigated. The 
present results compare well with those of Das et al. the 
results also follow physically expected trends. From the 
results obtained, we note the following: 
 

 The primary velocity increases with 0LGr   and 0 0v   

but decreases with Pr , 0LGr  , 2M , Er  and 0 0v  . 

 The secondary velocity increases with 0LGr  , CGr , m

, Er and 0 0v   but decreases with Pr , 0LGr  , 2M

and 0 0v   

 Temperature increases with Ec , 2M  and 0 0v   but 

decreases with Pr  and 0 0v  . 

 Concentration increases with 0 0v   but decreases with 

Sc  and 0 0v  . 
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7. Future Scope of the Work 
 
The approach here could be extended to factor in varying 
magnetic field and include the ion slip currents. 
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