Study on Renal Artery Segmental Branching Pattern in South Indian Population

Dr. Girish V. Patil¹, Dr. Shishirkumar²

¹Associate Professor, Department of Anatomy, DM- Wayanad Institute of Medical Sciences, Meppadi, Wayanad. Kerala, India

²Assistant Professor, Department of Anatomy, DM- Wayanad Institute of Medical Sciences, Meppadi, Wayanad. Kerala, India

Abstract: Study on arterial segments of the human kidney has been undertaken because of its surgical importance in making a relatively bloodless surgical approach to the kidney and to save the healthy renal tissue in partial nephrectomy and nephrolithotomy. The advent of more conservative methods in the renal surgeries has necessitated a more precise knowledge of renal vascularisation and that has consequently assumed new importance. Total 100 adult human kidneys were studied in the present work which were collected and studied. The valuable contribution of anatomical knowledge to operative surgery, particularly in partial or segmental resection of kidneys, will help further development of different techniques for the removal of calculi or affected part of kidneys. The presence of the arterial segments within the substance of kidney does not change, but, there is a lot of variation in the course and exact point of origin from the renal artery or aorta of these segmental vessels outside the substance of the kidney.

Keywords: Arterial segments, Calculi, Kidney, Nephrectomy, Nephrolithotomy

1. Introduction

Study on arterial segments of the human kidney has been undertaken because of its surgical importance in making a relatively bloodless surgical approach to the kidney and to save the healthy renal tissue in partial nephrectomy and nephrolithotomy. The advent of more conservative methods in the renal surgeries has necessitated a more precise knowledge of renal vascularisation and that has consequently assumed new importance.

In 1952, F.T. Graves [1] made an outstanding contribution to renal surgery by describing the five segmental branches of the renal artery with very little anastomosis of their neighbouring branches for the establishment of an effective collateral circulation in cases of segmental infarctions of the kidney.

In 1955, Riches said [2] "The renal angiography should be an essential investigation for all cases of partial nephrectomy. The knowledge of avascular planes is most important. The renal angiography should be considered an essential investigation in all cases where partial nephrectomy is contemplated. Hence the knowledge of renal arteries and there segmental pattern is most important".

The renal artery arises from the lateral, anterolateral or posterolateral aspect of the abdominal aorta immediately below the origin of superior mesenteric artery at the level of first lumbar vertebra. The right and left renal arteries may arise at the same or at different levels. The right artery is often higher. The left renal artery usually runs horizontally or even slightly upwards. The renal artery divides into anterior and posterior divisions anywhere between the aorta and the renal hilum or even inside the sinus.

The primary branches of renal artery are usually two and called anterior and posterior divisions. The secondary branches are the segmental arteries. The branching of the renal artery is variable. The five segments of the kidney were named as: Apical, Upper, Middle, Lower and Posterior.

2. Materials and Methods

Total 100 adult human kidneys were studied in the present works which were collected from the department of Anatomy DM- Wayanad Institute of Medical Sciences, Wayanad Kerala. The formalin preserved human kidneys were washed in running water to remove formalin. The capsule of each kidney was removed. The parenchymatous tissue was removed piece-meal with forceps under water, tracing the segmental arteries. The segmental branches were later painted with enamel oil paints using the following colors. The dissected specimens were preserved in 7% formalin.

Vessel	Colour
Aorta, Renal artery and its anterior division	Red
Apical segmental artery	Yellow
Upper segmental artery	Blue
Middle segmental artery	Black
Lower segmental artery	Green
Posterior division and posterior segmental artery	White

3. Results

Figure 1: Anterior division segmental branching pattern

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

Figure 2: Posterior division branching pattern

Figure 3: showing accessory renal vessels

Specimen		0	e pattern of anterior d			Truno VI the
·	• •	Type II,	Type III, gives	Type IV does	Type V, runs	Type VI, the
studied	terminates as the	terminates in the	origin to the apical	not give off the	downwards	anterior
	upper and middle	middle and	segmental artery	apical segmental	with an outward	division
	segmental arteries	lower segmental	and then to 3	artery but gives	convexity from	terminates
	after giving off	arteries after	terminal branches,	off 3 terminal	which the	into middle
	the lower	giving off the	upper, middle and	branches, the	apical, middle	and lower
	segmental artery	upper segmental	lower segmental	upper middle	and lower	segmental
	(3 segments).	artery (3	arteries (4	and lower (3	segmental	artery (2
		segments).	segments).	segments).	arteries arise (4	segments).
					segments).	
Right	14%	16%	8%	6%	2%	4%
Left	16%	18%	10%	-	4%	2%
Total	30%	34%	18%	6%	6%	6%

Table 1: showing the pattern of anterior division of the renal arter

Table 2: showing the pattern of apical segmental artery

Specimen	Type I,	Type II,	Type III,	Туре	Туре	Туре
side	from the	from the	from the	IV,	V,	VI, from
	anterior	upper	junction	from	from	the
	division	segmental	of the	the	the	posterior
	of the	artery.	anterior	renal	aorta.	division
	renal		and	artery.		of the
	artery.		posterior			renal
			divisions			artery.
			of the			
			renal			
			artery.			
Right	14%	20%	-	6%	4%	6%
Left	26%	16%	-	6%	-	2%
Total	40%	36%	-	12%	4%	8%

Table 3: Showing the pattern of lower segmental artery

zusie et slie mig die puttern er te ver segmentar utterj						
Specimen	Type I,	Type II,	Type III,	Type IV,		
side	from the	from the	arises from	arises either		
	anterior	posterior	the renal	above or		
	division	division of	artery.	below the		
	of the	the renal		renal artery		
	renal	artery.		from the aorta		
	artery.					
Right	40%	-	2%	8%		
Left	32%	-	6%	12%		
Total	72%	-	8%	20%		

Table 4: Showing the pattern of middle segmental artery

Specimen	Type I	Туре II	Type III	Type IV	Type V	Type VI
side	arises	arises	arises	arises	arises	arises from
	from the	from	from the	from the	from the	the
	anterior	the	lower	renal	aorta.	posterior
	division	upper	segmental	artery.		division of
	of the	segmen	artery.			the renal
	renal	tal				artery.
	artery.	artery.				
Right	18%	4%	28%	-	-	-
Left	18%	6%	24%	2%	-	-
Total	36%	10%	52%	2%	-	-

 Table 5: Showing the pattern of posterior division of the

renal artery					
Specimen Type I ,		Type II, Here, the	Type III: The		
side	The	conventional pattern of	posterior division		
	normal	arching is not present,	is relatively larger		
	pattern	but the posterior division	due to the		
	of the	has bifurcated or	additional		
	posterior	trifurcated at the hilum	replacement of		
	division	posterior to ureteric	segmental arteries		
		pelvis.	of anterior		
		_	division.		
Right	38%	8%	6%		
Left	38%	8%	2%		
Total	76%	16%	8%		

Table 6: Types of accessory renal arteries replacing

	segmental arteries							
Specimen Superior accesso		Inferior	Replaces the					
side	renal artery	accessory renal	anterior or the					
	replacing the	artery replacing	posterior division					
	apical segmental	the lower	of the renal					
	artery.	segmental artery.	artery.					
Right	4%	8%	-					
Left	-	12%	4%					
Total	4%	20%	4%					

4. Discussion

Renal surgery had its inception a century ago. The courageous and enthusiastic contributions made by surgeons in several countries informed and stimulated their colleagues and led to rapid progress in renal surgery. Partial nephrectomy is a technique which, until relatively recently, had not been highly favored. The actual technique of partial nephrectomy varies according to clinical preference, but all methods incorporate four basic principles:

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

- 1. Early control of the main renal vasculature.
- 2. Minimal renal ischaemic time.
- 3. Meticulous haemostasis.
- 4. Complete closure of the collecting system.

Sam D Graham [3] states that, as long as the four principles are observed, the incidence of complications will be minimal. Partial nephrectomy is undoubtedly the procedure of choice. Somewhat less firm indications are a localized disease segment, usually either upper or lower pole; when removed, the affected portion would provide a good chance of cure. As Sam D Graham [3] states, total nephrectomy should be performed only when absolutely necessary; that in local diseases of the kidney, the operative intervention should, whenever possible, be limited to the diseased part (partial nephrectomy).

The new techniques employed in renal surgery mainly depend upon the segmental resection, namely wedge-type resections, if upper or lower segments are affected by the disease. But for the mid-portion lesions, the enucleation technique, although obviously limited to tumours, may be employed in other conditions with minimal loss of renal functions.

With the increased interest in renal vasculature lesions, especially associated with hypertension, Pontasse and others [4] had a good result with the use of partial nephrectomies for segmental vascular diseases. Isolated congenital or atherosclerotic arterial stenosis, arteriovenous malformations and inter-renal arterial aneurysms are all amendable to partial nephrectomy.

The most commonly seen complication encountered after partial nephrectomy is bleeding. Life was threatened by post-operative complications such as severe bleeding prior to the advent of the conservative segmental resections. Later, the profound knowledge of variations of the mode of origin of the segmental arteries reduced the mortality rate. The attention to haemostasis and the use of cold ischaemia have reduced the complication rate considerably.

The lack of arterial anastomosis in the neighbouring segments will affect only the affected segment and will neither produce ischaemia nor interfere with blood supply of neighbouring segments. This lack of arterial anastomosis will render the technique of resection easier, since the field of operation will be relatively bloodless following the ligation of the segmental artery supplying the area of the operation.

It should be remembered that the origins of the segmental arteries are accessible. In the majority of cases, they are easily seen in the hilum and often at the points nearer the aorta. This is of practical value, since segmental resection is best carried out from the hilum towards the periphery. Accessory renal arteries to the lower aspect of the renal hilum are often found in close relation to the ureteropelvic junction or upper part of the ureter.

Their presence accentuates the obstruction leading to hydronephrosis. Hence, they cannot be ignored. The ligation and division of accessory vessels without resection of the ischemic tissue was condemned by Zoram L. Babaric [5]. These vessels can be preserved in most of the cases.

5. Conclusion

The valuable contribution of anatomical knowledge to operative surgery, particularly in partial or segmental resection of kidneys, will help further development of different techniques for the removal of calculi or affected part of kidneys. The presence of the arterial segments within the substance of kidney does not change, but, there is a lot of variation in the course and exact point of origin from the renal artery or aorta of these segmental vessels outside the substance of the kidney. After the advent of the renal segments, the urological complications following partial nephrectomy have considerably reduced. Nephrectomy or total removal of a kidney will no longer be performed, if a lesser procedure can offer a better prospect. Every fragment of healthy, functional renal tissue should be preserved, provided that it has an arterial supply, a venous drainage, and a urinary exit, and expertise is available to preserve the healthy fragment.

References

- [1] Graves F.T. "The anatomy of intrarenal arteries and its application to segmental resection of the kidneys". *Br J Surg* 1952; 42:132-140.
- [2] Riches E.W. "The present status of renal angiography". *Br J Surg* 1955; 42:462-470.
- [3] Sam D Graham. "Conservative renal surgery an anatomical basis". *Br J of Surg*, 1960; 43:1-8.
- [4] Pontasse. "Partial nephrectomy in the treatment of renal calculi". Ann Roy Coll Surg (Eng), 1952; 11:32-46.
- [5] Zoram L. Babaric. "The nephroplastic procedure in the treatment of hydronephrosis". Br J of Urol, 1957; 29:277-286.

Author Profile

Dr. Girish V Patil has completed his MBBS from KIMS Hubli and has completed his M.D in Anatomy from VIMS Bellary. He has also finished his DNB Anatomy. He is presently working as an Associate the Department Of Anatomy DM WIMS Mappadi

Professor in the Department Of Anatomy, DM-WIMS Meppadi, Kerala, India

Dr. Shishirkumar has completed his MBBS from KLE'S JNMC Belgaum and has completed his M.D in Anatomy from K.S.Hegde Medical Academy, Deralakatte, Mangalore. He is presently working as an Assistant Professor in the Department Of Anatomy, Mennadi Kerala India

DM-WIMS Meppadi, Kerala, India