
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Efficient Pipelined FPGA Implementation of
Steerable Gaussian Smoothing Filter

Shraddha Barbole1, Dr. Sanjeevani Shah2

1Electronics & Telecommunication Department, SKN College of Engineering, Vadgaon Bk, Pune, India

 Abstract: Smoothing filters have wide area of applications such as image and video analysis, which extends to edge detection, motion
analysis, line parameter estimation, and texture analysis. To achieve smoothing, it is essential to have directional smoothing filters
which can be oriented in any arbitrary direction. For real time applications, hardware devices having capability of parallel processing
can be used. The steerability is the property, in which several filtering operations outputs are linearly combined to achieve output of a
directional filter which is arbitrarily oriented. Though the literature describes the several efficient FPGA implementations of the
convolution operation for non-separable and separable, limited work is available related to steerable filter implementations. In this
system, steerable Gaussian smoothing filters are implemented on an FPGA platform using Virtex-V ML506 evaluation board. The
output is displayed on VGA display. The algorithm uses delaying of intermediate outputs which reduces memory requirements. This
allows simultaneous implementation of both horizontal and vertical convolution. Due to pipelined approach, memory resources and
other device utilization is reduced. The key advantages of FPGAs over DSP implementations include integration, performance and
customization using design techniques of parallel and pipeline operations. A pipelined approach of convolution gives the less number
of resources.

Keywords: Steerability, Virtex-V, Parallel Processing, Pipelined Approach.

1. Introduction

Smoothing is achieved by convolution of an original image
with an appropriate mask, such as a Gaussian mask.
Convolution is a common image processing operation. It can
be given as sum of products of the input image and a
convolution Kernel. Using convolution, several imaging
operations can be achieved depending on the selection of
values in the convolution kernel. As directional or orientation
filters [7] are widely used in computer vision and image
processing applications its response at any arbitrary position
and orientation is obtained by tuning the filter to all possible
positions and orientations. However, such an approach
requires a large number of computations, and is thus not
easily implementable in real time. For instance, a reduction in
the number of multipliers can be achieved through the use of
separable filters. A separable filter of size N × N can be
expressed as convolution between two filters of sizes N × 1
and 1 × N respectively.

=),(nmH),(),(
1

0

1

0

jnimfjig
height

i

width

j

−−∑ ∑
−

=

−

=

 (1)

Where f denotes the input image, h is the output, g is the
filter image whereas m and n denotes image dimensions.
Gaussian mask required for 1D convolution has the following
form.

Using this formula Gaussian coefficients are calculated.

2

2

2 22

1),(
σπσ

xeyxg −=

(2)

where g is the weight of Gaussian kernel at the location with
coordinates x and y. The σ parameter is the standard

deviation of the Gaussian distribution .The term
22

1
πσ

 is

normalization constant.

2. Literature Survey

In this paper, a Gaussian steerable multidirectional filter bank
implementation on FPGA is proposed. Literature gives very
little work on steerable filter implementation on FPGA. In
[1], Area-Efficient 2-D shift-variant convolvers for FPGA-
based digital image processing are proposed. Several novel
FPGA-efficient architectures for generating a moving
window over a row-wise print path are proposed and
provided a criteria to choose the optimum one for any design
point. Hui Zhang et al. proposed a Multiwindow Partial
Buffering Scheme for FPGA Based 2-D Convolvers [2]. Erke
Shang et al. in [3] put forth about Architectures for
Generalized 2D FIR Filtering using Separable Filter
Structures. The problem of generalized 2D FIR filtering for
large filter kernel sizes can be computationally prohibitive
when required in real-time implementation. In [4], C.S
Bouganis et al. emphasized on steerable pyramid wavelet
construction for image decomposition and feature detection,
and its implementation on FPGA. Erke Shang et al. used
steerable filters for lane detection and implemented it on
FPGA [5]. For these approaches, large number of basis filters
would be required. Instead, regardless of the desired angular
resolution, Gaussian smoothers can be steered via the
application of three 1D filtering operations [7].

Two approaches of separable convolution that are
unpipelined and pipelined convolution can be used. But
unpipelined approach is not efficient as it requires more
memory and delay. This approach uses separate BRAM for
storing the intermediate results and cannot start the next step
until first step is completed. Simultaneous horizontal and
vertical operations can’t be implemented. As a result it
increases delay, additional memory and resources. The
pipelined approach which is used in [7] uses FIFO to store
intermediate results. Hence in this paper this pipelined
steerable convolution approach is modified by using delay

Paper ID: 02015914 1753

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

elements to delay the previous outputs instead of using any
memory element to store intermediate results.

Steerability implies that the output of a filtering operation,

),(yxOθ using a filter oriented at an angle � can be
computed as the linear combination of a finite set of M
outputs {),(0 yxOθ ,),(1 yxOθ , ………..,),(1 yxO M −θ }
obtained by applying the same filter oriented at directions 0θ
, 1θ ,…………, 1−Mθ respectively. A 2D separable and
steerable filter can be written as:

∑
−=

−−=
R

Rr

D
iso rgryrxgyxg)())sin(),cos((),(1θθθ

(4)

The filter described in equation (4) can be applied to an
image I (x, y) in two steps. In the first step, the filter

),(yxgiso is applied to the image.

),(yxIiso = �(�, �) ∗),(yxgiso (5)
In the second step, the following operation is applied to the
image),(yxIiso

()∑

−=

−−=
R

Rr

D
iso rgryrxIyxI)()sin(),cos(),(1θθθ

(6)

 The operation described in (5) and (6) is equivalent to the
operation where Gaussian directional smoothing filter (DSF)
oriented at direction � filters the input image I(x, y).

3. System Design

System architecture is shown in Figure 1. Input image which
is to be smoothed is stored in BRAM. A pipelined steerable
convolution algorithm is applied on this image. It gives
horizontally and vertically smoothed images. These
smoothed images are displayed on VGA monitor.

Figure 1: System Architecture

Figure 2 shows complete system implementation. BRAM is
used to store a test image using .coe file. After 9 × 1 vertical
convolution, the operation is performed so that after 9 clocks
a horizontal convolution operation is possible. The vertical
convolution results are delayed. Hence simultaneous vertical
and horizontal convolution operation is possible. A
pipelining technique can be used to obtain higher throughput.
The Xilinx Platform Studio is used to generate a .bit file for

the haze image and then downloaded on Virtex 5 evaluation
board. Stepwise explanation of algorithm is given as below.

Step 1: Storing of image in BRAM
First step is to store an image of size 48 ×48 in BRAM, also
a Gaussian mask is stored which are then read by read
controller. An input image is stored using a block memory
generator. Out of five memory types, True Dual Port RAM
(TDPRAM) is selected for storing an image.

Step 2: Vertical 9 ×1 Convolution
After getting input image pixels and Gaussian coefficients
from BRAM, these are used for vertical convolution process.
In this step a 9×1 Gaussian Kernel is rotated over an image.
Pixel value and Gaussian kernel value gets multiplied and
added to get convolved output. This requires latency of two
clock cycles.

Step 3: Delay of vertical convolution outputs
To avoid the memory required to store intermediate results of
convolution, instead of using BRAM or other memory a
delay element is used to delay the output.

Step 4: Horizontal 1 × 9 Convolution
In pipelined architecture, vertical and horizontal convolutions
are performed simultaneously. For horizontal convolution, a
Gaussian mask of size 1×9 is used. To start the horizontal
convolution, 9 pixels should be available at a time. Hence as
soon as the 9 outputs of vertical convolution are available,
horizontal convolution is started.

Step 5: Storing of Convolution Results in BRAM
The horizontal convolution results are stored in BRAM.
These are the obtained resuts after application of vertical and
then horizontal convolution.

Step 6: Vertical 7 × 1 and Horizontal 1 × 7 Convolution
The last stage of the Gaussian steerable approach uses an
operation equivalent to 1D filtering at the direction of
interest. This operation is applied to the smoothed image
obtained by the previous stages, which include filtering of the
original image using an isotropic Gaussian filter.

Paper ID: 02015914 1754

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: System Implementation Model

4. Selection of Gaussian Mask

Image pixels are represented using 8 bits. Separable Gaussian
masks of 1×9 and 9×1 derived using equation (2.3) & (2.4)
with mean equal to zero, σ equal to 1 and normalizing factor
N = 0.0016 are shown below in Table 3.1. and Table 3.2.
When these values of mean, standard deviation are put in
equation (2.2) which is given below, it gives the values of
Gaussian mask.

Table 1: Vertical and Horizontal Gaussian mask with Mean

= 0, σ = 1 and N = 0.0016

2
2

2 22

1),(
σπσ

xeyxg −=

Consider above equation, where σ = 1 and =2x 0, 1, 2, 3,
4, 5, 6, 7, 8, 9 respectively. Values of 2x are put one by one

and multiplied by 256 because all values are represented in 8
bits in FPGA. For 2x = 0, () 1000 =g . Similarly other values
can be obtained. The same coefficient values are used for
vertical as well as horizontal Gaussian mask.

Table 2: Vertical and Horizontal Gaussian mask with Mean

= 0, xσ = 3, yσ = 5, N = 0.001

Steerability is applied on the obtained results of separable
convolution between the 48×48 image and the Gaussian
masks of 9 × 1 and 1 × 9. Further experimentation is done on
image of size 158 × 158 and 256 × 256. For applying
steerability, a steerable Gaussian mask is derived using
equation (2.9) and decimation factor using the equation
(2.10). The derived steerable Gaussian masks of 7 × 1 and 1
× 7 for mean = 0, xσ = 3, yσ = 5, Normalizing factor N =
0.001

5. Results and Discussions

In this work, experimentation is done on image of size 48 ×
48; it is again extended for image of size 158 × 158 and 256
× 256. Gaussian mask is selected of size 9 × 9 and for further
operations it is 7 × 7. The Gaussian coefficients are
calculated using its formula. Standard deviation and
normalization factor decided accordingly. The convolution
output is displayed using output device VGA display. Target
device used is VIRTEX -V evaluation board. Xilinx ISE 14.2
is used for simulation and implementation. First image is
stored in TDPRAM. Memory block generator is generated
using IP core generator. Minimum area algorithm is selected.
Write width and read width is selected as 8. Write depth and
read depth for 48 × 48 image is 2304, for 158 × 158 it is
24964 and for 256 × 256 it is 65536. Memory initialization is
done by selecting .coe file.

Figure 3: Steerable convolution output

Paper ID: 02015914 1755

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Consider a convolution operation output shown in Figure 3.
Here convolution of 7 pixels is performed with Gaussian
mask of size 7 × 1 and 1 × 7. Output is obtained after the
latency of 2 clock cycles as it is required for multiplication
and addition. Normalization is done by dividing this output
by sum of gaussian kernel.

{[(52×8) + (42×33) + (31×76) + (48×100) + (54×76) +
(37×33) + (50×8)] / (8+33+76+100+76+33+8)} = 44

RTL schematic of this design is given in Figure 4. It has
number of components like counters steerability flag
component. The implementation of proposed algorithm is
carried out for three different sizes of images. These are 48 ×
48, 158 × 158, 256 × 256. Device utilization summary of this
method is compared for these three image sizes. It is given in
Table 3. Following observations are drawn from Table 3.
• Utilization of slice registers for 48 × 48 size image is

850(2%), for 158 × 158 image it is 537(2%) and for 256 ×
256 it is 521(1%). This indicates that, utilization of slice
registers decreases with increase in size of an image.

Figure 4: RTL schematic of steerable convolution

Table 3: Device utilization summary of different sizes of
images

Device Utilization Summary (Estimated values)
Logic Utilization 48 × 48 158 × 158 256 × 256

Number of Slice Registers 850(2%) 537(2%) 521(1%)
Number of slice LUTs 762(2%) 505(2%) 459(1%)

Number of used LUT-FF pairs 334(26%) 225(26%) 225(26%)
Number of bonded IOBs 18(3%) 17(3%) 17(3%)
Number of Block RAM 5(3%) 20(3%) 48(36%)

Number of BUFG 2(6%) 2(6%) 3(9%)
Number of DSP48Es 15(5%) 17(5%) 17(5%)

• Slice LUTs used are 762(2%) for 48 × 48 image, 505(2%)
for 158 × 158 image and 459 for 256 × 256 image. It gives
reduced number of sources for large size of image.

• LUT-FF pairs used are 334, 225 and 225 respectively. It
decreases with increase in size of image.

• Bonded IOBs used are 18, 17 and 17 which decreases as
size of image increases.

• Utilization of block RAM is 5(3%) for 48 × 48 image,
20(6%) for 158 × 158 image and 48(36%) for 256 × 256
image. It increases as size of image increases.

• BUFG and DSP48Es increases with size of image.

The device utilization summary of this method when
compared with the method used in [10], it gives reduced
number of resource utilization shows that the proposed
methodology is efficient. The comparison is given in Table 4.
The observations drawn from this table are as follows:

Table 4: Comparison of this method with previous steerable

convolution method
Method LUT IOB BRAM Multipliers Clocks

per Pixel
Pipelined
Steerable

22464
(82%)

22 (4%) 39 (29%) 32 (24%) 2

ProposedPipel
ined Steerable

505 (1%) 17 (3%) 20 (15%) 17 (5%) 2

• The steerable implementation of pipelined horizontal and

vertical convolution operation which is used in [7] requires
huge number of resources.

• Proposed method of pipelined steerable horizontal and
vertical convolution gives better performance with less
number of resource utilization.

• Number of clock cycles required for both the operations
are same. It requires two clock cycles for operation of per
pixel.

The implementation of proposed method requires 9 clock
cycles for first vertical convolution, after which both
horizontal and vertical convolution starts simultaneously. For
next step of convolution it adds delay of 7 clock cycles to get
first output. The convolution operation adds latency of two
clock cycles, one for multiplication and other for addition of
pixels. Along with all the devices, time required to
implement this method can be calculated. This time is
compared with the method used in [7]. This comparison is
given in Table 5.

Table 5: Comparison of FPGA execution times

Method Previous
Pipelined
Steerable
Impleme-

tation

C Based
Steerable
Implemen

tation

Proposed
Pipelined
Steerable
Implemen

tation

Execution Time for 158×158 Image
0.492 ms 6.5 ms 0.112 ms

The output images obtained after convolution are displayed
on VGA display. Due to small size of image VGA display
gives poor quality of image. Hence for better quality and for
ease of observation size of image is increased to 256 × 256.
These increased sizes of images, displayed on VGA are

Paper ID: 02015914 1756

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

shown in Figure 5, Figure 6 and Figure 7. The experimental
setup is shown in Figure 8.

Figure 5: (a) Input Image (b) Vertical Convolution Output

(c) Horizontal Convolution Output

Figure 6: (a) Input Image (b) Vertical Convolution Output

(c) Horizontal Convolution Output

Figure 7: (a) Input Image (b) Vertical Convolution Output

(c) Horizontal Convolution Output

Figure 8: Experimental Setup

6. Conclusion

Steerable implementation in horizontal and vertical directions
using the pipelined separable convolution method requires
fewer resources. It gives this complicated operation easily
and with less utilization of resources.

Utilization of slice registers, slice LUTs, LUT-FF pairs and
bonded IOBs decreases as size of image increases.
Utilization of block RAM, BUFG and DSP48Es increases
with size of image. The steerable implementation of
pipelined horizontal and vertical convolution operation
which is used in previous method requires huge number of
resources. Proposed method of pipelined steerable horizontal
and vertical convolution gives better performance with less
number of resource utilization. Number of clock cycles
required for both the operations are same. It requires two
clock cycles for operation of per pixel.

References

[1] Francisco Cardells-Tormo and Pep-Lluis Molinet,

“Area-Efficient 2-D Shift-Variant Convolvers for FPGA-
Based Digital Image Processing”, IEEE Transactions On
Circuits And Systems—Ii: Express Briefs, Vol. 53, No.
2, February 2006, pp 105-109.

[2] Hui Zhang, Mingxin Xia, and Guangshu Hu, “A
Multiwindow Partial Buffering Scheme for FPGA Based
2-D Convolvers, IEEE Transaction on Circuits and
Systems, Feb 2007.

[3] D. Venkateshwar Rao and M. Venkatesan , “An Efficient
Reconfigurable Architecture and Implementation of
Edge Detection Algorithm using Handle-C”,
International Journal of Engineering and Applied
Sciences, 2006.

[4] M.S. Andrews, “Architectures for Generalized 2D FIR
Filtering using Separable Filter Structures”, Proceeding
of Acoustics, Speech and Signal Processing, 1999.

[5] C.S Bouganis, P.Y.K Cheung, J.Ng and A. Bharath, “ A
Steerable Complex Wavelet Construction and its
Implementation on FPGA”, in Proc. International
Conference on Field Programmable Logic and
Applications, 2004, pp.394-403.

[6] Erke Shang, Jian Li, Xiangjing An and Hangen He,
“Lane Detection using Steerable Filters and FPGA-based
Implementation”, 2011 Sixth International Conference
on Image and Graphics,2011, pp 908-911.

[7] A. Joginipelly, Alvaro Varela, Dimitrios Charalampidis,
et.al. “Efficient FPGA Implementation of Steerable
Gaussian Smoothers”, 44th IEEE Southeastern
Symposium on System Theory University of North
Florida, Jacksonville, FL,2012, pp.78-82.

[8] Dimitrios Charalampidis, “Efficient Directional
Gaussian Smoothers” , IEEE Geoscience And Remote
Sensing Letters, Vol. 6, No. 3, July 2009, pp. 14-19, pp
383-387.

[9] V. Lakshmanan, “A Separable Filter for Directional
Smoothing”, IEEE Geoscience And Remote Sensing
Letters, Vol. 1, No. 3, July 2004 pp 192-195.

[10] Arjun Joginipelly, “Implementation of Separable &
Steerable Gaussian Smoothers on an FPGA” University
of New Orleans Theses and Dissertation, Dec. 2010.

[11] Xilinx, “Block Memory Generator v 2.8 Logic Core”,
Sept 2008.

[12] Xilinx, “Logic Core IP Multiplier v 11.2”, Sept 2009.
[13] Virtex-5 FPGA Configuration User Guide UG191

(v3.11) October 19, 2012

Paper ID: 02015914 1757

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Author Profile

Shraddha A. Barbole was born in 1990. She has
received B.E degree in Electronics and
Telecommunication Engineering from Solapur
University, persuing her M.E degree in Electronics and
Telecommunication with specialization in VLSI and
Embedded System from Smt. Kashibai Navale College

of Engineering, Vadgaon(bk), Pune in Pune university.

Dr. Sanjeevani K. Shah obtained her phD (E&TC) in
2011 from university of pune. Worked in Philips India
Ltd. for three Years. Thereafter has twenty seven years
of teaching experience. Presently working as Head of
Post graduate department E&TC in STES’s SKN

College of engineering. Published books on Industrial Electronics,
Communication, Applied electronics and has published 25 papers.

Paper ID: 02015914 1758

