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Abstract: Inverse problems arise in a wide spectrum of applications in fields ranging from engineering to scientific computation. In 
these problems one often has to solve operator equations of the first kind, which are usually ill-posed in the sense of Hadamard. It 
means that the hardest issue in the numerical computation of inverse problems is the instability of the solution with respect to the noise 
from the observation data; that is, small perturbations of the observation data may lead to large changes on the considered solution. 
Thus to ensure a feasible and stable numerical approximation solution, it is necessary to employ some kind of regularization method. 
The purpose of this paper is to survey some recent developments in the area of regularization methods for mathematical inverse 
problems. In undertaking this task it is difficult to avoid a certain amount of mathematical rigor. Nevertheless, because one of the goal 
of the paper is to try to explain some newer developments in mathematical regularization theory to an audience which may have the 
needed background in operator theory or functional analysis, we will wherever possible try to use more formal(less rigorous) but simple 
explanations and to supplement the mathematical concepts below with examples. We will also take a few shortcuts in some definitions.  
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1. Introduction 
 
The area of mathematical inverse problems is quite broad 
and involves the qualitative and quantitative analysis of a 
wide variety of physical models. Applications include, for 
example, the problem of inverse heat conduction, image 
reconstruction, tomography, the inverse scattering problem, 
and the determination of unknown coefficients or boundary 
parameters appearing in partial differential equation models 
of physical phenomena. 
 
We will survey some recent developments in the area of 
regularization methods for mathematical inverse problems 
and indicate where further contributions are needed. Finally 
we will discuss current work in the area of iterative solution 
methods, regularization schemes which have been 
successfully applied to a number of important non linear 
inverse problems. 
 
1.1 Inverse problem and ill posedness:  

 
Physical model: 

y = F(x) 
Where xϵX, yϵY  
and F: X →Y 
Direct problem: given x ϵ X, calculate y = F(x) ϵ Y. 
Inverse problem: given y ϵ Y, is there x ϵ X such that F(x) = 
y?  
 
Well-posed problem (Hadamard): 

• Existence: There exists a solution to the problem. 
• Uniqueness: There is at most one solution to the 

problem. 
• Stability: The solution depends continuously on the 

data. 
If a problem is not well-posed, it is ill-posed. 
Inverse problems are typically ill-posed. 

Inverse Problem 
y = F(x) 
Where xϵX unknown  
 yϵY Exact measurement 
and F : X →Y 
operator with discontinuous inverse 
Data: yδ such that ||y δ - y|| ≤ δ (δ is a noise level) 
Ill-posedness: F-1(yδ) needs not to be close to x. 
 
1.2 Regularization 
 
Idea of regularization: an ill-posed inverse problem is 
approximated by a family of nearby well-posed problems. 
Regularization operators: the family {Rα} α >0 such that 
Stability: for any α > 0, Rα is a stable operator, 
Approximation: 

lim
∝→�

�∝(�) =  ���(�) ∀� ∈ �. 
 
Where α is called regularization parameter. 
 
Banach-Steinhaus theorem: it is impossible to approximate a 
discontinuous linear operator point wise by a uniformly 
bounded family of continuous linear operators. 
 
In this paper, we consider the discrete linear inverse problem 
which can be expressed as 
Ax = b (1.1) 
for A ∈ Rm×n, x ∈ Rn, b ∈ Rm and m ≥ n. The known right 
hand side of (1.16) consists of unknown true data btrue ∈ Rm 
and noise ε∈ Rm; i.e. 
b = btrue + ε. (1.2) 
 
The matrix A in (1.16) derives from the underlying 
connective system and is assumed to be known. The vector x 
is the solution we want to obtain given the noisy data and the 
system A. Ideally, the solution should be close to the true 
solution xtrue that satisfies 
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 Axtrue = btrue. (1.3) 
 
In practice, all we are given is the noisy data instead of the 
true data. In that case, it is possible that for (1.1) any of the 
condition of well posedness does not satisfy. Condition of 
unstability is often reflected in a large condition number for 
A. In all three cases, it is necessary to use regularization to 
find a best (approximate) solution. 
 
1.3 Regularization Parameter 
 
α controls the compromise between the approximation and 
the stability. Thus to ensure a feasible and stable numerical 
approximation solution, it is necessary to develop 
appropriate strategies for choosing the regularization 
parameters. In practice, the effectiveness of a regularization 
method depends strongly on the choice of a good 
regularization parameter. 
 
Three types of parameter choices: 
• A-priori parameter choice rules where α = α (δ). 
• A-posteriori parameter choice rules where α = α (y δ, δ). 
• noise level free parameter choice rules where α = α (y δ). 
 
A regularization method is always defined as a family of 
regularization operators together with a parameter choice 
rule. 
 
Regularized solution: 

��
� = R α (y δ , δ ) (y δ) 

Convergence: 
��

� → � �� � → 0 
• A-priori parameter choice rule: α depends only on the 

noise level possibly including information about the a-
priori smoothness of the solution. 

• A-posteriori parameter choice rule: α depends on both the 
noise level and the data, e.g., Morozov's discrepancy 
principle: 

 ∝= ����∝> 0: �����
�� − ���� ≤ ��}  

 �ℎ��� � > 1  
• Noise level free parameter choice rule: α depends only on 

the data, e.g. L-curve and Quasi-optimality principle. 
Bakushinskii veto: a noise level free parameter choice rule 
cannot yield a convergent regularization method for ill-
posed linear inverse problems.  

 
2. Regularization Methods 
 
In this section we review some of the most commonly used 
methods when ill - posed inverse problems are treated. 
These methods are called regularization methods. Although 
the emphasis in this paper is not on regularization 
techniques, it is important to understand the philosophy 
behind them and how the methods work.  
 
Basically, Inverse problems are used to solve the integral 
equation of the first kind. On the basis of the nature of these 
integral equations, regularization methods can be divided 
into two categories broadly-: Classical regularization 
methods and Local regularization methods  

• Classical regularization methods are designed to 
overcome the obstacles in The Fredholm integral 
equations of the first kind 

 
To explain the basic ideas of regularization, we consider a 
simple linear inverse problem. Let H1 and H2 be separable 
Hilbert spaces of finite or infinite dimensions and A: H1 → 
H2 a compact operator or mapping from H1 to H2. Consider 
first the problem of finding f ∈D (A) ∈ H1 satisfying the 
equation 
Af=g (2.1) 
 
Where y ∈ R (A) ∈ H2 (Range of A) is given.  
 
The Fredholm integral equation of the first kind takes the 
generic form 

� �(�, �)�(�)�� = �(�), 0 ≤ � ≤ 1
�

�
 

Where the function K, is given by 

�(�, �) =  
�

(�� + (� − �)�)�/� 

and  

��(�) = � �(�, �)�(�)�� = �(�), 0 ≤ � ≤ 1
�

�
 

Here, both the kernel K and the right hand side g are known 
functions, while f is the unknown function. This equation 
establishes a linear relationship between the two functions f 
and g and the kernel K describes the precise relationship 
between the two quantities. Thus the function K describes 
the underlying model. If f and K are known, then we can 
compute g by evaluating the integral; this is called the 
forward computation. The inverse problem consists of 
computing f given the right hand side and the kernel. Now 
from the above examples it is very clear to understand the 
concept of inverse problems 
Here, we discuss three families of classical methods. These 
methods are (1) regularization by singular value truncation, 
(2) the Tikhonov regularization and (3) regularization by 
truncated iterative methods. 
 
• Local regularization methods are designed to overcome 

the obstacles in The Volterra integral equations of the first 
kind 

 
We consider the following scalar Volterra first-kind integral 
problem. Given a suitable function f(·) defined on [0, 1], 
find ��(∙) satisfying, for a.e.  
t ϵ [0, 1], 
 Au (t) = f (t), (2.2) 
 
Where A is the bounded linear operator on L2(0, 1) given by 

��(�) = � �(�, �)�(�)��, �. �. � ∈ [0,1]
�

�
 

In the typical case that the range of A is not closed, it is 
well-known that problem (2.2) is ill -posed, lacking 
continuous dependence on data f ϵ L2(0, 1)  
Note: The type with integration over a fixed interval is 
called a Fredholm equation, while if the upperlimit is a 
variable it is a Volterra equation. 
The basic idea of regularization methods is that, instead of 
trying to solve equation (2.1) and (2.2) exactly, one seeks to 
find a nearby problem that is uniquely solvable and that is 
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robust in the sense that small errors in the data do not 
corrupt excessively this approximate solution. 
 
2.1 Classical regularization methods:  
 
This category includes three families of methods. These 
methods are (1) regularization by singular value truncation, 
(2) the Tikhonov regularization and (3) regularization by 
truncated iterative methods. 
 
2.1.1 Regularization by singular value decomposition:  
Let H1 and H2 be separable Hilbert spaces with inner 
products ⟨·, ·⟩Hi, and norms ||·|| Hi, i= 1, 2. The set of 
bounded operators from H1 to H2 will be denoted by B (H1, 
H2). 
 
Definition 2.1.1.1. For an operator A ∈ B (H1, H2), the 
adjoint A* of A is the element of B(H2,H1) that satisfies ⟨Ag, 
f⟩H2 = ⟨g,A*f⟩H1 for any g ∈ H1 and f ∈ H2.  
 
Definition 2.1.1.2. An operator A ∈ B (H, H) is self-adjoint 
if A = A*. 
 
Definition 2.1.1.3. An operator A ∈ B (H, H) is unitary if 
A*A = AA* = I. 
 
Definition 2.1.1.4. A: H1 → H2 is compact if, for any 
bounded sequence {gn} ∈ H1, the sequence {Agn} ∈ H2 
contains a convergent subsequence.  
Our interest will be directed toward the case where A is 
compact. In that event, A∗A is compact, nonnegative definite 
and self-adjoint. As such, it has a pure point spectrum with 
nonzero eigen values λ2

j that provide eigenvalue – eigen 
function pairs (λ2

j, gj), j = 1, 2…... where  
λ2

1 ≥ λ2
2 ≥ · · · > 0 and the gj’s are orthonormal [11]. 

Now, AA∗ is also compact, nonnegative definite and self 
adjoint with  

A (A∗Agj) = (AA∗) Agj = λ2
jAgj , 

Where j = 1, 2, . . . . 
Thus, by letting fj = Agj/λj, we obtain the pairs (λ2

j, fj), j = 1, 
2, . . ., that form the eigen value –eigen function system for 
AA∗. This follows from observing that 

⟨fi, fj⟩H2 = ⟨Agi/λi, Agj/λj⟩H2 = (1/ (λiλj)⟨gi,A∗Agj⟩H1 `= 
(λj/λi)⟨gi, gj⟩H1 = δij , 

Where δij=0 for i ̸= j and δij = 1 for i = j.  
 
Corollary 2.1.1.1. If A ∈ Cm×n has rank k ≤ min (m, n) < ∞, 
there exist unitary matrices 

U = [u1, . . . , um] ∈ Cm×m 
and 

V = [v1, . . . , vn] ∈ Cn×n 
such that 
 A = UɅV* = ∑ λ�u�v�

∗�
���  (2.1.1) 

Where Ʌ = diag (λ1,………. λk) ∈ Rm×n
 is a diagonal matrix 

for which λ1, . . . , λk  
satisfy λ1 ≥ λ2 ≥ …………….. ≥ λk > 0. 

Avi = λiui , A*ui = λivi 
(ui,uj) = δij, (vi,vj) = δij, u*u=I, v*v = I 

Writing the SVD (from 2.1.1)) of A in (1.1) as ∑ ������
��

���  

then X = ∑
��

��

λ�
v�

�
��� = ∑

��
������

λ�
v� + ∑

��
�ε

λ�
v�

�
���

�
���  (2.1.2)  

From the above eqn it becomes obvious that the solution is 
contaminated by the second term of the last expression, 
especially when λj is much less than ��

��. 
 
2.1.2 Tikhonov Regularization 
As we have seen, the truncated SVD method relies on 
computing the singular values and singular vectors of the 
matrix A. The resulting computational task can be heavy or 
not feasible for large-scale problems. In contrast, the 
Tikhonov regularization method [39] does not require the 
calculation of the SVD. Instead, we solve the problem 

 min��‖�� − �‖�
� + ��‖�‖�

�} (2.1.3)  
for x, where α > 0 is a parameter that governs the weight of 
the regularizationor penalty term in (2.1.3). That is, 
  Xα = arg min��‖�� − �‖�

� + ��‖�‖�
�} (2.1.4) The first 

term of the right hand side of (2.1.3), i.e., the fidelity term, 
measures the fit of the solution to the noisy data and the 
second term controls the norm of the solution as a means of 
governing the noise distortion. There is a trade off between 
these two aspects of the criterion and we want to attain a 
suitable balance through adjusting the parameter α.  
To obtain a more explicit form for (2.1.4), we can write it as 

�∝ = ���min
�

��
�

∝ �
� − �

�
0

��
�

�

 

Which is now just an ordinary least-squares problem with 
the consequence that 

�∝ = ��
�

∝ �
�

�

�
�

∝ �
�

��

�
�

∝ �
�

�

�
�
0

�� 

X∝ = (A�A +∝� I)��A�b. 
 
2.1.3 Iterative Regularization  
Iterative regularization methods are efficient regularization 
tools for image restoration problems. Certain iterative 
methods, e.g., steepest descent, conjugate gradients, and 
Richardson Lucy (EM), have regularizing effects with the 
regularization parameter equal to the number of iterations. 
These are useful in applications, like 3D imaging, with many 
unknowns. An example is Landweber iteration, a variant of 
steepest descent. 
 

 
 
Image deblurring is one of the most classic linear inverse 
problems. Blurring in images can arise from many sources, 
such as limitations of the optical system, camera and object 
motion, astigmatism, and environmental effects. The 
blurring process of an image can be formulated as a 
Fredholm integral equation of the first kind which has the 
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following classic form: � �(� − �′, � − � ′)�(�′, � ′)�� ′�� ′ =��
�(�, �), (�, �) ∈ ��  (2.1.5) 
where � and � are the original image and the blurred image 
respectively. � is a given point spread function (PSF). PSF 
describes the blurring and the resulting image of the point 
source. 
The degree of blurring of the point object is a measure for 
the quality of an imaging system. More information about 
different PSFs can be found in [17]. Equation (2.1.5) can be 
discretized to form a linear system 

 ������ =  �����, 
 � ∈ ���×��  

 �, � ∈ ���   (2.1.6) 
where the matrix � is ill-conditioned since it has many 
singular values close to zero [17]. For simplicity, we assume 
that � in this paper is nonsingular. However, the right-hand 
side � is not available in many practical applications of 
image restoration because of the contamination of noise, so 
the linear system (2.1.6) can be reformulated as 
 �� = �, ��� � = ����� + �, � ∈ ��� (2.1.7) 
where � represents the noise. 
 
Our goal is to obtain a good approximation of the original 
image �true by solving the system (2.1.7) instead of the 
system (2.1.6) since �true is not known. However, the 
solution of (2.1.7) is not a good approximation of the 
solution of (2.1.6) because of ill conditioned �. In fact, there 
is a quite remarkable disparity among the corresponding 
solutions of (2.1.7) and (2.1.6) even if the norm of � is 
small. 
 
However, the previously mentioned techniques (SVD and 
Tikhonov regularization) are usually computationally 
expensive for large-scale problems like image deblurring. 
Iterative methods, especially Krylov subspace iterative 
methods, are used to solve these problems due to their 
inexpensive computational cost and easy implementation 
(see [29] for more details about Krylov subspace methods). 
 
When we apply a Krylov subspace method to solve (2.1.7), 
the semi convergence property is observed. Iterative 
methods can produce a sequence of iterates {�1, �2, . . . , ��, . 
. .} that initially tends to get closer to the exact solution but 
diverges again from the exact solution in later stages 
because the influence of the noise starts to dominate the 
solution. In this situation, the iteration number � can be 
considered as a regularization parameter. We also have 
different methods for choosing an effective �.  
 
Two robust methods appropriate in different situations are: 
the discrepancy principle (DP) and the discrete �-curve 
criterion. DP is the most famous and frequently used 
method. It has distinct advantages and disadvantages: it is 
simple and easy to be utilized, but it needs to know the norm 
of the noise in advance. The discrete �-curve criterion is 
used to choose the regularization parameter by using the 
curve of (log ‖��‖, log ‖��‖). For more information about 
methods for choosing the regularization parameter, we 
suggest [16, Chapter 5] and references therein. 
 
The conjugate gradient (CG) The conjugate gradient (CG) 
method is a classical Krylov subspace iterative method for 

solving the linear systems with symmetric positive definite 
(SPD) matrix, and its regularizing effects are well known 
(see [27] and [18, Chapter 6] for more details).When � is not 
SPD, the method can be applied to the normal equations 
���� = ���.. CGLS is the most stable way to 
implementation of CG algorithm for the normal equations 
([18, Chapter 6], [16, Chapter 6]). Other Krylov subspace 
methods also have been used to solve image restoration 
problems.  
 
2.2 Local regularization methods: 
 
Inverse problems based on first-kind Volterra integral 
equations appear naturally in the study of many applications, 
from geophysical problems to the inverse heat conduction 
problem. The ill-posedness of such problems means that a 
regularization technique is required, but classical 
regularization schemes like Tikhonov regularization destroy 
the causal nature of the underlying Volterra problem and, in 
general, can produce over smoothed results. 
 
For these kinds of problems there is a class of local 
regularization methods in which the original (unstable) 
problem is approximated by a parameterized family of well-
posed, second–kind Volterra equations. Being Volterra, 
these approximating second–kind equations retain the 
causality of the original problem and allow for quick 
sequential solution techniques. In addition, the regularizing 
method we develop is based on the use of a regularization 
parameter which is a function (rather than a single constant), 
allowing for more or less smoothing at localized points in 
the domain 
We consider the following scalar Volterra first-kind integral 
problem. Given a suitable function f(·) defined on [0, 1], 
find ��(·) satisfying, for a.e. � ∈ [0,1],. 
 ��(�) = �(�) (2.2.1) Where A is the bounded linear 
operator on ��(0,1) given by 
 ��(�) = � �(�, �)�(�)��, �. �. � ∈ [0,1]�

�  
 
Ill-posedness of Problem 
 
In the typical case that the range of A is not closed, it is 
well-known that problem (2.2.1) is ill-posed, lacking 
continuous dependence on data � ∈ ��(0,1). Thus, when 
using measured or numerically-approximated data, one must 
resort to a regularization method to ensure stability. 
 
3. Why classical methods can’t be used for 

solving these equations? 
 
There are many classical regularization techniques are 
available for solving ill posed problems but these methods 
are less than optimal for Volterra problems of the form 
(2.2.1). For example, Tikhonov regularization replaces the 
original “causal” problem with a full-domain one. By the 
causal nature of the original problem we mean that problem 
(2.2.1) has the property that, for any t∈(0, 1], the solution u 
on the interval [0, t] is determined only from values of f on 
that same interval; for this reason, sequential solution 
techniques are optimal for causal problems. In contrast, to 
determine a solution via Tikhonov regularization one must 
use data values from the interval [t, 1] (i.e., future data 
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values), thus destroying the causal nature of the original 
problem and leading to non-sequential solution techniques. 
 
Another difficulty arising in classical regularization 
techniques involves the use of a single regularization 
parameter when a priori information indicates that a solution 
is rough in some .areas of the domain and smooth in others. 
In recent years a number of approaches have been developed 
to handle this difficulty, among them the technique of 
bounded variation regularization [1, 3, 10, 11, 12, 26], as 
well as the method of “regularization for curve 
representations” [2]. Although effective, these approaches 
do not preserve the causal nature of the original Volterra 
problem and, in addition, can require a reformulation of the 
linear problem (or linear least-squares problem) into either a 
non- differentiable or non- quadratic optimization problem. 
In [14], a unified approach to regularization with non 
differentiable functional (including functional of bounded 
variation type) is considered, with theoretical treatment 
based on the concept of distributional approximation. The 
approach in [14] may be adapted so that a localized type of 
regularization is possible, however the application of this 
approach to Volterra equations has evidently not been 
studied. 
 
4. What is local regularization technique? 
 
Local regularization techniques form a different class of 
methods which have been the focus of study in recent years. 
These methods retain both the linear and causal structure of 
the original Volterra problem, allowing for solution via fast 
sequential methods, and rely on differentiable optimization 
techniques for solution. And, because regularization occurs 
in local regions only, sharp/fine structures of true solutions 
can often be recovered. The development in [19, 20, 21, 23, 
24] of such methods grew out of a desire to construct a 
theoretical framework for understanding a popular numerical 
method developed by J. V. Beck in the 1960’s for the IHCP. 
In this sequential method, Beck held solutions rigid for a 
short time into the future (forming a locally regularized 
“prediction”), and then truncated the prediction in order to 
improve accuracy (“correction”) before moving to the next 
step in the sequence. Generalizations of Beck’s ideas also 
retain this “predictor-corrector” characteristic when 
discretized. In general, the methods are easy to implement 
numerically and provide fast results in almost real-time. (We 
note that mollifier methods for regularization can also be 
considered local regularization methods; however such 
methods do not easily apply to general equations of the form 

(1). See [22] and the references therein for a more complete 
discussion. 
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