
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

An Efficient Approach of Network Intrusion
Detection and Countermeasure Selection in Virtual

Network Systems

Shaik Shanawaz1, K. Thyagarajan2

1M.Tech, Sri Venkateswara College of Engineering and Technology,
RVS nagar, Chittoor, Andhra Pradesh, India

2Associate Professor, M.Tech, Sri Venkateswara College of Engineering and Technology,
RVS nagar, Chittoor, Andhra Pradesh, India

Abstract: Intrusion Detection and Prevention Systems (IDPS) are used: to identify possible attacks, collecting information about them
and the trying to stop their occurrence and at last reporting them to the system administrator. These systems are used by some
organizations to detect the weaknesses in their security policies, documenting existing attacks and threats and preventing an individual
from violating security policies. Because of their advantages these systems became an important part of the security infrastructure in
nearly every organization. In a Cloud computing environment, attackers can determine the vulnerabilities in the cloud systems and
compromise the virtual machines to set out large scale Distributed Denial-of-Service (DDOS) attack. To avert these virtual machines
from concession, we propose a multi-phase solution E-NICE (An Efficient Network Intrusion Detection and Countermeasure selection
in Virtual Network Systems using defense in depth frame work).

Keywords: Network Security, Cloud Computing, Intrusion Detection, Attack Graph, Zombie Detection

1. Introduction

Recent studies have shown that users trekking to the cloud
consider security as the most important factor. A recent
Cloud Security Alliance (CSA) survey shows that among all
security issues, misuse and outrageous use of cloud
computing is considered as the top security threat in which
attackers can use susceptibilities in clouds and utilize cloud
system schemes to utilize attacks. In traditional data centers,
where system administrators have full commandl over the
host machines, susceptibilities can be detected and covered
by the system administrator in a rationalized manner.
However, covering known security slits in cloud data
centers, where cloud users usually have the advantage to
control software placed on their managed VMs, may not
work effectually and can violate the Service Level Agreement
(SLA). Furthermore, cloud users can set up breakable
software on their VMs, which essentially accords to loop
slits in cloud security. The challenge is to establish
productive susceptibility/attack detection and response
system for accurately identifying attacks and minimizing the
impact of security breach to cloud users. In a cloud system
where the infrastructure is shared by potentially millions of
users, misuse and outrageous use of the shared infrastructure
benefits attackers to use susceptibilities of the cloud and use
its scheme to utilize attacks in more systematic ways. Such
attacks are more productive in the cloud territory since cloud
users usually share computing schemes, e.g., being attached
through the same control, sharing with the same data storage
and file systems, even with potential attackers . The same
setup for VMs in the cloud e.g., virtualization techniques,
VM OS, placed breakable software, networking, etc., tempts
attackers to compromise multiple VMs. This project propose
E-NICE (An Efficient Network Intrusion detection and
Countermeasures Selection in virtual network systems) to

establish a defense-in-depth intrusion detection structure. For
better attack detection, E-NICE incorporates attack graph
analytical procedures into the intrusion detection processes.
We must note that the design of E-NICE does not intend to
improve any of the existing intrusion detection algorithms;
indeed, E-NICE utilizes a reconfigurable virtual networking
approach to detect and counter the attempts to compromise
VMs, thus intercepting zombie VMs. In general, E-NICE
incorporates two main phases: (1) utilize a lightweight
mirroring-based network intrusion detection agent [E-NICE
(A)] on each cloud server to capture and analyze cloud
traffic. E-NICE (A) periodically scans the virtual system
susceptibilities within a cloud server to establish Scenario
Attack Graph (SAGs), and then based on the severity of
associated susceptibility towards the collaborative attack
goals; E-NICE will decide whether or not to put a VM in
network investigation state. (2) Once a VM enters
investigation state, Deep Packet Investigation (DPI) Digital
Object Identifier.

2. Present Work

This project propose E-NICE (An Efficient Network
Intrusion detection and Countermeasure Selection in virtual
network systems) to establish a defense-in-depth intrusion
detection structure. For better attack detection, E-NICE
incorporates attack graph analytical procedures into the
intrusion detection processes. We must note that the design
of E-NICE does not intend to improve any of the existing
intrusion detection algorithms; indeed, E-NICE utilizes a
reconfigurable virtual networking approach to detect and
counter the attempts to compromise VMs, thus intercepting
zombie VMs.

Paper ID: 02015685 1317

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.2 Advantages of Present Work

The contributions of E-NICE are presented as follows:
 We devise E-NICE, a new multi-phase distributed network

intrusion detection and interception structure in a virtual
networking territory that captures and inspects suspicious
cloud traffic without interrupting users’ applications and
cloud services.

 E-NICE incorporates a software controlling solution to
quarantine and inspect suspicious VMs for further
investigation and protection. Through guidable network
approaches, E-NICE can improve the attack detection
probability and improve the resiliency to VM use attack
without interrupting existing normal cloud services.

 E-NICE utilizes a novel attack graph approach for attack
detection and interception by correlating attack behavior
and also suggests productive countermeasures.

 E-NICE optimizes the execution on cloud servers to
minimize scheme consumption. Our study shows that E-
NICE consumes less computational overhead collated to
proxy-based network intrusion detection solutions.

3. Defense-In-Depth Intrusion Detection

Framework in Virtual Network System

Network and security management has to assure
uninterrupted access to the communication infrastructure.
With growing networks and increasing amount of
transported data, it gets more and more complicated to
supervise the operation of the communication systems.
Sometimes computer networks are not well protected against
attacks from the outside, so additional surveillance may be
necessary. But even well protected networks need
surveillance. A lot of these networks are threatened from the
inside. Intrusion Detection Systems (IDSs) help securing
these networks. This paper focuses on a tool for visualizing
and detecting anomalies of the traffic structure. Several
distributed Denial of Service attacks have shown the
necessity of better protecting computers and networks
connected to the Internet. Due to widely available attack
tools, attacks of this kind can be carried out by persons
without in-depth knowledge of the attacked system.
Insufficient protected Open University networks are an
example for networks that need additional surveillance.
These networks often include vulnerable computers and
offer high bandwidth connections to the Internet. These
features are the reason why attackers are interested in these
networks. The machines in these networks are not the goal of
the attacks. Normally, they do not contain interesting
information for the attacker, but they are suitable for
scanning other networks and starting (for example) Denial of
Service attacks. The Internet is increasingly important as the
vehicle for global electronic commerce. Many organize- tins
also use Internet TCP/IP protocols to build intra-networks
(intranets) to share and disseminate internal information. A
large scale attack on these networks can cripple important
world-wide Internet operations. The Internet Worm of 1988
caused the Internet to be unavailable for about _vet days
Seven years later, there is no system to detect or an- laze
such a problem on an Internet-wide scale. The development
of a secure infrastructure to defend the Internet and other

networks is a major challenge. In this paper, we present the
design of the Graph-depends Intrusion Detection System
(Girds). Girds’ design goal is to analyze network activity on
TCP/IP networks with up to several thousand hosts. Its
primary function is to detect and anal- lyre large-scale
attacks, although it also has the ca- ability of detecting
intrusions on individual hosts. Girds aggregates network
activity of interest into Activity graphs, which are evaluated
and possibly re- ported to a system security ocher (SSO).
The hiker- archival architecture of Grids allows it to scale to
large networks. Grads is being designed and built by the
authors using formal consensus decision-making and a well-
documented software process. We have completed the Grids
design and have almost _knishes building a prototype. This
paper is organized as follows. Brier describes related work
on intrusion detection systems and motivates the need for
Grids’. Section 1.2 discusses classes of attacks that we
expect to detect. In the simple Grids’ detection algorithm is
described, followed by a more detailed discussion in has a
treat- meant of the hierarchical approach to scalability and
discusses how the hierarchy is managed. outlines the policy
language. Covers some limitations of Girds. Finally, presents
conclusions and discusses future work. Network security is a
complicated subject, historically only tackled by well-trained
and experienced experts. However, as more and more people
become ``wired'', an increasing number of people need to
understand the basics of security in a networked world.

Figure 1: Layers of defense in depth framework

Figure 2: Defense in depth layered security model

Paper ID: 02015685 1318

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. E-Nice Models

In this section, we describe how to utilize attack graphs to
model security threats and susceptibilities in a virtual
networked system, and propose a VM protection model
depends on virtual network reconfiguration approaches to
prevent VMs from being exploited.

4.1 Threat Model

In our attack model, we assume that an attacker can be
located either outside or inside of the virtual networking
system. The attacker’s primary goal is to exploit vulnerable
VMs and compromise them as zombies. Our protection
model focuses on virtual-network-depends attack detection
and reconfiguration solutions to improve there siliency to
zombie explorations. Our work does not involve host-
depends IDS and does not address how to handle encrypted
traffic for attack detections. Our proposed solution can be
deployed in an Infrastructure-as-a-Service (IaaS) cloud
networking system, and we assume that the Cloud Service
Provider (CSP) is benign. We also assume that cloud service
users are free to install whatever operating systems or
applications they want, even if such action may introduce
susceptibilities to their controlled VMs. Physical security of
cloud server is out of scope of this project.

We assume that the hypervisor is secure and free of any
susceptibilities. The issue of a malicious tenant breaking out
of DomU and gaining access to physical server has been
studied in recent work and is out of scope of this project.

4.2 Attack Graph Model

An attack graph is a modeling tool to illustrate all possible
multi-stage, multi-host attack paths that are crucial to
understand threats and then to decide appropriate
countermeasures. In an attack graph, each node represents
either precondition or consequence of an exploit. The actions
are not necessarily an active attack since normal protocol
interactions can also be used for attacks. Attack graph is
helpful in identifying potential threats, possible attacks and
known susceptibilities in a cloud system. Since the attack
graph provides details of all known susceptibilities in the
system and the connectivity information, we get a whole
picture of current security situation of the system where we
can predict the possible threats and attacks by correlating
detected events or activities. If an event is recognized as a
potential attack, we can apply specific countermeasures to
mitigate its impact or take actions to prevent it from
contaminating the cloud system. To represent the attack and
the result of such actions, we extend the notation of
MulVAL logic attack graph as presented by X. Ou et al. and
define as Scenario Attack Graph (SAG).

Definition 1 (Scenario Attack Graph). An Scenario Attack
Graph is a tuple SAG=(V, E), where
1) V = NC∪ND∪NR denotes a set of vertices that include

three types namely conjunction node NC to represent
exploit, disjunction node ND to denote result of exploit,
and root node NR for showing initial step of an attack
scenario.

2) E = Epre ∪ Epost denotes the set of directed edges. An
edge e ∈ Epre ⊆ ND × NC represents that ND must be
satisfied to achieve NC. An edge e ∈ Epost ⊆
NC × ND means that the consequence shown by ND can
be obtained if NC is satisfied. Node vc ∈ NC is defined as
a three tuple (Hosts, vul, alert) representing a set of IP
addresses, susceptibility information such as CVE, and
alerts related to vc, respectively. ND behaves like a logical
OR operation and contains details of the results of actions.
NR represents the root node of the scenario attack graph.
For correlating the alerts, we refer to the approach
described in [15] and define a new Alert Correlation
Graph (ACG) to map alerts in ACG to their respective
nodes in SAG. To keep track of attack progress, we track
the source and destination IP addresses for attack
activities.

Definition 2 (Alert Correlation Graph). An ACG is a three
tuple ACG = (A,E, P), where
1) A is a set of aggregated alerts. An alert a ∈ A is a data

structure (src, dst, cls, ts) representing source IP address,
destination IP address, type of the alert, and timestamp of
the alert respectively.

2) Each alert a maps to a pair of vertices (vc, vd) in SAG
using map(a) function, i.e., map(a) : a _→{(vc, vd)|(a.src
∈ vc.Hosts) ∧ (a.dst ∈ vd.Hosts) ∧ (a.cls = vc.vul)}.

3) E is a set of directed edges representing correlation
between two alerts (a, a_) if criteria below satisfied:
i. (a.ts < a_.ts) ∧ (a_.ts − a.ts < threshold)

ii. ∃(vd, vc) ∈ Epre : (a.dst ∈ vd.Hosts ∧ a_.src ∈
vc.Hosts)

4) P is set of paths in ACG. A path Si ⊂ P is a set of related
alerts in chronological order.

We assume that A contains aggregated alerts rather than raw
alerts. Raw alerts having same source and destination IP
addresses, attack type and timestamp within a specified
window are aggregated as Meta Alerts. Each ordered pair (a,
a_) in ACG maps to two neighbor vertices in SAG with
timestamp difference of two alerts within a predefined
threshold. ACG shows dependency of alerts in chronological
order and we can find related alerts in the same attack
scenario by searching the alert path in ACG. A set P is used
to store all paths from root alert to the target alert in the
SAG, and each path Si ⊂ P represents alerts that belong to
the same attack scenario.

Paper ID: 02015685 1319

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4.3 VM Protection Model

The VM protection model of E-NICE consists of a VM
profiler, a security indexer and a state monitor. We specify
security index for all the VMs in the network depending
upon various factors like connectivity, the number of
susceptibilities present and their impact scores. The impact
score of susceptibility, as defined by the CVSS guide, helps
judge the confidentiality, integrity, and availability impact of
the susceptibility being exploited. Connectivity metric of a
VM is decided by evaluating incoming and outgoing
connections.

Definition 3 (VM State). Depends on the information
gathered from the network controller, VM states can be
defined as following:

1) Stable: there does not exist any known susceptibility on
the VM.

2) Vulnerable: presence of one or more susceptibilities on a
VM, which remains unexploited.

3) Exploited: at least one susceptibility has been exploited
and the VM is compromised.

4) Zombie: VM is under control of attacker.

5. Performance Evaluation

In this section we present the performance evaluation of E-
NICE. Our evaluation is conducted in two directions: the
security performance, and the system computing and
network reconfiguration overhead due to introduced security
mechanism.

5.1 Security Performance Analysis

To demonstrate the security performance of E-NICE, we
created a virtual network testing environment consisting of
all the presented components of E-NICE.

5.1.1 Environment and Configuration
To evaluate the security performance, a demonstrative
virtual cloud system consisting of public (public virtual
servers) and private (VMs) virtual domains is established as
shown in Figure 3. Cloud Servers 1 and 2 are connected to
Internet through the external firewall. In the Demilitarized
Zone (DMZ) on Server 1, there is one Mail server, one DNS
server and one Web server. Public network on Server 2
houses SQL server and NAT Gateway Server. Remote
access to VMs in the private network is controlled through
SSHD (i.e., SSH Daemon) from the NAT Gateway Server. 2
shows the susceptibilities present in this network and 3
shows the corresponding network connectivity that can be
explored depends on the identified susceptibilities.

Table 2: Vulnerabilities in the virtual networked system

Paper ID: 02015685 1320

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 3: Virtual network Connectivity

5.1.2 Attack Graph and Alert Correlation
The attack graph can be generated by utilizing network
topology and the susceptibility information. As the attack
progresses, the system generates various alerts that can be
related to the nodes in the attack graph. Creating an attack
graph requires knowledge of network connectivity, running
services and their susceptibility information. This
information is provided to the attack graph generator as the
input. Whenever a new susceptibility is discovered or there
are changes in the network connectivity and services running
through them, the updated information is provided to attack
graph generator and old attack graph is updated to a new
one. SAG provides information about the possible paths that
an attacker can follow. ACG serves the purpose of
confirming attackers’ behavior, and helps in determining
false positive and false negative. ACG can also be helpful in
predicting attackers’ next steps.

5.1.3 Countermeasure Selection
To illustrate how E-NICE works, let us consider for
example, an alert is generated for node 16 (vAlert = 16)
when the system detects LICQ Buffer overflow. After the
alert is generated, the cumulative probability of node 16
becomes 1 because that attacker has already compromised
that node. This triggers a change in cumulative probabilities
of child nodes of node 16. Now the next step is to select the
countermeasures from the pool of countermeasures CM. If
the countermeasure CM4: create filtering rules is applied to
node 5 and we assume that this countermeasure has
effectiveness of 85%, the probability of node 5 will change
to 0.1164, which causes change in probability values of all
child nodes of node 5 thereby accumulating to a decrease of
28.5% for the target node 1. Following the same approach
for all possible countermeasures that can be applied, the
percentage change in the cumulative probability of node 1,
i.e., benefit computed using (7) are shown in Figure 5.

Apart from calculating the benefit measurements, we also
present the evaluation depends on Return of Investment
(ROI) using (8) and represent a comprehensive evaluation
considering benefit, cost and intrusiveness of
countermeasure. Figure 6 shows the ROI evaluations for
presented countermeasures. Results show that
countermeasures CM2 and CM8 on node 5 have the
maximum benefit evaluation; however their cost and
intrusiveness scores indicate that they might not be good
candidates for the optimal countermeasure and ROI
evaluation results confirm this. The ROI evaluations
demonstrate that CM4 on node 5 is the optimal solution.

Paper ID: 02015685 1321

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5.1.4 False Alarms
A cloud system with hundreds of nodes will have huge
amount of alerts raised by Snort. Not all of these alerts can
be relied upon, and an effective mechanism is needed to
verify if such alerts need to be addressed. Since Snort can be
programmed to generate alerts with CVE id, one approach
that our work provides is to match if the alert is actually
related to some susceptibility being exploited. If so, the
existence of that susceptibility in SAG means that the alert is
more likely to be a real attack. Thus, the false positive rate
will be the joint probability of the correlated alerts, which
will not increase the false positive rate compared to each
individual false positive rate. Moreover, we cannot keep
aside the case of zeroday attack where the susceptibility is
discovered by the attacker but is not detected by
susceptibility scanner. In such case, the alert being real will
be regarded as false, given that there does not exist
corresponding node in SAG. Thus, current research does not
address how to reduce the false negative rate. It is important
to note that susceptibility scanner should be able to detect
most recent susceptibilities and sync with the latest
susceptibility database to reduce the chance of Zero-day
attacks.

5.2 E-NICE System Performances

We evaluate system performance to provide guidance on
how much traffic E-NICE can handle for one cloud server

and use the evaluation metric to scale up to a large cloud
system. In a real cloud system, traffic planning is needed to
run E-NICE, which is beyond the scope of this project. Due
to the space limitation, we will investigate the research
involving multiple cloud clusters in the future. To
demonstrate the feasibility of our solution, comparative
studies were conducted on several virtualization approaches.
We evaluated E-NICE depends on Dom0 and DomU
implementations with mirroring-depends and proxy-depends
attack detection agents (i.e., E-NICE-AGENT). In mirror-
depends IDS scenario, we established two virtual networks
in each cloud server: normal network and monitoring
network. E-NICE-AGENT is connected to the monitoring
network. Traffic on the normal network is mirrored to the
monitoring network using Switched Port Analyzer (SPAN)
approach. In the proxy-depends IDS solution, E-NICE-
AGENT interfaces two VMs and the traffic goes through E-
NICE-AGENT. Additionally, we have deployed the E-
NICE-AGENT in Dom0 and it removes the traffic
duplication function in mirroring and proxy-depends
solutions. E-NICE-AGENT running in Dom0 is more
efficient since it can sniff the traffic directly on the virtual
bridge. However, in DomU, the traffic need to be duplicated
on the VM’s virtual interface (vif), causing overhead. When
the IDS is running in Intrusion Prevention System (IPS)
mode, it needs to intercept all the traffic and perform packet
checking, which consumes more system resources as
compared to IDS mode. To demonstrate performance

Paper ID: 02015685 1322

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

evaluations we used four metrics namely CPU utilization,
network capacity, agent processing capacity, and
communication delay. We performed the evaluation on cloud
servers with Intel quad-core Xeon 2.4Ghz CPU and 32G
memory. We used packet generator to mimic real traffic in
the Cloud system. As shown in Figure 9, the traffic load, in
form of packet sending speed, increases from 1 to 3000
packets per second. The performance at Dom0 consumes

less CPU and the IPS mode consumes the maximum CPU
resources. It can be observed that when the packet rate
reaches to 3000 packets per second; the CPU utilization of
IPS at DomU reaches its limitation, while the IDS mode at
DomU only occupies about 68%.

Figure 9: CPU utilization of E-NICE-AGENT

Figure 10, represents the performance of E-NICE-AGENT
in terms of percentage of successfully analyzed packets, i.e.,
the number of the analyzed packets divided by the total
number of packets received. The higher this value is, more
packets this agent can handle. It can be observed from the
result that IPS agent demonstrates 100% performance
because every packet captured by the IPS is cached in the

detection agent buffer. However, 100% success analyzing
rate of IPS is at the cost of the analyzing delay. For other
two types of agents, the detection agent does not store the
captured packets and thus no delay is introduced. However,
they all experience packet drop when traffic load is huge.

Figure 10: E-NICE-AGENT Success Analyzing Rate.

In Figure 11, the communication delay with the system
under different E-NICE-AGENT is presented. We generated

100 consecutive normal packets with the speed of 1 packet
per second to test the end-to-end delay of two VMs

Paper ID: 02015685 1323

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

compared by using E-NICE-AGENT running in mirroring
and proxy modes in DomU and E-NICE running in Dom0.
We record the minimal, average, and maximum
communication delay in the comparative study. Results show

that the delay of proxy-depends E-NICE-AGENT is the
highest because every packet has to pass through it. Mirror-
depends E-NICEA at DomU and E-NICE-AGENT at Dom0
do not have noticeable differences in the delay..

Figure 11: Network Communication Delay of E-NICE-AGENT.

From this test we expected to prove the proposed solution,
thus achieving our goal”establish a dynamic defensive
mechanism depends software defined networking approach
that involves multiphase intrusion detections”. The
experiments prove that for a small-scale cloud system, our
approach works well. The performance evaluation includes
two parts. First, security performance evaluation. It shows
that the our approach achieves the design security goals: to
prevent vulnerable VMs from being compromised and to do
so in less intrusive and cost effective manner. Second, CPU
and throughput performance evaluation. It shows the limits
of using the proposed solution in terms of networking
throughputs depends on software switches and CPU usage
when running detection engines on Dom 0 and Dom U. The
performance results provide us a benchmark for the given
hardware setup and shows how much traffic can be handled
by using a single detection domain. To scale up to a data
center level intrusion detection system, a decentralized
approach must be devised, which is scheduled in our future
research.

6. Conclusion and Future Scope

In this project we propose E-NICE, which is proposed to
detect and mitigate collaborative attacks in the cloud virtual
networking territory. E-NICE utilizes the attack graph model
to conduct attack detection and prediction. The proposed
solution investigates how to use the programmability of
software controls based solutions to improve the detection
correctness and defeat victim use phases of collaborative
attacks. The system evaluation exhibits the attainability of E-
NICE and shows that the proposed solution can significantly
reduce the risk of the cloud system from being used and
misused by intramural and external attackers. E-NICE only
investigates the network IDS approach to counter zombie
explorative attacks. In order to improve the detection
correctness, host-based IDS solutions are needed to be

incorporated and to cover the slit spectrum of IDS in the
cloud system. This should be investigated in the future work.
Additionally, as indicated in the project, we will investigate
the scalability of the proposed E-NICE solution by
investigating the denationalized network control and attack
analysis model based on current study.

References

Good Teachers are worth more than thousand books, we
have them in Our Department

References Made From:

[1] Coud Sercurity Alliance, “Top threats to cloud

computing v1.0,”
https://cloudsecurityalliance.org/topthreats/csathreats.v1
.0.pdf, March 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia, “A view of cloud computing,”
ACM Commun., vol. 53, no. 4, pp. 50–58, Apr. 2010.

[3] B. Joshi, A. Vijayan, and B. Joshi, “Securing cloud
computing territory hostile to DDoS attacks,” IEEE Int’l
Conf. Computer Communication and Informatics
(ICCCI ’12), Jan. 2012.

[4] H. Takabi, J. B. Joshi, and G. Ahn, “Security and
privacy challenges in cloud computing territorys,” IEEE
Security & Privacy, vol. 8, no. 6, pp. 24–31, Dec. 2010.

[5] “Open vControl project,” http://openvcontrol.org, May
2012.

[6] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson,
and J. Barker, “Detecting spam zombies by observing
outgoing messages,” IEEE Trans. Dependable and
Secure Computing, vol. 9, no. 2, pp. 198–210, Apr.
2012. IEEE TRANSACTIONS ON DEPEDABLE AND
SECURE COMPUTING This article has been accepted

Paper ID: 02015685 1324

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 8, August 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

for publication in a future issue of this journal, but has
not been fully edited. Content may change prior to final
publication. 14

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W.
Lee, “BotHunter: detecting malware contamination
through IDS-driven dialog correlation,” Proc. of 16th
USENIX Security Symp. (SS ’07), pp. 12:1–12:16, Aug.
2007.

[8] G. Gu, J. Zhang, and W. Lee, “BotSniffer: detecting
botnet command and control channels in network
traffic,” Proc. of 15th Ann. Network and Distributed
Sytem Security Symp. (NDSS ’08), Feb. 2008.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.
Wing, “Automated generation and analysis of attack
graphs,” Proc. IEEE Symp. on Security and Privacy,
2002, pp. 273–284.

[10] “NuSMV: A new symbolic model checker,”
http://afrodite.itc.it: 1024/�nusmv. Aug. 2012.

[11] S. H. Ahmadinejad, S. Jalili, and M. Abadi, “A hybrid
model for correlating aware of of known and unknown
attack scenarios and updating attack graphs,” Computer
Networks, vol. 55, no. 9, pp. 2221–2240, Jun. 2011.

[12] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL:
a logicbased network security analyzer,” Proc. of 14th
USENIX Security Symp., pp. 113–128. 2005.

[13] R. Sadoddin and A. Ghorbani, “Aware correlation
survey: structure and techniques,” Proc. ACM Int’l
Conf. on Privacy, Security and Trust: Bridge the Gap
Between PST Technologies and Business Services (PST
’06), pp. 37:1–37:10. 2006.

[14] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs
for correlating, hypothesizing, and predicting intrusion
aware of,” Computer Communications, vol. 29, no. 15,
pp. 2917–2933, Sep. 2006.

[15] S. Roschke, F. Cheng, and C. Meinel, “A new aware
correlation algorithm based on attack graph,”
Computational Intelligence in Security for Information
Systems, LNCS, vol. 6694, pp. 58–67. Springer, 2011.

Paper ID: 02015685 1325

