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Abstract: Many tools and frameworks have been developed to process data on distributed data centers. MapReduce[3] most prominent 
among such frameworks has emerged as a popular distributed data processing model for processing vast amount of data in parallel on 
large clusters of commodity machines. The JobTracker in MapReduce framework is responsible for both managing the cluster's 
resources and executing the MapReduce jobs, a constraint that limits scalability, resource utilization. YARN [2] the next-generation 
execution layer for Hadoop splits processing and resource management capabilities of JobTracker into separate entities and eliminates 
the dependency of Hadoop on MapReduce. This new model is more isolated and scalable compared to MapReduce, providing improved 
features and functionality. This paper discusses the design of YARN and significant advantages over traditional MapReduce.  
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1. Introduction 
 
Hadoop [1] is an open source framework for processing vast 
amount of data on large clusters of commodity hardware in 
parallel. Hadoop is accessible, simple, scalable and robust. 
Hadoop is well known for its processing framework, 
Mapreduce and its distributed file system HDFS[4]. HDFS is 
designed to hold large amount of data, and provide access to 
this data to many clients distributed across a network. HDFS 
has two categories of nodes: Namenode and Datanodes. The 
Namenode maintain metadata of all the files and the 
Datanodes are the responsible for storing the actual blocks of 
all the files in the filesystem. MapReduce is programming 
model and an associated implementation for processing and 
generating large data sets with a parallel, distributed 
algorithm on a cluster. Hadoop is an open source 
implementation of MapReduce.  
 
Hadoop is an open source framework for writing and running 
distributed applications that process large amounts of data. 
Distributed computing is a wide and varied field, but the key 
distinctions of Hadoop are that it is; 
 Accessible—Hadoop runs on large clusters of commodity 

machines or on cloud computing services such as 
Amazon’s Elastic Compute Cloud (EC2).  

 Robust—Because it is intended to run on commodity 
hardware, Hadoop is architected with the assumption of 
frequent hardware malfunctions. It can gracefully handle 
most such failures.  

 Scalable—Hadoop scales linearly to handle larger data by 
adding more nodes to the cluster.  

 Simple—Hadoop allows users to quickly write efficient 
parallel code.  

 Hadoop’s accessibility and simplicity give it an edge over 
writing and running large distributed programs. Even 
students can quickly and cheaply create their own Hadoop  
cluster. On the other hand, its robustness and scalability 
make it suitable for even the most demanding jobs at 

Yahoo and Facebook. These features make Hadoop 
popular in both academia and industry. Hadoop’s main 
processing engine is MapReduce, which is currently one of 
the most popular big-data processing frameworks 
available. Numerous practical problems ranging from log 
analysis, to data sorting, to text processing, to pattern-
based search, to graph processing, to machine learning, 
and much more have been solved using MapReduce.  
 

1. 1 Literature Survey 
 
Several studies were published on tuning the performance of 
MapReduce. Many have recognized the limitations of classic 
MapReduce programming model. Mesos[13] is a platform 
for sharing commodity clusters between multiple diverse 
cluster computing frameworks, such as Hadoop and MPI. 
Sharing improves cluster utilization and avoids per-
framework data replication. Mesos shares resources in a fine-
grained manner, allowing frameworks to achieve data 
locality by taking turns reading data stored on each machine. 
To support the sophisticated schedulers of today’s 
frameworks, Mesos introduces a distributed two-level 
scheduling mechanism called resource offers. Mesos decides 
how many resources to offer each framework, while 
frameworks decide which resources to accept and which 
computations to run on them. Mesos can achieve near-
optimal data locality when sharing the cluster among diverse 
frameworks, can scale to 50,000 nodes, and is resilient to 
failures.  
 
Omega[14], Google’s next-generation cluster management 
platform is focused on a cluster scheduling architecture that 
uses parallelism, shared state, and optimistic concurrency 
control. Omega model uses both lightweight simulations 
with synthetic workloads, and high-fidelity, trace-based 
simulations of production workloads at Google,and the 
evaluation shows that optimistic concurrency over shared 
state is a viable, attractive approach to cluster scheduling.  
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The Cosmos[15] Storage System is an append-only file 
system that reliably stores petabytes of data. The system is 
optimized for large sequential I/O. All writes are append-
only and concurrent writers are serialized by the system. 
Data is distributed and replicated for fault tolerance and 
compressed to save storage and increase I/O throughput. In 
Cosmos, applications are programmed against the execution 
engine that provides a higher-level programming interface 
and a runtime system that automatically handles the details 
of optimization, fault tolerance, data partitioning, resource 
management, and parallelism.  
 
1. 2 Mapreduce Processing 
 
According to [3], MapReduce is a programming model for 
processing large-scale datasets in computer clusters. The 
MapReduce programming model consists of two functions, 
map () and reduce (). Users can implement their own 
processing logic by specifying a customized map () and 
reduce () function. The map () function takes an input 
key/value pair and produces a list of intermediate key/value 
pairs. The MapReduce runtime system groups together all 
intermediate pairs based on the intermediate keys and passes 
them to reduce () function for producing the final results. 
The signatures of map () and reduce () are as follows; 
 
map (k1,v1)  list(k2,v2) 
reduce (k2,list(v2))  list(v2) 
 
A MapReduce cluster employs a master-slave architecture 
where one master node manages a number of slave nodes. In 
the Hadoop, the master node is called JobTracker and the 
slave node is called TaskTracker. Hadoop launches a 
MapReduce job by first splitting the input dataset into even-
sized data blocks. Each data block is then scheduled to one 
TaskTracker node and is processed by a map task. The task 
assignment process is implemented as a heartbeat protocol. 
The TaskTracker node notifies the JobTracker when it is 
idle. The scheduler then assigns new tasks to it. The 
scheduler takes data locality into account when it 
disseminates data blocks. It always tries to assign a local data 
block to a TaskTracker. If the attempt fails, the scheduler 
will assign a rack-local or random data block to the 
TaskTracker instead. When map() functions complete, the 
runtime system groups all intermediate pairs and launches a 
set of reduce tasks to produce the final results. .  
 
2. Motivation 
 
Hadoop’s MapReduce is an easy-to-use distributed data 
processing framework. The analysis reveals a number of 
limitations, including; 
 
a) Limitation on scalability  
b) Inefficient resource utilization and  
c) Lack of support for non-Mapreduce applications  
d) Availabilty issue 
 
 
 
 

2. 1 Limitation on Scalability 
 
The classic MapReduce is composed of a master node, 
JobTracker and a number of slave nodes, TaskTrackers. The 
JobTracker is in charge of two distinct, complex 
responsibilities. 
 
• Managing the computational resources in the cluster, 

which involves maintaining the list of live nodes, the list 
of available and occupied map and reduce slots, and 
allocating the available slots to appropriate jobs and tasks 
according to selected scheduling policy [5].  

• Coordination of all tasks running on a cluster, which 
involves instructing TaskTrackers to start map and reduce 
tasks, monitoring the execution of the tasks, restarting 
failed tasks, speculatively running slow tasks, calculating 
total values of job counters, and more.  

 

 
Figure1: Running MapReduce on MR1 

 
These large number of responsibilities on a single process 
caused scalability issues, especially on clusters where 
jobtracker had to monitor a large number of tasktrackers, 
jobs submitted and the execution of map,reduce tasks.  
 
2. 2 Inefficient Resource Utilization 
 
Hadoop clusters never use the computational resources 
efficiently. The computational resources are split into fixed 
number of concurrent map slots and reduce slots[8] on a 
node by the administrator in MapReduce framework. 
Inefficient resource utilization occurs because mapper slots 
might be full while the reducer slots are totally empty. The 
Datanodes that run reduce slots may be idle even though 
there is immediate requirement for compute resources to be 
used by mapper slots.  
 
2. 3 Lack of Support For Non-Mapredue Workloads 
 
The JobTracker is tightly coupled with the Mapreduce 
constraining Hadoop to run only Mapreduce based 
applications. Mapreduce is I/O intensive [9] and is not 
suitable for running memory intensive programming 
paradigms such as graph processing, machine learning. 
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Though MapReduce supports different use cases, it is not 
suitable for large scale computation and is not flexible to 
integrate a wide range of emerging projects.  
 
2.4 Addressing the availability issue 
 
2.4.1 Tasktracker Failure 
If a tasktracker fails by crashing, the JobTracker stops 
receiving heartbeat signals. Once the JobTracker notices a 
failed tasktracker, it removes the node from the list of 
tasktrackers to schedule tasks on. The tasks that are run on 
the failed node are re-run on other tasktrackers that are live 
and contain replicated copy of data for executing the job. 
The map tasks that are incomplete or completed successfully 
but belongs to a failed job are also re-run to make their 
output available for reduce tasks.  
 
2.4.2  Jobtracker Failure 
Failure of JobTracker is considered as single point of failure 
as there is no mechanism for dealing with this failure. 
However JobTracker failure has very low chances of 
occurring. Once the JobTracker recovers from failure all the 
jobs that were running before failure must be re-run.  
 
3. A New Resource Management Platform for 

Hadoop 
 
To address the issues in Hadoop MapReduce, a new 
architecture is described that avoids scalability limitations, 
resource utilization problems and provide an enhanced 
computing platform for numerous programming models. In 
this approach the responsibilities of JobTracker are divided 
into two components: Resource Manager and Application 
Master. A component on each node, Node Manager holds the 
containers (cpu, bandwidth, memory) and launches the 
container as instructed by the Resource Manager.  
 
3. 1 Resource Manager 
 
The Resource Manager [2] controls the usage of resources 
across the cluster. The containers are allocated to the running 
applications based on resource requirements of the 
applications. The Resource Manager monitors the number of 
available nodes, resources and coordinates the allocation of 
resources to the applications. The scheduler that is in-built in 
Resource Manager performs its task of allocating resources 
to the applications. The decision of allocation is based on 
constraints such as queue capacity, fairness. The Resource 
Manager allocates resources to the Application Master and 
also keeps track of the applications on the Node Managers. 
Resource Managers adopts two kinds of scheduling policies 
according to the requirements, fair scheduling and capacity 
scheduling [4]. In fair scheduling the jobs are scheduled in 
such a way that each user gets a share of cluster capacity. 
The capacity scheduler maintains a cluster in the form of 
queues, and the jobs in the queue are schedule based on 
FIFO scheduling. 
 
 
 
 

3. 2 Application Master 
 
The Application Master [2] takes the role of TaskTracker of 
classic MapReduce. The Application Master has control on 
all the applications that runs in the cluster. This component is 
responsible for requesting resources from Resource Manager 
and coordinating the execution of all the tasks within the 
application. The Application Master also monitors the 
resource usage, resource allocation. The applications are run 
by Application Master using the containers that are 
controlled by Node Managers. Whenever a job is submitted 
by the client and the Resource Manager starts an Application 
Master. The Application Master keeps track of job’s status 
and decides how to run the tasks. If the job is small with less 
number of mappers and reducers,it is run on same machine 
otherwise the Application Master requests more containers 
from Resource Manager. Once the container is assigned the 
Appliction Master starts the task by interacting with Node 
Manager.  
 
3. 3 Node Manager 
 
The Node Manager [2] is responsible for managing the nodes 
in a cluster. The Node Manager monitors the container 
resource usage by each node, health of the nodes. The Node 
Manager manages containers that represent resources used 
by applications in contrast to MapReduce map and resduce 
slots. The number of containers depends on the configuration 
parameters set. The Node Manager also ensures that the 
application does not use more than the allocated resources. 
yarn. nodemanager. resource. memory. mb, yarn. 
nodemanager. resource. cpu-vcores [8] properties are used to 
control the memory and cpu usage by each node.  
 
3. 4 Improved Scalability 
 
Hadoop architecture was constrained through the 
JobTracker, which was responsible for resource management 
and scheduling jobs across the cluster. YARN refines the 
responsibilities of the JobTracker to increase scalability. By 
breaking up the tasks, performed by JobTracker YARN 
eliminates many scaling issues of MapReduce. To enable 
greater scalability a hierarchical approach [6] on cluster 
framework was chosen. The YARN architecture replaces 
JobTracker with two new components: Resource Manager to 
manage the usage of resources across all applications, 
Application Masters which takes up the responsibility of 
managing the job execution. This approach removes the 
bottleneck and improves the ability to scale up the Hadoop 
clusters to a much larger configuration than it was previously 
possible.  
 
3. 5 Enhanced Resource Utilization 
 
The new architecture makes no difference between resources 
available for map tasks, resources available for reduce tasks. 
The default memory allocations for map and reduce tasks are 
avoided in the enhanced approach by using memory based 
scheduling. Problems of over and under utilization of 
resources is eliminated by replacing the allocation of slots to 
the nodes with containers, which are fine-grained. Each node 
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is configured with a set of memory, cpu[8] for executing 
their tasks. Nodes are configured with a number of virtual 
cores, which are resources meant to represent parallelism. In 
almost all cases, a node’s virtual core capacity on the Node 
Manager should be set as the number of physical cores on 
the machine.  
 
 Applications may request a memory capability between the 
minimum allocation and a maximum allocation. Default 
memory allocations are scheduler-specific, and for the 
capacity scheduler the default minimum and maximum are 
1024 MB, 10240 respectively. The tasks can obtain memory 
between these two values by setting mapreduce. map. 
Memory. mb, reduce. reduce. memory. mb[8] appropriately. 
This approach drastically improved resource utilization as 
the resource needs and capacity can be balanced easily. This 
approach also enables the sharing of resources between 
MapReduce and other frameworks, allowing more sensible 
and finer-grained resource configuration for better cluster 
utilization.  
 
3. 6 Non-Mapreduce Workloads 
 
Mapreduce is considered as one of the instance of YARN 
application. By decoupling resource management and 
scheduling tasks from JobTracker, YARN provides support 
for more varied processing approaches and a broader array of 
applications. Routines that repeat many times across a data 
set, such as machine learning algorithms or interactive real 
time Business Intelligence applications, processing large data 
streams where immediate computation is required, attempts 
to define a parallel processing model for graph processing 
that can work on Hadoop-style clusters are being 
implemented on YARN. YARN can be used for the creation 
of new frameworks and execution models that can leverage 
both the compute power of an Hadoop cluster and its rich 
data storage models to solve specific new classes of 
problems.  
 
3. 7 High Availability 
 
YARN is more available compared to classic MapReduce by 
eliminating the single points of failure.  
 
3. 7. 1 Application Master Failure 
 
In the event of Application Master Failure [4], the Resource 
Manager fails to receive heartbeats. Once the Resource 
Manager detects the failure, a new instance of Application 
Master running on new container is started. The state of 
MapReduce tasks on the failed Application Master can be 
recovered avoiding re-running them. The client interacting 
with Application Master for application status, contacts 
Resource Manager to locate the new instance of Application 
Master in the case of failure.  
 
3. 7. 2 Node Manager Failure 
 
In the case of Node Manager failure[4] failure, it stops 
sending heartbeats to the resource manager. The Resource 
Manager removes the failed Node Manager from the list of 

available nodes. The applications on the failed Node 
Manager can be recovered.  
 
3. 7. 3 Resource Manager Failure 
 
Failure of Resource Manager [4] is the most serious issue 
since the jobs or containers can’t be launched without it. This 
issue is overcome by checkpoint mechanism by saving the 
state of Resource Manager to persistent storage. On recovery 
from failure the Resource Manager’s state contains the Node 
Managers and running applications and the Application 
Master checkpoints completed tasks, so the completed tasks 
need not be re-run.  
 
3. 8 Job Submission Process 
 
When a client submits an application, the Resource Manager 
launches Application Master to run the application. The 
Resource Manager maintaining the status of available 
resources initiates the scheduler to decide the allocation 
strategy. The Application Master once launched, registers 
with Resource Manager and requests the Resource Manager 
for containers required for application execution. Once the 
resources are allocated the Application Master interacts with 
Node Manager for launching the required containers. When 
the application execution completes the Application Master 
releases all the allocated resources, de-registers with 
Resource Manager.  
 

 
Figure 2: Running applications on YARN 

 
4. Experimental Results 
 
The Hadoop TeraSort program was used to run GraySort and 
MinuteSort benchmarks[7], using Hadoop HDFS to store the 
input and output. The input data was generated with gensort 
version 1. 5. For GraySort, the data was 102. 5TB in size, 
spread across 1025 files each with 100,000,000,000 bytes. 
For the Indy MinuteSort, the data was 1612. 22GB 
(1612223312700 Bytes) in size, spread across 1001 files 
each with 1610612700 bytes. For Daytona MinuteSort, the 
data was 1497. 86 GB (1497869841679 Bytes) in size, 
spread across 920 files each with 1610612700 bytes. Both 
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skewed and non-skewed data were generated as needed. The 
experiments were run on 2100 nodes each equipped with two 
2. 3Ghz hexcore Xeon E5-2630, 64 GB memory, and 
12x3TB disks each. This is shown in Table1.  
 
The benchmarks on a 260 node cluster comparing 
MapReduce with YARN [2] is provided in Table2. Each 
node is running 2. 27GHz Intel(R) Xeon(R) CPU totaling to 

16 cores, has 38GB physical memory, and 6x1TB 7200 RPM 
disks each, formatted with ext3 file-system. The network 
bandwidth per node is 1Gb/sec. Each node runs a DataNode 
and a Node- Manager with 24GB RAM allocated for 
containers. 6 maps and 3 reduces are run in 1. 2. 1, and 9 
containers in 2. 1. 0.  
  

 
Table 1: Daytona and GraySort benchmarks 

  
 

Each map occupies 1. 5GB JVM heap and 2GB total 
memory, while each reduce takes 3GB heap 4GB total. 
JobTracker/ResourceManager run on a dedicated machine so 
is the HDFS NameNode.  
  

Table 2:. Hadoop benchmarks results 

 
 
5. Conclusion 
 
Hadoop continues to grow as one of the popular distributed 
data processing frameworks in big data market. However a 
number of issues are yet to be addressed and resolved to 
make hadoop suitable for large scale data workloads. YARN 
has evolved as a next generation compute platform providing 
greater scalability, availability, sharing on Hadoop cluster. 
YARN is the re-architecture of Hadoop that is responsible 
for managing and monitoring workloads, maintaining a 
multi-tenant environment, implementing security controls. 
YARN provides significant advantages on classic 
MapReduce, allowing the development of new distributed 
applications beyond MapReduce.  
 

6. Future Work 
 
YARN is still undergoing major improvements to bring 
multi-workload capabilities to Hadoop. As YARN provides 
flexibility for emerging data access, data management, 
security and integration tools, new projects such as Spark, 
Storm, Tez, Knox are being integrated into Hadoop.  
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