
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

An Enhanced Approach for Resource Management
Optimization in Hadoop

R. Sandeep Raj1, G. Prabhakar Raju 2

1MTech Student, Department of CSE, Anurag Group of Institutions, India

2Associate Professor, Department of CSE, Anurag Group of Institutions, India

Abstract: Many tools and frameworks have been developed to process data on distributed data centers. MapReduce[3] most prominent
among such frameworks has emerged as a popular distributed data processing model for processing vast amount of data in parallel on
large clusters of commodity machines. The JobTracker in MapReduce framework is responsible for both managing the cluster's
resources and executing the MapReduce jobs, a constraint that limits scalability, resource utilization. YARN [2] the next-generation
execution layer for Hadoop splits processing and resource management capabilities of JobTracker into separate entities and eliminates
the dependency of Hadoop on MapReduce. This new model is more isolated and scalable compared to MapReduce, providing improved
features and functionality. This paper discusses the design of YARN and significant advantages over traditional MapReduce.

Keywords: Big Data, Hadoop, MapReduce, YARN, Scalability

1. Introduction

Hadoop [1] is an open source framework for processing vast
amount of data on large clusters of commodity hardware in
parallel. Hadoop is accessible, simple, scalable and robust.
Hadoop is well known for its processing framework,
Mapreduce and its distributed file system HDFS[4]. HDFS is
designed to hold large amount of data, and provide access to
this data to many clients distributed across a network. HDFS
has two categories of nodes: Namenode and Datanodes. The
Namenode maintain metadata of all the files and the
Datanodes are the responsible for storing the actual blocks of
all the files in the filesystem. MapReduce is programming
model and an associated implementation for processing and
generating large data sets with a parallel, distributed
algorithm on a cluster. Hadoop is an open source
implementation of MapReduce.

Hadoop is an open source framework for writing and running
distributed applications that process large amounts of data.
Distributed computing is a wide and varied field, but the key
distinctions of Hadoop are that it is;
 Accessible—Hadoop runs on large clusters of commodity

machines or on cloud computing services such as
Amazon’s Elastic Compute Cloud (EC2).

 Robust—Because it is intended to run on commodity
hardware, Hadoop is architected with the assumption of
frequent hardware malfunctions. It can gracefully handle
most such failures.

 Scalable—Hadoop scales linearly to handle larger data by
adding more nodes to the cluster.

 Simple—Hadoop allows users to quickly write efficient
parallel code.

 Hadoop’s accessibility and simplicity give it an edge over
writing and running large distributed programs. Even
students can quickly and cheaply create their own Hadoop
cluster. On the other hand, its robustness and scalability
make it suitable for even the most demanding jobs at

Yahoo and Facebook. These features make Hadoop
popular in both academia and industry. Hadoop’s main
processing engine is MapReduce, which is currently one of
the most popular big-data processing frameworks
available. Numerous practical problems ranging from log
analysis, to data sorting, to text processing, to pattern-
based search, to graph processing, to machine learning,
and much more have been solved using MapReduce.

1. 1 Literature Survey

Several studies were published on tuning the performance of
MapReduce. Many have recognized the limitations of classic
MapReduce programming model. Mesos[13] is a platform
for sharing commodity clusters between multiple diverse
cluster computing frameworks, such as Hadoop and MPI.
Sharing improves cluster utilization and avoids per-
framework data replication. Mesos shares resources in a fine-
grained manner, allowing frameworks to achieve data
locality by taking turns reading data stored on each machine.
To support the sophisticated schedulers of today’s
frameworks, Mesos introduces a distributed two-level
scheduling mechanism called resource offers. Mesos decides
how many resources to offer each framework, while
frameworks decide which resources to accept and which
computations to run on them. Mesos can achieve near-
optimal data locality when sharing the cluster among diverse
frameworks, can scale to 50,000 nodes, and is resilient to
failures.

Omega[14], Google’s next-generation cluster management
platform is focused on a cluster scheduling architecture that
uses parallelism, shared state, and optimistic concurrency
control. Omega model uses both lightweight simulations
with synthetic workloads, and high-fidelity, trace-based
simulations of production workloads at Google,and the
evaluation shows that optimistic concurrency over shared
state is a viable, attractive approach to cluster scheduling.

Paper ID: 02015669 1248

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

The Cosmos[15] Storage System is an append-only file
system that reliably stores petabytes of data. The system is
optimized for large sequential I/O. All writes are append-
only and concurrent writers are serialized by the system.
Data is distributed and replicated for fault tolerance and
compressed to save storage and increase I/O throughput. In
Cosmos, applications are programmed against the execution
engine that provides a higher-level programming interface
and a runtime system that automatically handles the details
of optimization, fault tolerance, data partitioning, resource
management, and parallelism.

1. 2 Mapreduce Processing

According to [3], MapReduce is a programming model for
processing large-scale datasets in computer clusters. The
MapReduce programming model consists of two functions,
map () and reduce (). Users can implement their own
processing logic by specifying a customized map () and
reduce () function. The map () function takes an input
key/value pair and produces a list of intermediate key/value
pairs. The MapReduce runtime system groups together all
intermediate pairs based on the intermediate keys and passes
them to reduce () function for producing the final results.
The signatures of map () and reduce () are as follows;

map (k1,v1)  list(k2,v2)
reduce (k2,list(v2))  list(v2)

A MapReduce cluster employs a master-slave architecture
where one master node manages a number of slave nodes. In
the Hadoop, the master node is called JobTracker and the
slave node is called TaskTracker. Hadoop launches a
MapReduce job by first splitting the input dataset into even-
sized data blocks. Each data block is then scheduled to one
TaskTracker node and is processed by a map task. The task
assignment process is implemented as a heartbeat protocol.
The TaskTracker node notifies the JobTracker when it is
idle. The scheduler then assigns new tasks to it. The
scheduler takes data locality into account when it
disseminates data blocks. It always tries to assign a local data
block to a TaskTracker. If the attempt fails, the scheduler
will assign a rack-local or random data block to the
TaskTracker instead. When map() functions complete, the
runtime system groups all intermediate pairs and launches a
set of reduce tasks to produce the final results. .

2. Motivation

Hadoop’s MapReduce is an easy-to-use distributed data
processing framework. The analysis reveals a number of
limitations, including;

a) Limitation on scalability
b) Inefficient resource utilization and
c) Lack of support for non-Mapreduce applications
d) Availabilty issue

2. 1 Limitation on Scalability

The classic MapReduce is composed of a master node,
JobTracker and a number of slave nodes, TaskTrackers. The
JobTracker is in charge of two distinct, complex
responsibilities.

• Managing the computational resources in the cluster,

which involves maintaining the list of live nodes, the list
of available and occupied map and reduce slots, and
allocating the available slots to appropriate jobs and tasks
according to selected scheduling policy [5].

• Coordination of all tasks running on a cluster, which
involves instructing TaskTrackers to start map and reduce
tasks, monitoring the execution of the tasks, restarting
failed tasks, speculatively running slow tasks, calculating
total values of job counters, and more.

Figure1: Running MapReduce on MR1

These large number of responsibilities on a single process
caused scalability issues, especially on clusters where
jobtracker had to monitor a large number of tasktrackers,
jobs submitted and the execution of map,reduce tasks.

2. 2 Inefficient Resource Utilization

Hadoop clusters never use the computational resources
efficiently. The computational resources are split into fixed
number of concurrent map slots and reduce slots[8] on a
node by the administrator in MapReduce framework.
Inefficient resource utilization occurs because mapper slots
might be full while the reducer slots are totally empty. The
Datanodes that run reduce slots may be idle even though
there is immediate requirement for compute resources to be
used by mapper slots.

2. 3 Lack of Support For Non-Mapredue Workloads

The JobTracker is tightly coupled with the Mapreduce
constraining Hadoop to run only Mapreduce based
applications. Mapreduce is I/O intensive [9] and is not
suitable for running memory intensive programming
paradigms such as graph processing, machine learning.

Paper ID: 02015669 1249

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

Though MapReduce supports different use cases, it is not
suitable for large scale computation and is not flexible to
integrate a wide range of emerging projects.

2.4 Addressing the availability issue

2.4.1 Tasktracker Failure
If a tasktracker fails by crashing, the JobTracker stops
receiving heartbeat signals. Once the JobTracker notices a
failed tasktracker, it removes the node from the list of
tasktrackers to schedule tasks on. The tasks that are run on
the failed node are re-run on other tasktrackers that are live
and contain replicated copy of data for executing the job.
The map tasks that are incomplete or completed successfully
but belongs to a failed job are also re-run to make their
output available for reduce tasks.

2.4.2 Jobtracker Failure
Failure of JobTracker is considered as single point of failure
as there is no mechanism for dealing with this failure.
However JobTracker failure has very low chances of
occurring. Once the JobTracker recovers from failure all the
jobs that were running before failure must be re-run.

3. A New Resource Management Platform for

Hadoop

To address the issues in Hadoop MapReduce, a new
architecture is described that avoids scalability limitations,
resource utilization problems and provide an enhanced
computing platform for numerous programming models. In
this approach the responsibilities of JobTracker are divided
into two components: Resource Manager and Application
Master. A component on each node, Node Manager holds the
containers (cpu, bandwidth, memory) and launches the
container as instructed by the Resource Manager.

3. 1 Resource Manager

The Resource Manager [2] controls the usage of resources
across the cluster. The containers are allocated to the running
applications based on resource requirements of the
applications. The Resource Manager monitors the number of
available nodes, resources and coordinates the allocation of
resources to the applications. The scheduler that is in-built in
Resource Manager performs its task of allocating resources
to the applications. The decision of allocation is based on
constraints such as queue capacity, fairness. The Resource
Manager allocates resources to the Application Master and
also keeps track of the applications on the Node Managers.
Resource Managers adopts two kinds of scheduling policies
according to the requirements, fair scheduling and capacity
scheduling [4]. In fair scheduling the jobs are scheduled in
such a way that each user gets a share of cluster capacity.
The capacity scheduler maintains a cluster in the form of
queues, and the jobs in the queue are schedule based on
FIFO scheduling.

3. 2 Application Master

The Application Master [2] takes the role of TaskTracker of
classic MapReduce. The Application Master has control on
all the applications that runs in the cluster. This component is
responsible for requesting resources from Resource Manager
and coordinating the execution of all the tasks within the
application. The Application Master also monitors the
resource usage, resource allocation. The applications are run
by Application Master using the containers that are
controlled by Node Managers. Whenever a job is submitted
by the client and the Resource Manager starts an Application
Master. The Application Master keeps track of job’s status
and decides how to run the tasks. If the job is small with less
number of mappers and reducers,it is run on same machine
otherwise the Application Master requests more containers
from Resource Manager. Once the container is assigned the
Appliction Master starts the task by interacting with Node
Manager.

3. 3 Node Manager

The Node Manager [2] is responsible for managing the nodes
in a cluster. The Node Manager monitors the container
resource usage by each node, health of the nodes. The Node
Manager manages containers that represent resources used
by applications in contrast to MapReduce map and resduce
slots. The number of containers depends on the configuration
parameters set. The Node Manager also ensures that the
application does not use more than the allocated resources.
yarn. nodemanager. resource. memory. mb, yarn.
nodemanager. resource. cpu-vcores [8] properties are used to
control the memory and cpu usage by each node.

3. 4 Improved Scalability

Hadoop architecture was constrained through the
JobTracker, which was responsible for resource management
and scheduling jobs across the cluster. YARN refines the
responsibilities of the JobTracker to increase scalability. By
breaking up the tasks, performed by JobTracker YARN
eliminates many scaling issues of MapReduce. To enable
greater scalability a hierarchical approach [6] on cluster
framework was chosen. The YARN architecture replaces
JobTracker with two new components: Resource Manager to
manage the usage of resources across all applications,
Application Masters which takes up the responsibility of
managing the job execution. This approach removes the
bottleneck and improves the ability to scale up the Hadoop
clusters to a much larger configuration than it was previously
possible.

3. 5 Enhanced Resource Utilization

The new architecture makes no difference between resources
available for map tasks, resources available for reduce tasks.
The default memory allocations for map and reduce tasks are
avoided in the enhanced approach by using memory based
scheduling. Problems of over and under utilization of
resources is eliminated by replacing the allocation of slots to
the nodes with containers, which are fine-grained. Each node

Paper ID: 02015669 1250

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

is configured with a set of memory, cpu[8] for executing
their tasks. Nodes are configured with a number of virtual
cores, which are resources meant to represent parallelism. In
almost all cases, a node’s virtual core capacity on the Node
Manager should be set as the number of physical cores on
the machine.

 Applications may request a memory capability between the
minimum allocation and a maximum allocation. Default
memory allocations are scheduler-specific, and for the
capacity scheduler the default minimum and maximum are
1024 MB, 10240 respectively. The tasks can obtain memory
between these two values by setting mapreduce. map.
Memory. mb, reduce. reduce. memory. mb[8] appropriately.
This approach drastically improved resource utilization as
the resource needs and capacity can be balanced easily. This
approach also enables the sharing of resources between
MapReduce and other frameworks, allowing more sensible
and finer-grained resource configuration for better cluster
utilization.

3. 6 Non-Mapreduce Workloads

Mapreduce is considered as one of the instance of YARN
application. By decoupling resource management and
scheduling tasks from JobTracker, YARN provides support
for more varied processing approaches and a broader array of
applications. Routines that repeat many times across a data
set, such as machine learning algorithms or interactive real
time Business Intelligence applications, processing large data
streams where immediate computation is required, attempts
to define a parallel processing model for graph processing
that can work on Hadoop-style clusters are being
implemented on YARN. YARN can be used for the creation
of new frameworks and execution models that can leverage
both the compute power of an Hadoop cluster and its rich
data storage models to solve specific new classes of
problems.

3. 7 High Availability

YARN is more available compared to classic MapReduce by
eliminating the single points of failure.

3. 7. 1 Application Master Failure

In the event of Application Master Failure [4], the Resource
Manager fails to receive heartbeats. Once the Resource
Manager detects the failure, a new instance of Application
Master running on new container is started. The state of
MapReduce tasks on the failed Application Master can be
recovered avoiding re-running them. The client interacting
with Application Master for application status, contacts
Resource Manager to locate the new instance of Application
Master in the case of failure.

3. 7. 2 Node Manager Failure

In the case of Node Manager failure[4] failure, it stops
sending heartbeats to the resource manager. The Resource
Manager removes the failed Node Manager from the list of

available nodes. The applications on the failed Node
Manager can be recovered.

3. 7. 3 Resource Manager Failure

Failure of Resource Manager [4] is the most serious issue
since the jobs or containers can’t be launched without it. This
issue is overcome by checkpoint mechanism by saving the
state of Resource Manager to persistent storage. On recovery
from failure the Resource Manager’s state contains the Node
Managers and running applications and the Application
Master checkpoints completed tasks, so the completed tasks
need not be re-run.

3. 8 Job Submission Process

When a client submits an application, the Resource Manager
launches Application Master to run the application. The
Resource Manager maintaining the status of available
resources initiates the scheduler to decide the allocation
strategy. The Application Master once launched, registers
with Resource Manager and requests the Resource Manager
for containers required for application execution. Once the
resources are allocated the Application Master interacts with
Node Manager for launching the required containers. When
the application execution completes the Application Master
releases all the allocated resources, de-registers with
Resource Manager.

Figure 2: Running applications on YARN

4. Experimental Results

The Hadoop TeraSort program was used to run GraySort and
MinuteSort benchmarks[7], using Hadoop HDFS to store the
input and output. The input data was generated with gensort
version 1. 5. For GraySort, the data was 102. 5TB in size,
spread across 1025 files each with 100,000,000,000 bytes.
For the Indy MinuteSort, the data was 1612. 22GB
(1612223312700 Bytes) in size, spread across 1001 files
each with 1610612700 bytes. For Daytona MinuteSort, the
data was 1497. 86 GB (1497869841679 Bytes) in size,
spread across 920 files each with 1610612700 bytes. Both

Paper ID: 02015669 1251

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

skewed and non-skewed data were generated as needed. The
experiments were run on 2100 nodes each equipped with two
2. 3Ghz hexcore Xeon E5-2630, 64 GB memory, and
12x3TB disks each. This is shown in Table1.

The benchmarks on a 260 node cluster comparing
MapReduce with YARN [2] is provided in Table2. Each
node is running 2. 27GHz Intel(R) Xeon(R) CPU totaling to

16 cores, has 38GB physical memory, and 6x1TB 7200 RPM
disks each, formatted with ext3 file-system. The network
bandwidth per node is 1Gb/sec. Each node runs a DataNode
and a Node- Manager with 24GB RAM allocated for
containers. 6 maps and 3 reduces are run in 1. 2. 1, and 9
containers in 2. 1. 0.

Table 1: Daytona and GraySort benchmarks

Each map occupies 1. 5GB JVM heap and 2GB total
memory, while each reduce takes 3GB heap 4GB total.
JobTracker/ResourceManager run on a dedicated machine so
is the HDFS NameNode.

Table 2:. Hadoop benchmarks results

5. Conclusion

Hadoop continues to grow as one of the popular distributed
data processing frameworks in big data market. However a
number of issues are yet to be addressed and resolved to
make hadoop suitable for large scale data workloads. YARN
has evolved as a next generation compute platform providing
greater scalability, availability, sharing on Hadoop cluster.
YARN is the re-architecture of Hadoop that is responsible
for managing and monitoring workloads, maintaining a
multi-tenant environment, implementing security controls.
YARN provides significant advantages on classic
MapReduce, allowing the development of new distributed
applications beyond MapReduce.

6. Future Work

YARN is still undergoing major improvements to bring
multi-workload capabilities to Hadoop. As YARN provides
flexibility for emerging data access, data management,
security and integration tools, new projects such as Spark,
Storm, Tez, Knox are being integrated into Hadoop.

References

[1] Apache hadoop. http://hadoop. apache. org.
[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al. ,

“Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified
data processing on large clusters,” Proceedings of the
6th Symposium on Opearting Systems Design &
Implementation, 2004.

[4] T. White, Hadoop: The definitive guide. ” O’Reilly
Media, Inc.”, 2012.

[5] HADOOP YARN:http://hortonworks.
com/hadoop/yarn [6] T. Graves. GraySort and
MinuteSort at Yahoo on Hadoop 0. 23
http://sortbenchmark. org/Yahoo2013Sort. pdf, 2013.

[6] Karthik Kambatla, Wing Yew Poon, and Vikram
Srivastava “How Hadoop YARN HA works “
http://blog. cloudera. com/blog/category/yarn “how-
yarn-overcomes-mapreduce-limitations-in-hadoop-2-0”
http://saphanatutorial. com/

[7] Dan Sullivan “Hadoop 2 vs. Hadoop 1: Understanding
HDFS and YARN” www. tomsitpro.
com/articles/hadoop-2-vs-1,2-718. html

Paper ID: 02015669 1252

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3. 358

Volume 3 Issue 8, August 2014
www. ijsr. net

Licensed Under Creative Commons Attribution CC BY

[8] James Kobielus “YARN unwinds MapReduce's grip on
Hadoop” http://www. infoworld. com/

[9] O'Reilly Strata “An Introduction to Hadoop 2. 0:
Understanding the New Data Operating System”
http://radar. oreilly. com

[10] http://ibm. com/developerworks/library/bd- hadoop
yarn

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.
D. Joseph, R. Katz, S. Shenker, and I. Stoica. ” Mesos:
a platform for fine-grained resource sharing in the data
center”. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation,
NSDI’11, pages 22–22, Berkeley, CA, USA, 2011.
USENIX Association.

[12] M. Schwarzkopf, A. Konwinski, M. Abd-El- Malek,
and J. Wilkes. “Omega: flexible, scalable schedulers
for large compute clusters”. In Proceedings of the 8th
ACM European Conference on Computer Systems,
EuroSys ’13, pages 351–364, New York, NY, USA,
2013. ACM.

[13] R. Chaiken, B. Jenkins, P. -A. Larson, B. Ramsey, D.
Shakib, S. Weaver, and J. Zhou. “Scope: easy and
efficient parallel processing of massive data sets”. Proc.
VLDB Endow. , 1(2):1265–1276, Aug. 2008.

Author Profile

G. Prabhakar Raju received the M. C. A degree from
Osmania University and M. Tech degree in Computer
Science and Engineering from JNTU University. He is
an associate professor in the Department of Computer
Science and Engineering, Anurag Group of

Institutions. His research interests include data mining, data
warehousing, bigdata, hadoop, natural language processing and
artificial intelligence.

Sandeep Raj R received the B. Tech degree in
Information Technology from JNTU Hyderabad. in
2012. He is pursuing M. Tech in Computer Science
from JNTU Hyderabad. His research interests include
bigdata, hadoop and cloud computing.

Paper ID: 02015669 1253

