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Abstract: Electrostatic ion cyclotron (EIC) waves in a multi-ion plasma is studied. Electrons and hydrogen ions drifting with velocities 

deV  and 
dH

V + , respectively, along the ambient magnetic field and positively and negatively charged oxygen ions constitute the plasma 

under consideration. This composition very well approximates the plasma environment around a comet. Analytical expressions for the 
frequency and growth / damping rate of the EIC waves around the higher harmonics of hydrogen ion gyrofrequency have been derived. 
The EIC waves propagate at frequencies around the harmonics of the hydrogen ion gyrofrequency and the wave growth decreases 
rapidly for higher harmonics. We find that, the wave can be driven unstable by the hydrogen ion drift velocity 

dH
V +  alone, at small 

LH
k ρ +⊥  as well as electron drift velocity deV  at large 

LH
k ρ +⊥ . Also, the growth rate is dependent on the densities and temperature 

anisotropies of the various constituent ions. 
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1. Introduction 
 
A low frequency instability that can be driven unstable by 
electrons drifting parallel to the magnetic field is the 
electrostatic ion cyclotron (EIC) instability. This instability is 
important in a number of contexts as it has one of the lowest 
thresholds among current driven instabilities [1]. In an 
electron-ion plasma, the EIC wave has a frequency around 
the ion gyrofrequency ciω  and propagates nearly 

perpendicular to the external magnetic field 0B ; the wave is 
driven unstable by the drifting electrons due to the small, but 
definite wave vector component along the magnetic field [2]. 
 
Studies on EIC waves in multi-ion plasmas, including 
negative ions, have been carried out by a number of 
researchers. For example, both fluid and kinetic analyses of 
EIC waves in a negative ion plasma were carried out 
respectively by D'Angelo & Merlino [3] and Chow & 
Rosenberg [4]. Other aspects of these waves explored include 
the effect of a magnetic shear [5] and the effect of more than 
one type of positive ion [6]. Instability studies of higher 
harmonic EIC waves in a negative ion plasma has been done 
by Rosenberg & Merlino [7]. Similar studies, both on the 
fundamental [8] and higher harmonic [9] electrostatic dust 
cyclotron (EDC) waves have also been done. 
 
Other relevant studies has been the effect of carrier heating 
on the modulation and demodulation of an electromagnetic 
wave, over a wide range of cyclotron frequencies, in a 
semiconductor plasma [10] and the effect of a parallel 
electric field on the electromagnetic ion cyclotron wave in a 
hot anisotropic plasma [11]. 

Low frequency electrostatic and electromagnetic waves have 
been observed in the plasma environments of comet Halley 
[12] and Giacobini-Zinner [13]. The electrostatic turbulence 
in the frequency range on 0-300 Hz has been suggested as 
being due to lower hybrid waves [14]. Ion-acoustic waves 
have also been observed by the ICE spacecraft about 

62 10×  km away from Giacobini-Zinner [15]. Also, the 
spacecraft Sakigake [16] has observed electromagnetic waves 
around the gyrofrequencies of O+  (and 2H O+ ). 
 
It is now well accepted that a cometary plasma environment 
contains different species of ions such as H + , O+ , 2H O+ , 
etc. [17]. In addition to these positive ions, negative ions 
such as O−  have been unambiguously identified [18]. 
 
We have, therefore, studied the stability of EIC waves in a 
multi-ion plasma of electrons (denoted by e ), hydrogen 
( H + ) and positively and negatively charged oxygen 
(denoted respectively by O+ , O− ) ions. The electrons and 
hydrogen drift with velocities deV  and dHV  respectively. 
Expressions for the real frequency and the growth / damping 
rate for harmonics of EIC wave in such a plasma have been 
derived. We find that, the wave can be driven unstable by the 
hydrogen ion drift velocity 

dH
V +  alone at small 

LH
k ρ +⊥  as 

well as electron drift velocity deV  at large 
LH

k ρ +⊥  where 

LH
ρ +  is the Larmour radius of the hydrogen ions. 
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2. The Dispersion Formula 
 
We consider, in this paper, the stability of EIC waves in a 
plasma composed of electrons ( e ), hydrogen ( H + ) and 
positively ( O+ ) and negatively ( O− ) charged oxygen ions; 
the electrons and hydrogen drifting with velocities deV  and 

dH
V +  respectively along 0 zB , the background magnetic field 
oriented along the z -direction. The equilibrium distribution 
is then given by 
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22

0
0 3/2 2 2 2

|| ||

( )
exp( );

, , ,

d

T T T T

v Vn vf
v v v v

e H O O

αα
α

α α α απ

α

⊥

⊥ ⊥

+ + −

−
= − −

=

 (1) 

with 0de dH
V V +≠ ≠ . Also 

1/2 1/2
||

||

22 and BB
T T

k Tk Tv v
m m

αα
α α

α α

⊥
⊥

   
= =   
   

 (2) 

 In (2), Bk  is the Boltzmann's constant; mα  and Tα  denote, 
respectively, the mass and temperature of species α . Also 
the symbols ||  and ⊥  indicate, respectively, the directions 

parallel and perpendicular to the magnetic field 0B . 
 Substituting (1) into the dispersion formula for electrostatic 
waves and carrying out the various integrations, we get the 
formula for electrostatic waves of frequency ω  and wave 

vector k


 as [19] 
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 In (3), 2
04 /p n e mα α αω π=  and 

0| | / ( )c e B m cα α αω =  are respectively the plasma and 

gyrofrequencies of species α ; | |eα  their charges, 0n α  their 

densities while c  is the velocity of light. Also, ( )l αηΛ  

arises from the dv⊥ -integration and is defined as [20] 
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 In (4), lI  is the modified Bessel function with an argument, 
2 2
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T

c

k v α
α

α

η
ω

⊥ ⊥=                                  (5) 

( )Z αζ  is the plasma dispersion function which arises from 

the ||dv -integration and is defined by [21] 

 
21 exp( )( )

( )
xZ dx

xα
α

ζ
ζπ

∞

−∞

−
=

−∫                   (6) 

with an argument 

||

|| ||

d c

T

k V l
k v

α α
α

α

ω ω
ζ

− −
=                            (7) 

 
3. The Dispersion Relation 
 
We derive, in this section, expressions for real frequency for 
harmonics of the EIC wave around the hydrogen ion 
gyrofrequency and its growth / damping rate. Since the 
frequencies under consideration are ceω<<  , we retain only 

the 0l =  contribution to the imaginary term for electrons. 
Thus the 0l =  electron contribution is 

2
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where || ||0 ||( ) / ( )e de T ek V k vζ ω= − . 

 We next consider the hydrogen contribution. For the 0l =  
contribution we use the small parameter expansion of the 
plasma dispersion function and its asymptotic expansion for 
the 0l ≠  contributions. Using these [21], we can write down 
the hydrogen contribution as 
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with ||
*

dH
k Vω ω += −  and 

|| ||0 ||
( ) / ( )

H dH T H
k V k vζ ω+ + += − . 

 Finally, since the oxygen ions are much colder than the 
electrons and hydrogen, we need the asymptotic expansion of 
the plasma dispersion function for these ions. Using it and 
simplifying, we can show that the O+  contribution to the 
dispersion relation is 

2
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The contribution of O−  ions is similar to that of (8c). 
 Substituting the expressions for αχ  ( ,eα = ,H + ,O+  

)O−  into (3), we get the dispersion relation for the 
propagation of EIC waves as, 
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Letting (1 )
cH

lω ω += + ∆ , we can simplify the real part of 
(9) to yield 
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Also 2
|| 0( / 4 )De B e ek T n eλ π=  is the electron Debye 

length. 

 Using the formula /
r

ReDImDγ
ω
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∂
 we can, from (9), 

get the expression for the growth / damping rate as 
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4. Discussion 
 
∆  is a measure of the deviation of the frequency of the EIC 
wave from the thl  harmonic. We find that this deviation is 
independent of the drift velocity deV  of the electrons but is 

dependent on 
dH

V + , the drift velocity of the hydrogen ions. 

Also, if we let || 0eT → , both 
H +Γ  and ±Γ  are equal to 

zero while 1eΓ = . Under these conditions, ∆  is directly 

proportional to 
dH

V +  and inversely proportional to l . Also 

from (13), both 
dH

V +  and deV  can contribute to the 
instability of the wave if they are greater than the phase 
velocity of the wave. Again the growth rate = 0 when the 
frequency of the wave is a harmonic of the heavier ion 
gyrofrequency, or the Doppler shifted frequency is a 
harmonic of the hydrogen ion gyrofrequency. 
 
5. Results 
 
A generally accepted model of a cometary plasma is one 
composed of hydrogen and positively charged oxygen ions 
[17,22,23]. An important and exciting discovery was the 
detection of negatively charged oxygen ions ( O− ) [18]. We 
thus study the stability of electrostatic ion cyclotron waves in 
a plasma of this composition with hydrogen ions and 
electrons drifting, respectively with velocities 

dH
V +  and deV . 

 The parameters used for our computations are as follows: an 
electron temperature 52 10eT = ×  K, a hydrogen 

temperature of 48 10
H

T + = ×  K and oxygen temperatures of 
41.16 10

O O
T T+ −= = ×  K [18,24]. The densities used are: 

hydrogen density 3
0

4.95 cm
H

n +
−= , positively charged 

oxygen ion density 3
0

0.5 cm
O

n +
−=  and negatively 

charged oxygen ion density 3
0

0.05 cm
O

n −
−=  [18,24]. 

Also the background magnetic field 5
0 75 10B −= ×  G [25], 

while the propagation angle was held a constant at 88θ °=  
and temperature anisotropies ' 1sτ = . 
 
Figure (1) is a plot of the normalised real frequency 

/r cH
ω ω +  versus 

LH
k ρ +⊥  (

LH
ρ +  is the hydrogen ion 

gyroradius) for the parameters given above. The solid lines 
are for / 2.0

dH T H
V v+ +⊥

=  while the dashed lines are for 

/ 0
dH T H

V v+ +⊥
= . The figure shows that the wave 
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propagates very near the harmonics of the hydrogen ion gyro-
frequency 

cH
ω +  at low 

LH
k ρ +⊥ . The deviations which 

begin to increase as 
LH

k ρ +⊥  increases tend to flatten at very 

high 
LH

k ρ +⊥ . 

 
Figure 1: Plot of the normalised real frequency /r cH

ω ω +  

versus 
LH

k ρ +⊥ . The solid lines are for / 2.0
dH T H

V v+ +⊥
=  

and dashed lines are for / 0
dH T H

V v+ +⊥
= . Curve (a) is for 

the first harmonic, curve (b) for the second harmonic, curve 
(c) for the third harmonic and curve (d) is for the fourth 

harmonic. 
 
 Figure (2) is a plot of the normalised growth rate /

cH
γ ω +  

versus 
LH

k ρ +⊥  for the densities given above with 

/ 2
dH T H

V v+ +⊥
=  and / 40de T H

V v +⊥
= . We find the 

maximum growth rate occurs for the first harmonic; the wave 
growth decreases rapidly and also shifts towards higher 

LH
k ρ +⊥  for higher harmonics. 
 

 
Figure 2: Plot of the normalised growth rate /

cH
γ ω +  

versus 
LH

k ρ +⊥  for the harmonics of the EIC wave. The 
hydrogen and electron drift velocities are, respectively, 

/ 2
dH T H

V v+ +⊥
=  and / 40de T H

V v +⊥
= . Curve (a) is for 

the first harmonic, curve (b) for the second harmonic and 
curve (c) is for the third harmonic. 

 
(A) 

 
(B) 

 
(C) 

 
Figure 3. Variation of the normalized growth rate /

cH
γ ω +  

versus 
LH

k ρ +⊥  with the density of various ions for the 
second harmonic and for the drift velocities 

/ 2
dH T H

V v+ +⊥
=  and / 40de T H

V v +⊥
= . The top panel 

depicts the growth rate as a function of the negatively 
charged oxygen density (curve (a) is for 3

0
0.01 cm

O
n −

−= , 

curve (b) is for 3
0

0.05 cm
O

n −
−=  and curve (c) is for 

3
0

0.1 cm
O

n −
−= , while 3

0
4.95 cm

H
n +

−=  and 
3

0
0.5 cm

O
n +

−= ). The middle panel depicts the variation 

of the growth rate with O+  densities: curve (a) is 
for 3

0
0.1 cm

O
n +

−= , curve (b) is for 3
0

0.25 cm
O

n +
−=  

and curve (c) is for 3
0

0.5 cm
O

n +
−= , while 

3
0

4.95 cm
H

n +
−=  and 3

0
0.05 cm

O
n −

−= . The lower 

panel depicts the variation with the hydrogen density 
0H

n +  

(curve (a) is for 3
0

2.0 cm
H

n +
−= , curve (b) is for 

3
0

4.0 cm
H

n +
−=  and curve (c) is for 3

0
6.0 cm

H
n +

−= , 

while 3
0

0.5 cm
O

n +
−=  and 3

0
0.05 cm

O
n −

−=  ). 
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Figure (3) is a plot of the normalized growth rate /
cH

γ ω +  

versus 
LH

k ρ +⊥  for the second harmonic and for the drift 

velocities / 2
dH T H

V v+ +⊥
=  and / 40de T H

V v +⊥
= ; the 

other parameters are as mentioned earlier. The lower panel 
depicts the variation with the hydrogen density 

0H
n +  (curve 

(a) is for 3
0

2.0 cm
H

n +
−= , curve (b) is for 

3
0

4.0 cm
H

n +
−=  and curve (c) is for 3

0
6.0 cm

H
n +

−= , 

while 3
0

0.5 cm
O

n +
−=  and 3

0
0.05 cm

O
n −

−= ). We find 
that the growth rate decreases with increasing hydrogen 
densities. The middle panel depicts the variation of the 
growth rate with O+  densities: curve (a) is for 

3
0

0.1 cm
O

n +
−= , curve (b) is for 3

0
0.25 cm

O
n +

−=  and 

curve (c) is for 3
0

0.5 cm
O

n +
−= , while 3

0
4.95 cm

H
n +

−=  

and 3
0

0.05 cm
O

n −
−= . We find that the growth rate 

increases with increasing 
0O

n + . Finally, the top panel depicts 
the growth rate as a function of the negatively charged 
oxygen density (Curve (a) is for 3

0
0.01 cm

O
n −

−= , curve 

(b) is for 3
0

0.05 cm
O

n −
−=  and curve (c) is for 

3
0

0.1 cm
O

n −
−= , while 3

0
4.95 cm

H
n +

−=  and 
3

0
0.5 cm

O
n +

−= ). We find the growth rate again decreases 
with increasing negatively charged oxygen ion densities. 
 
The dependence of drift velocities of hydrogen ions and 
electrons is studied next. In figure (4), the panel on the top 
depicts the variation of the normalized growth rate /

cH
γ ω +  

with the drift velocity of hydrogen ions /
dH T H

V v+ +⊥
 for the 

second harmonic. Here the drift velocity of electrons 
/ 0de T H

V v +⊥
= . The densities used are: 

3
0

4.95 cm
H

n +
−= , 3

0
0.5 cm

O
n +

−=  and 
3

0
0.05 cm

O
n −

−= . The other parameters remain 

unchanged. Curve (a) is for / 0.01
dH T H

V v+ +⊥
= , curve (b) 

is for / 0.05
dH T H

V v+ +⊥
=  and curve (c) is for 

/ 0.1
dH T H

V v+ +⊥
= . We find that smaller drift velocities of 

hydrogen ions, in the absence of electron drift, can drive the 
wave unstable at smaller 

LH
k ρ +⊥  and that this growth 

increases with increasing hydrogen ion drift velocities. The 
bottom panel shows the variation of the normalized growth 
rate /

cH
γ ω +  with the drift velocity of electrons 

/de T H
V v +⊥

 for the second harmonic. Here the drift velocity 

of hydrogen ions is fixed at / 2.0
dH T H

V v+ +⊥
= . The 

densities and the other parameters remain unchanged. Curve 
(a) is for / 35.0de T H

V v +⊥
= , curve (b) is for 

/ 38.0de T H
V v +⊥

=  and curve (c) is 

for / 40.0de T H
V v +⊥

= . We find that electron drift drives 

the wave unstable at large 
LH

k ρ +⊥  and the growth rate 
increases with increasing electron drift velocities. 
 
Finally, in figure (5), the dependence of the normalized 
growth rate /

cH
γ ω +  with temperature anisotropies is 

depicted. Here the temperatures used are: an electron 
temperature 5

|| 2 10eT = ×  K, a hydrogen temperature of 
4

||
8 10

H
T + = ×  K and oxygen temperatures of 

4
|| ||

1.16 10
O O

T T+ −= = ×  K. The drift velocities are 

/ 2
dH T H

V v+ +⊥
=  and / 40de T H

V v +⊥
=  and the densities 

remaining unchanged. For the second harmonic, curve (a) 
shows the case for temperature isotropic ions i.e., ' 1.0sτ =  
and curve (b) depicts the case for temperature anisotropic 
ions ' 0.1sτ = . We find that temperature anisotropies of the 
constituents enhance the growth rate of electrostatic ion 
cyclotron harmonic waves.  

 
(A) 

 
(B) 

Figure 4. Variation of the normalized growth rate /
cH

γ ω +  

versus 
LH

k ρ +⊥  with drift velocities of hydrogen ions and 
electrons. The top panel depicts the variation with the drift 

velocity of hydrogen ions /
dH T H

V v+ +⊥
 for the second 

harmonic. Here / 0de T H
V v +⊥

= . Curve (a) is for 

/ 0.01
dH T H

V v+ +⊥
= , curve (b) is for 

/ 0.05
dH T H

V v+ +⊥
=  and curve (c) is for 

/ 0.1
dH T H

V v+ +⊥
= . The bottom panel shows the variation 
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with the drift velocity of electrons /de T H
V v +⊥

 for the 

second harmonic. Here / 2.0
dH T H

V v+ +⊥
= . Curve (a) is for 

/ 35.0de T H
V v +⊥

= , curve (b) is for / 38.0de T H
V v +⊥

=  

and curve (c) is for / 40.0de T H
V v +⊥

= . 
 

 
Figure 5. Variation of the normalized growth rate /

cH
γ ω +  

versus 
LH

k ρ +⊥  with temperature anisotropies of the 
constituents. For the second harmonic, curve (a) is for 
' 1.0sτ =  (temperature isotropic ions and electrons) and 

curve (b) is for ' 0.1sτ = . 
 
6.  Conclusions 
 
We have, in this paper, studied the electrostatic ion cyclotron 
harmonic waves in a multi-ion plasma consisting of electrons 
and hydrogen ions drifting along the ambient magnetic field, 
with velocities deV  and 

dH
V + , respectively and positively 

and negatively charged oxygen ions. This composition very 
well approximates plasma environment around a comet. 
Analytical expressions for the frequency and growth / 
damping rate of the EIC waves around higher harmonics of 
hydrogen ion gyrofrequency have been derived. Computation 
shows that the waves propagate around harmonics of the 
hydrogen ion gyrofrequency. 
 We find that, the growth rate increases with increasing 
positively charged oxygen ion density 

O
n + , while it 

decreases with increasing hydrogen ion densities 
H

n +  and 

negatively charged oxygen ion densities 
O

n − . The wave can 

be driven unstable by the hydrogen drift velocity 
dH

V +  

alone, at lower 
LH

k ρ +⊥  as well as electron drift velocity 

deV  at large 
LH

k ρ +⊥ . We also find that the growth rate 
increases with increasing temperature anisotropies of the 
plasma constituents. 
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