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Abstract: Differential equations are widely used in all branches of Science, Engineering and almost all fields. The application of 
differential equations towards stability analysis of Non-Newtonian fluids is analyzed. Non-Newtonian fluids are applied in Geological, 
Biological, Pharmaceutical, Medical, Mechanical and industrial areas. The present work deals with the thermal convection of non-
Newtonian fluids in the presence of uniform magnetic field. It has been found that the magnetic field has both stabilizing and 
destabilizing effects. Stationary and oscillatory modes are checked for allowable range of parameters.  
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1. Introduction 
 
In recent years, the heat transfer in porous medium has 
received considerable attention because of its importance to 
geophysical thermal engineering, geothermal system, crude 
oil extraction, recovery of petroleum products etc., non- 
many of industrially important fluids such as molten plastics, 
polymers, pulps, foods and fossil fuels exhibit Newtonian 
fluid behaviors. It is noteworthy that many of the authors 
worked on the thermal convection of Non-Newtonian fluids 
and they concentrated on the stability nature of Non-
Newtonian fluids. Chandrasekhar (1981) has given a detailed 
account of the theoretical and experimental study of thermal 
instability in Newtonian fluids, under varying assumption of 
hydradynamics and hydromagnetics. Chandra (1938) 
observed a contradiction between the theory for the onset of 
convection in fluids heated from below and his experiment. 
Scanlon and Segel (1973) studied the effect of suspended 
particles on the onset of Benard convection and found that 
the critical Rayleigh number was reduced slowely because 
the heat capacity of the pure gas was supplemented by that of 
the particles. Sharma (1976) has studied the thermal 
instability of a layer of viscoelastic fluid acted on by a 
uniform rotation and found that rotation has destabilizing as 
well as stabilizing effects under certain conditions in contrast 
to that of a Maxwell fluid where it has a destabilizing effect. 
Two such classes of fluids are Rivlin-Ericksen and Walter’s 
(model B) fluids. Rivlin and Ericksen (1955) have proposed 
a theoretical model for such one class of elastico-viscous 
fluids. Sharma and Kumar (1996) have studied the effect of 
rotation on thermal instability in Rivlin- Ericksen elastico-
viscous fluid whereas the thermal convection in electrically 
conducting Rivlin-Ericksen fluid in presence of magnetic 
field has been studied by Sharma and Kumar (1997). 
Aggarwal (2010) has studied the effect of rotation on 
thermosolutal convection in a Rivlin-Ericksen fluid 
permeated with suspended particles in porous medium. The 
purpose of the present work is to study the application of 
differential equations in thermal convection of non-
Newtonian fluids in the presence of uniform magnetic field 
and suspended particles. Here we have considered the effect 
of suspended particles and magnetic field on thermal 

convection in Rivlin-Ericksen elastico-viscous fluid in 
hydromagnetics. Here, we have extended the results reported 
by Sharma and Rana (2002) to include the effect of magnetic 
field for Rivlin- Ericksen fluids. Sharma et al.(1998) have 
studied the thermosolutal convection in Rivlin−Ericksen 
fluid in porous medium in hydromagnetics. Bhatia and 
Steiner (1972) have studied the problem of thermal 
instability of a Maxwellian viscoelastic fluid in the presence 
of rotation. Rayleigh (1916) has analyzed the thermal 
instability of a fluid layer heated below with maintained 
adverse temperature gradient. Sharma (1975) studied the 
stability of a layer of an electrically conducting Oldroydian 
fluid in the presence of a magnetic field. Sharma (1979) has 
studied the thermal instability in compressible fluids in the 
presence of rotation and a magnetic fluid. Sharma and 
Kumar (1996) have studied the effect of rotation on thermal 
instability in Rivlin - Ericksen Elastico viscous fluid and 
found that rotation has a stabilizing effect and introduces 
oscillatory modes in the system. Sharma et al (1999) have 
considered the thermosolutal instability of walters’ B’ 
rotating in porous medium. Spiegel (1965) analyzed the 
convective instability in a compressible atmosphere. 
Srivastava and Singh (1988) have studied the unsteady fluid 
of a dusty elastic-viscous Rivlin-Ericksen fluid in the 
Presence of a time dependent pressure gradient. Vadasz 
(2008) analyzed emerging topics in heat and mass transfer in 
porous medium. Vafai(2010) studied application of 
Biological system and Biotechnology. 
 
2. Mathematical Formulation 
 
Consider an infinite, horizontal, incompressible electrically 
conducting Rivlin-Erickson visco-elastic fluid layer of 
thickness d, permeated with suspended particle heated from 
below so that the temperatures and densities at the bottom 
surface 0=z are 0T  and 0ρ and at the upper surface 

dz =  are dT  are dρ  respectively. A uniform temperature 

gradient dzdt /=β  is maintained. The gravity field 

),0,0( gg −


 and a uniform vertical magnetic field 
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 act on the system. The equations of motion, 
continuity, heat conduction, and Maxwell’s equations 
governing the flow of Walters’B visco-elastic fluid in the 
presence of magnetic field. 
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where ),,( wvuq , )..( srlqd , N , p , ρ , T , vv ′,  denote 
the fluid velocity, velocity of the suspended particle, number 
density of the suspended particle, pressure, density, 
temperature, kinematic viscosity, and kinematic visco-
elasticity respectively. In addition, the magnetic 
permeability eµ , thermal diffusivity k and electrical 

resistivity η are all assumed constant. Here πµε6=K ,  

where ε  is the particle radius, K is Stokes drag coefficients, 

vC  is the specific heat of the fluid at constant volume, ptC is 
the specific heat of particle, m is the mass of the suspended 
particle, mN is mass of the particle per unit volume. From 
equation (1) we made use of the Boussinesq approximation, 
which states that the densityvariations are ignored in all 
terms in the equations of motion except the external force 
term.  

Spiegel and Veronis (1960) defined f as any of the state 
variables (pressure p, densityρ or temperature T) are 
expressed in the form 
 

( ) ),,,(,,, 0 tzyxffftzyxf m ′++=           (8) 

where mf  is the constant space average of f , 0f  is the 

variation in the absence of motion and f ′  is the fluctuation 
resulting from the motion. The initial state is, therefore, a 
state in which the density, pressure, temperature and velocity 
in the fluid are given by 
 

 )(zρρ = , )(zpp = , )(zTT = , )0,0,0(=q        (9)  

zTzT β−= 0)( , dzgpzp
d

mm )()( 0
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[ ])()(1)( mmmmm ppKTTz −+−−= αρρ       (10)  

3. Perturbation Equations 
 
Assume small disturbances in the basic solution and let pδ , 

δρ  , N  ,θ  , ( )wvuq ,, , ( )srlqd ,,  , ( )zyx hhhh ,,  
denote the perturbations in the fluid pressure, density, 
particle number density 0N , temperature, fluid velocity, 
Suspended particle velocity, magnetic field H respectively. 
 
The density equation of state for the fluid is  

[ ])(1 00 TT −−= αρρ                        (11) 

Where oρ is the density and T0 is temperature of the fluid at 

the reference level 0=z  and α  is the coefficient of 
thermal expansion.  

The change in density pδ , caused by the perturbation θ in 
temperature is given by 
 

θαρδ 0−=p                            (12) 
Then the linearized hydromagnetic perturbation equations 
for thermal convection in a compressible walters’B elastico-
viscous fluid particle layer under speigel and veronis et al 
(1960) assumptions are 
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where 
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vk
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=  , 
v

pt
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cmN
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=  )(1 say

Tm
m αα == , 

0ρ
µ

=v  and θ,
pc

g
 denote the adiabatic gradient, 

temperature T and Cp being specific heat of the fluid at 
constant pressure. 
Eliminating dq  between the equations (13) - (15) 
 and rewriting the above set of equations 
 we have 
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Equations (20)-(22) yield three-perturbation equation in 

zhw ,,θ   
 
4. Dispersion Relation 
 
Now analyze the disturbances into normal modes, assuming 
that the perturbation quantities are of the form 

)exp(]),(),(),([],,[ ntyikxikzKzzWhw yxz ++Θ=θ
 (23) 

where yx kk , are the wave numbers along x - and y - 

directions respectively , )( 222
yx kkk +=  is the resultant 

wave number, and n  is the growth rate which is in general, a 
complex constant. Using the equation (4.23) and the non-
dimensional parameters 
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k
vpr =1  is the prandtl  

number , 
η
vpr =2  is the magnetic prandtl number,  

F is dimensionless kinematic viscoelasitc, G is the 
dimensionless compressibility. 

dz
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xx ==== ∗∗∗ ,,,  for our convenience 

Using the expression (23), the equations (20)-(22) in non-
dimensional form becomes 
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Eliminating K and θ  from the equations (24)-(26) we obtain 
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 is the Chandrasekhar number, 

vk
dgR

4αβ
=  is the thermal Rayleigh number. Since both the 

boundaries are maintained at constant temperature, the 
perturbations in the temperature are zero at the boundaries. 
The case of two free boundaries is little artificial but it 
enables us to find analytical solution and to make some 
qualitative conclusions.  
 
The appropriate boundary conditions with respect to which 
the equations (24)-(26) must be solved 
 
The boundary conditions are 0,02 =Θ== WDW , z = 0, 
1and K=0 on a perfectly conducting boundary (28) 
Using the above boundary conditions, it can be shown that 
all the even-order derivatives of W  must vanish for 0=z  
and ,1=z  and hence the proper solution of W  
characterizing the lowest mode is 

zWW πsin0= , 0W  is constant                    (29) 

Substituting equation (29) in equation (27),we get  
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5. Stationary Convection 
 
Let us consider in the case when instability sets in the form 
of stationary convection. For stationary convection 01 =σ  
and the dispersion relation (30) reduces to  
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which express the modified Rayleigh number 1R  as a 
function of dimensionless wave number x and the 
parameters HGQ .,1 . Then the non-dimensional number G 
accounting for compressibility effect is kept as fixed, then 
we get 

Paper ID: 02015590 1210



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 8, August 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

cc R
G

GR 







−
=

1
 where cR  , cR  denote the critical 

Rayleigh number in the presence and absence of 
compressibility .Thus the effect of compressibility is to 
postpone the onset of thermal instability. The cases G˂1 and 
G=1 correspond to negative and infinite value of Rayleigh 
number which are not relevant in the present study .Hence, 
compressibility has a stabilizing effect on the thermal 
convection. 
To study the effect of magnetic field and suspended 
particles, we examine the nature of 
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To investigate the effect of suspended particles, from 
equation (4.31) we obtain 
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where the negative sign implies that the effect of suspended 
particle is to destabilize the system 
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which shows that the usual stabilizing effect of magnetic 
field on thermal convection in a compressible Rivlin-
Ericksen visco-elastic fluid in the presence of dust particles, 
for the stationary convection. 
 

Table 1: The Critical Rayleigh numbers cR  and the wave 
numbers of the associated disturbances for the onset of 

instability as stationary convection G=10 and for various 
value of H and 1Q  

H 
1Q =100 1Q =200 1Q =300 1Q =500 

cx  cR  cx  cR  cx  cR  cx  cR  

10 
20 
30 
50 

1 
2 

2.5 
5 

23.08 
9.07 
5.8 
3.6 

1 
1.5 
3 
5 

44 
19.72 
10.65 
6.28 

1 
2 
3 
5 

67.48 
25.72 
15.5 
7.45 

1 
2 
2 
5 

111.1 
42.37 
28.24 
14.27 

 
Table 2: The Critical Rayleigh numbers cR  and the wave 

numbers of the associated disturbances for the onset of 
instability as stationary convection G=10 and for various 

value of H and 1Q  

1Q  

H=10 H=20 H=30 H=50 

cx  cR  cx  cR  cx  cR  cx  cR  

100 
200 
300 
400 
500 

1 
3 
3 
4 
5 

23 
31.96 
46.76 

58 
71 

1 
2 

2.2 
3 
5 

5.7 
17 
24 
30 
35 

1 
1.2 
3 
4 
5 

7.6 
13.6 
15.5 
19.9 
23.7 

1 
2 
2 
3 
5 

4.6 
6.95 
10.2 
12.3 
14.2 

 
 
 
 
 

Table 3: The Critical Rayleigh 1R numbers and the wave 
numbers of the associated disturbances for the onset of 

instability as stationary convection fixed G=10 and for 
various value of H and 1Q  

1Q  
H=10 H=20 H=30 H=50 

cx  cR  cx  cR  cx  cR  cx  cR  
100 
150 
200 
250 
300 

3.0 
3.5 
4.0 
4.5 
5.0 

17.80 
24.28 
31.25 
38.25 
44.75 

3.0 
3.5 
4.0 
4.5 
5.0 

8.49 
12.09 
15.60 
19.00 
22.00 

3.0 
3.5 
4.0 
4.5 
5.0 

5.66 
7.93 

10.38 
12.94 
14.91 

3.0 
3.5 
4.0 
4.5 
5.0 

3.43 
4.85 
6.24 
7.60 
8.95 

 

 
Figure 1: Variation of Rayleigh number 1R  with Wave 

number x 
 

 
Figure 2: Variation of Rayleigh number 1R  with Magnetic 

number x 
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Figure 3: Variation of Rayleigh number 1R  with Suspended 

particle H 

 
Figure 4: Variation of Critical Rayleigh number cR  with 

Suspended particle H 
 

 
Figure 5: Variation of Critical Rayleigh number Rc  with 

Suspended particle H 
 

 
Figure 6: Variation of Critical Rayleigh number CR  with 

Magnetic number 1Q   
 
 

6. Stability of the system and oscillatory modes 
 
Multiplying the equation (24), by ∗W , the complex 
conjugate of W, integrating over the range of z  
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 Integrating equation (4.34) and using the boundary 
conditions (28) and (29) together with equations (25-26), we 
obtain 
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and ∗σ  is the complex conjugate of ∗σ .The integrals 

61 II −  are all positive definite. Putting ir iσσσ +=  and 
then equating real and imaginary parts of equation (4.35), we 
obtain 
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From equation (36) that rσ  is positive or negative this 
means that the system may be stable or unstable. It is clear 
from the equation (37) may be zero or non-zero, meaning 
that the modes may non -oscillatory or oscillatory. The 
oscillatory modes are introduced due to the presence of 
magnetic field and suspended particle, which were non-
existence in their absence. 
 
7. Conclusions 
 
In this paper, the combined effect of suspended particles and 
magnetic field on thermal instability of a Rivlin-Ericksen 
fluid has been considered. The effect of magnetic field and 
suspended particles has been investigated analytically as well 
as numerically. The main results from the analysis are as 
follows:  
1) In order to investigate the effects of magnetic field and 

suspended particles we examine the behavior of 
1

1

dQ
dR

 and 

1

1

dH
dR

 analytically. 

2) It is found that suspended particles have a destabilizing 
(stabilizing) effect whereas magnetic field has a stabilizing 
(destabilizing) effect on the system. Figures 1-3 supports 
the analytic results graphically. It is found that the system 
has both stabilizing and destabilizing effects. 

3) The critical Rayleigh numbers and the associated wave 
numbers are found for stationary convection for magnetic 
field and suspended particle involved and it has been 
found that it increases with the increase in magnetic field 
parameter and decreases with the increase in suspended 
particle parameter confirming the stabilizing role of 
magnetic field and destabilizing role of suspended 
particles Figures 4-6.  

4) It is clear that the effect of compressibility is to postpone 
the onset of instability. 
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