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Abstract: This work presents basic methods in least squares adjustment computation. These methods are first principles’ technique, 
observation equations and condition equations techniques. A simple numerical example is used to elucidate these basic methods. 
Including experimenting other more recent methods of adjustment such as: least squares collocation, Kalman filter and total least 
squares.  
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1. Introduction 
 
Surveying measurements are usually compromised by errors 
in field observations and therefore require mathematical 
adjustment [1]. In the first half of the 19th century the Least 
Squares (LS) [2] adjustment technique was developed. LS is 
the conventional technique for adjusting surveying 
measurements. The LS technique minimizes the sum of the 
squares of differences between the observation and estimate 
[3]. Apart from LS other methods of adjusting surveying 
methods have been developed, such as Kalman Filter (KF) 
[4], Least Squares Collocation (LSC) [5] and Total Least 
Squares (TLS) [6, 7, 8, 9]. This work will expound in its 
simplest form fundamental methods of LS adjustment as it 
applies to basic surveying measurements.  
 
2. Principles of Least Squares Adjustment 

Computation 
 
2.1 Derivation based on first principles  
 
From first principles, LS minimizes the sum of the squares of 
the residuals or weighted residuals. Thus, 
 

 ∑
=

n

i
iiVP

1

2   is minimum                                                      (1) 

 
Where, 
P  is weight of observations, V  is the residual and n  is the 
number of observations. V is expressed as,  
 

∗−= iii yyV                                                                   (2) 

 
Where,  
y  represents the original observations 
∗y represents the adjusted observations [1] 

 
A detailed derivation on first principles’ technique is 
explained in Okwuashi [1].  
 

2.2 Derivation based on observation equations  
 
According to Ayeni [10] in the observations equation 
method, the adjusted observations are expressed as a function 
of the adjusted parameters. Thus,  
 

)( aa XfL =                                                                     (3) 
 
Where, 

aL  denotes adjusted observations 
aX  denotes adjusted parameters 

 
Note that, in least squares adjustment, the number of 
observations must exceed the number of unknown parameters 
to be determined. And also, the number of observation 
equations formed must be equal to the number of field 
observations.   
 

aL  and aX  can be expressed as,  
 

VLL ba ˆ+=                                                                      (4) 

XXX oa ˆ+=                                                                 (5) 
 
Where, 

bL  denotes original observations 
oX  denotes the approximate values of the parameters to be 

determined 
X̂  denotes the unknown parameters to be determined from 

least squares adjustment 
 
  
Equation 3 can be rewritten as, 
 

)ˆ(ˆ XXfVL ob +=+                                                     (6) 
 
Linearizing equation 6 using Taylor’s series and truncating at 
the first order. Equation 6 becomes, 
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Assuming,  
  

a
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X
XfA
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                                                                    (8) 

and  
 

bo LXfL −= )(                                                              (9) 
 
A  is the design matrix. Therefore equation 7 can be 

rewritten as, 
 

LXAV += ˆˆ                                                                   (10) 
 
Using Lagrange multiplier  TK̂   to minimize the sum of the 

squares of the weighted residuals VPV T ˆˆ , therefore, 
 

)ˆˆ(ˆˆˆ VLXAKVPV TT −+−=φ  is minimum             (11) 
 

Differentiating equation 11 partially with respect to V̂  , TK̂  

and X̂ ,  
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Solving equations 12-14 simultaneously yields,   
 

PLAPAAX TT 1)(ˆ −−=                                                (15)   
 
for a non-linear case and 
 

bTT PLAPAAX 1)(ˆ −=                                                  (16)   
 
for a linear case because from equation 9,  
 

0)( =oXf                                                                     (17) 
 
for the linear case, therefore  
 

LLb −=                                                                           (18) 
 
A detailed derivation on observation equations technique is 
explained in Ayeni [10].  
 
 

2.3 Derivation based on condition equations 
 
According to Ayeni [10] in the conditions equation method, 
the condition equations are expressed as a function of the 
adjusted observations, 
 

0)( =aLf                                                                       (19) 
 

Recall equation 4, VLL ba ˆ+= , therefore equation 19 
becomes,  
 

0)ˆ( =+VLf b                                                               (20) 
 
Linearizing equation 20 using Taylor’s series and truncating 
at the first order, equation 20 becomes, 
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Assuming, 
 
 )( bLfW =                                                                    (22) 
 
and 
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B  is the design matrix; therefore equation 21 becomes, 
 

0ˆ =+WVB                                                                   (24) 
 
Using Lagrange multiplier  TK̂   to minimise the sum of the 

squares of the weighted residuals VPV T ˆˆ , therefore, 
 

)ˆ(ˆˆˆ WVBKVPV TT +−=φ is minimum                    (25) 
 

Differentiating equation 23 partially with respect to V̂  and  
TK̂ ,  

 

0ˆ
ˆ =−=

∂
∂ BKPV
V
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                                                (26) 

 

0ˆ
ˆ =−−=

∂
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K T

φ
                                                 (27) 

 
Solving equations 26-27 simultaneously yields  
 

WBBPBPV TT 111 )(ˆ −−−−=                                        (28) 
 
Note that, the number of condition equations to be formed 
must equal the difference between the number of 
observations and the number of unknown parameters. A 
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detailed derivation on condition equations technique is 
explained in Ayeni [10].  
 
3. Application 
 
A short-range Electronic Distance Measurement (EDM) 
instrument was used to measure the distances shown in 
Figure 1 and Table 1 below, along a straight baseline design 
[1]. It was assumed that the measurements were equally 
weighted; therefore IP = .   
 

 
Figure 1: Baseline measurements 

 
Table 1: Observed distances 

 DISTANCES (m) 
AB 11.152 
BC 13.499 
CD 12.052 
AC 24.684 
BD 25.539 
AD 36.711 

 
In order to adjust measurements AB, BC and CD, additional 
measurements AC, BD and AD were made. Distances AB, 
BC and CD were designated 1X , 2X  and 3X  respectively.  
 
3.1 Solution using method of first principles 
 
First 2

iiVP  was stated for the six observations,  
 

2
1

2
11 )152.11(1 −= aXVP                                              (29) 

 
2

2
2

22 )449.13(1 −= aXVP                                             (30) 
 

2
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2
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2
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2
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2
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2
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Recall from equation 1 that ∑
=

n

i
iiVP

1

2   is minimum; 

therefore,   
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0)711.36(2 321 =−++ aaa XXX                               (38) 
 
Equations 36-38 can be simplified as,  
 

094.145246 321 =++ aaa XXX                                  (39) 
 

866.200484 321 =++ aaa XXX                                  (40) 
 

604.148642 321 =++ aaa XXX                                  (41) 
 
Solving equations 39-41 simultaneously yielded,  
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3.2 Solution using method of observation equations 
 
Recall from section 2 that the number of observation 
equations formed must be equal to the number of field 
observations. Therefore six observations will be formed, 
since six field observations were made. The observation 
equations were given in equations 43-48.  
 

aa XL 11 =                                                                          (43) 
 

aa XL 22 =                                                                          (44) 
 

aa XL 33 =                                                                          (45) 
 

aaa XXL 214 +=                                                               (46) 
 

aaa XXL 325 +=                                                               (47) 
 

aaaa XXXL 3216 ++=                                                    (48) 
 
Recall that bTT PLAPAAX 1)(ˆ −=  
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Therefore, the solution using equation 16 yielded,  
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3.3 Solution using method of condition equations 
 
Recall from section 2 that the number of condition equations 
must equal the difference between the number of 
observations and the number of unknown parameters. 
Therefore three condition equations will be formed. The 
condition equations were given in equations 54-56. Equations 
54-56 were formed using the information in Table 1 and 
Figure 1,  
 

0421 =−+ aaa LLL                                                           (54) 
 

0532 =−+ aaa LLL                                                           (55) 

06321 =−++ aaaa LLLL                                                  (56) 
 
Recall from equation 28 
that WBBPBPV TT 111 )(ˆ −−−−= . Also recall from 

equation 4 that  VLL ba ˆ+=  , therefore,  
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Recall that  
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Therefore the solution of  V̂  yielded,  
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Recalling bL  from equation 52 and V̂  from equation 59, 
therefore,  



























=+=

m
m
m
m
m
m

VLL ba

712.36
547.25
670.24
043.12
504.13
165.11

ˆ                                          (60) 

 
Recall from equation 53 that rows 1-3 of equation 60 are the 
same as aX 1 , aX 2  and aX 3  in equation 53.   

 
3.4 Solution using other methods of adjustment 
 
For LSC, the basic of LSC is such that, 
 

ZXAY += ˆ                                                                   (61)  
 
Where SRZ ′+′=                                                         (62) 
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The assumption is that the following covariances exist, 

∑Y
, ∑S

, ∑R
, ∑Z

and also that R′  and S ′  are 

random. A  is the design matrix, X  is the estimated 
parameters and Y is the observation. The solution of X̂  is 
given as,   
 

∑∑ −−−
=

111 )(ˆ
Y

T
Y

T YAAAX  [5, 10]                          (63) 

 
For KF, KF predicts or estimates the state of a dynamic 
system from a series of incomplete and /or noisy 
measurements. Suppose we have a noisy linear system that is 
defined by the following equations: 
 

11
ˆ

−− += kkk wXAX                                                       (64) 
 

kkk vHXZ +=                                                              (65) 

Where kX  is estimated state at time k , A  is the state 

transition matrix, 1−kX  is estimated state for preceding time  

1−k , w  is process noise at time 1−k , kZ  is the 

measurement, H  is the measurement design matrix and kv  
is the measurement noise [3].  
 
For TLS, it assumes that all the elements of the data are 
erroneous. This situation can be stated mathematically as, 

               
 xAAbb )( ∆+=∆+ , nmArank <=)(              (66) 
where, b∆  is error vector of observations and A∆  is error 
matrix of data matrix A . Both errors are assumed 
independently and identically distributed with zero mean and 
with same variance [9].  
 
                      Table 2: Adjusted distances  

 LS LSC KF TLS 
aX 1  11.165

2 
11.165

2 
11.165

0 
11.165

3 
aX 2  13.504

2 
13.504

2 
13.504

2 
13.504

3 
aX 3  12.042

8 
12.042

8 
12.042

5 
12.042

8 
 
The data given in Table 1 and Figure 1 were applied to LSC, 
KF and TLS. From Table 2 all the results for aX 1 , aX 2  and 

aX 3  from the four models yielded basically the same values 
apart from very slight difference in the results from KF and 
TLS.  
 

 
Figure 2: Residuals 

 
The computed residuals for each observation were given in 
Figure 2. From Figure 2, similar residual values were yielded 
all the four models. When the sum of the absolute values of 
the residuals was computed for the four models (Figure 3), it 
was found that KF yield the least value, while the remaining 
three models yielded relatively the same values. 
 

 
Figure 3: Sum of absolute values of the residuals 

 
4. Conclusion 
 
The solutions from the first principles, observation equations 
and condition equations for aX 1 , aX 2  and aX 3  must be the 
same. From Figure 3, KF yielded the least value of the sum 
of the absolute values of the residuals, and therefore yielded 
relatively the most accurate result. In summary, recalling 
from section 2, some of the primary conditions for LS 
adjustment among others are that: (i) the number of field 
observations must exceed the number of parameters to be 
determined (ii) the number of observation equations formed 
must be equal to the number of field observations (iii) the 
number of condition equations formed must equal the 
difference between the number of observations and the 
number of unknown parameters to be determined.     
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