Basics of Least Squares Adjustment Computation in Surveying

Onuwa Okwuashi1, Inemesit Asuquo2

1,2Department of Geoinformatics & Surveying, University of Uyo, Nigeria

Abstract: This work presents basic methods in least squares adjustment computation. These methods are first principles’ technique, observation equations and condition equations techniques. A simple numerical example is used to elucidate these basic methods. Including experimenting other more recent methods of adjustment such as: least squares collocation, Kalman filter and total least squares.

Keywords: Least squares, least squares collocation, Kalman filter, total least squares, adjustment computation

1. Introduction

Surveying measurements are usually compromised by errors in field observations and therefore require mathematical adjustment \cite{1}. In the first half of the 19th century the Least Squares (LS) \cite{2} adjustment technique was developed. LS is the conventional technique for adjusting surveying measurements. The LS technique minimizes the sum of the squares of differences between the observation and estimate \cite{3}. Apart from LS other methods of adjusting surveying methods have been developed, such as Kalman Filter (KF) \cite{4}, Least Squares Collocation (LSC) \cite{5} and Total Least Squares (TLS) \cite{6, 7, 8, 9}. This work will expound in its simplest form fundamental methods of LS adjustment as it applies to basic surveying measurements.

2. Principles of Least Squares Adjustment Computation

2.1 Derivation based on first principles

From first principles, LS minimizes the sum of the squares of the residuals or weighted residuals. Thus,

\[\sum_{i=1}^{n} P_i V_i^2 \text{ is minimum} \] \hspace{1cm} (1)

Where,

- \(P \) is weight of observations,
- \(V \) is the residual and
- \(n \) is the number of observations.

\(V_i = \| y_i - y_i^* \| \) \hspace{1cm} (2)

Where,

- \(y \) represents the original observations
- \(y^* \) represents the adjusted observations \cite{1}

A detailed derivation on first principles’ technique is explained in Okwuashi \cite{1}.

2.2 Derivation based on observation equations

According to Ayeni \cite{10}, in the observations equation method, the adjusted observations are expressed as a function of the adjusted parameters. Thus,

\[L^a = f(X^a) \] \hspace{1cm} (3)

Where,

- \(L^a \) denotes adjusted observations
- \(X^a \) denotes adjusted parameters

Note that, in least squares adjustment, the number of observations must exceed the number of unknown parameters to be determined. And also, the number of observation equations formed must be equal to the number of field observations.

\[L^a \text{ and } X^a \text{ can be expressed as}, \]

\[L^a = L^o + \hat{V} \] \hspace{1cm} (4)

\[X^a = X^o + \hat{X} \] \hspace{1cm} (5)

Where,

- \(L^o \) denotes original observations
- \(X^o \) denotes the approximate values of the parameters to be determined
- \(\hat{X} \) denotes the unknown parameters to be determined from least squares adjustment

Equation 3 can be rewritten as,

\[L^a = L^o + \hat{V} = f(X^o + \hat{X}) \] \hspace{1cm} (6)

Linearizing equation 6 using Taylor’s series and truncating at the first order. Equation 6 becomes,
\[L^b + \hat{V} = f(X^o) + \frac{\partial f(X^o)}{\partial X^a} \hat{X} + ... \]
(7)

Assuming,
\[A = \frac{\partial f(X^o)}{\partial X^a} \]
(8)
and\[L = f(X^o) - L^b \]
(9)

\(A \) is the design matrix. Therefore equation 7 can be rewritten as,
\[\hat{V} = A\hat{X} + L \]
(10)

Using Lagrange multiplier \(\hat{K}^T \) to minimize the sum of the squares of the weighted residuals \(\hat{V}^T P \hat{V} \), therefore,
\[\phi = \hat{V}^T P \hat{V} - \hat{K}^T (A\hat{X} + L - \hat{V}) \]
(11)

Differentiating equation 11 partially with respect to \(\hat{V} \), \(\hat{K}^T \) and \(\hat{X} \),
\[\frac{\partial \phi}{\partial \hat{V}} = PV^T + K^T = \bar{0} \]
(12)
\[\frac{\partial \phi}{\partial \hat{K}} = -AX - L + \hat{V} = \bar{0} \]
(13)
\[\frac{\partial \phi}{\partial \hat{X}} = -K^TA = \bar{0} \]
(14)

Solving equations 12-14 simultaneously yields,
\[\hat{X} = -(A^T PA)^{-1} A^T PL \]
(15)
for a non-linear case and
\[\hat{X} = (A^T PA)^{-1} A^T P L^b \]
(16)
for a linear case because from equation 9,
\[f(X^o) = 0 \]
(17)
for the linear case, therefore
\[L^b = -L \]
(18)

A detailed derivation on observation equations technique is explained in Ayeni [10].

2.3 Derivation based on condition equations

According to Ayeni [10] in the conditions equation method, the condition equations are expressed as a function of the adjusted observations,
\[f(L^a) = \bar{0} \]
(19)

Recall equation 4, \(L^a = L^b + \hat{V} \), therefore equation 19 becomes,
\[f(L^b + \hat{V}) = \bar{0} \]
(20)

Linearizing equation 20 using Taylor’s series and truncating at the first order, equation 20 becomes,
\[f(L^b) + \frac{\partial f(L^b)}{\partial L^a} \hat{V} + ... = \bar{0} \]
(21)

Assuming,
\[W = f(L^b) \]
(22)
and
\[B = \frac{\partial f(L^b)}{\partial L^a} \]
(23)

\(B \) is the design matrix; therefore equation 21 becomes,
\[B\hat{V} + W = \bar{0} \]
(24)

Using Lagrange multiplier \(\hat{K}^T \) to minimize the sum of the squares of the weighted residuals \(\hat{V}^T P \hat{V} \), therefore,
\[\phi = \hat{V}^T P \hat{V} - \hat{K}^T (B\hat{V} + W) \]
(25)

Differentiating equation 23 partially with respect to \(\hat{V} \) and \(\hat{K}^T \),
\[\frac{\partial \phi}{\partial \hat{V}} = \hat{V}^T P - K^TB = \bar{0} \]
(26)
\[\frac{\partial \phi}{\partial \hat{K}} = -B\hat{V} - W = \bar{0} \]
(27)

Solving equations 26-27 simultaneously yields
\[\hat{V} = -P^{-1}B^T(BP^{-1}B^T)^{-1}W \]
(28)

Note that, the number of condition equations to be formed must equal the difference between the number of observations and the number of unknown parameters. A
detailed derivation on condition equations technique is explained in Ayeni [10].

3. Application

A short-range Electronic Distance Measurement (EDM) instrument was used to measure the distances shown in Figure 1 and Table 1 below, along a straight baseline design [1]. It was assumed that the measurements were equally weighted; therefore $P = I$.

![Figure 1: Baseline measurements](image)

<table>
<thead>
<tr>
<th>DISTANCES (m)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>11.152</td>
</tr>
<tr>
<td>BC</td>
<td>13.499</td>
</tr>
<tr>
<td>CD</td>
<td>12.052</td>
</tr>
<tr>
<td>AC</td>
<td>24.684</td>
</tr>
<tr>
<td>BD</td>
<td>25.539</td>
</tr>
<tr>
<td>AD</td>
<td>36.711</td>
</tr>
</tbody>
</table>

Table 1: Observed distances

In order to adjust measurements AB, BC and CD, additional measurements AC, BD and AD were made. Distances AB, BC and CD were designated X_1, X_2 and X_3 respectively.

3.1 Solution using method of first principles

First $P_iV_i^2$ was stated for the six observations,

$$P_{1}\overline{V}_1^2 = (X_1^a - 11.152)^2$$

$$P_{2}\overline{V}_2^2 = (X_2^a - 13.449)^2$$

$$P_{3}\overline{V}_3^2 = (X_3^a - 12.052)^2$$

$$P_{4}\overline{V}_4^2 = (X_1^a + X_2^a - 24.684)^2$$

$$P_{5}\overline{V}_5^2 = (X_2^a + X_3^a - 25.539)^2$$

$$P_{6}\overline{V}_6^2 = (X_1^a + X_2^a + X_3^a - 36.711)^2$$

Recall from equation 1 that $\sum_{i=1}^{n} P_iV_i^2$ is minimum;

$$\phi = (X_1^a - 11.152)^2 + (X_2^a - 13.449)^2 + (X_3^a - 12.052)^2 + (X_1^a + X_2^a - 24.684)^2 + (X_2^a + X_3^a - 25.539)^2 + (X_1^a + X_2^a + X_3^a - 36.711)^2$$

is minimum

$$\frac{\partial \phi}{\partial X_1^a} = 2(X_1^a - 11.152) + 2(X_1^a + X_2^a - 24.684) + 2(X_1^a + X_2^a + X_3^a - 36.711) = 0$$

$$\frac{\partial \phi}{\partial X_2^a} = 2(X_2^a - 13.449) + 2(X_1^a + X_2^a - 24.684) + 2(X_2^a + X_3^a - 25.539) + 2(X_1^a + X_2^a + X_3^a - 36.711) = 0$$

$$\frac{\partial \phi}{\partial X_3^a} = 2(X_3^a - 12.052) + 2(X_1^a + X_3^a - 25.539) + 2(X_2^a + X_3^a - 25.539) + 2(X_1^a + X_2^a + X_3^a - 36.711) = 0$$

Solving equations 39-41 simultaneously yielded,

$$[X_1^a] = [11.165m]$$

$$X_2^a = 13.504m$$

$$[X_3^a] = [12.043m]$$

3.2 Solution using method of observation equations

Recall from section 2 that the number of observation equations formed must be equal to the number of field observations. Therefore six observations will be formed, since six field observations were made. The observation equations were given in equations 43-48.

$$L_1^a = X_1^a$$

$$L_2^a = X_2^a$$

$$L_3^a = X_3^a$$

$$L_4^a = X_1^a + X_2^a$$

$$L_5^a = X_2^a + X_3^a$$

$$L_6^a = X_1^a + X_2^a + X_3^a$$

Recall that $\hat{X} = (A^T PA)^{-1} A^T PL^a$
\[
\hat{X} = \begin{bmatrix}
\hat{X}_1^a \\
\hat{X}_2^a \\
\hat{X}_3^a
\end{bmatrix},
\]

\[
L_i^a + L_i^b - L_i^a = 0 \quad (56)
\]

Recall from equation 28 that \(\hat{V} = -P^{-1}B^T(BP^{-1}B^T)^{-1}W \). Also recall from equation 4 that \(L^a = L^b + \hat{V} \), therefore,

\[
L^a = L^b + \hat{V}
\]

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix},
\]

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1 & 1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
1 & 1 & 1 & 0 & -1
\end{bmatrix}
\]

\[
W = \begin{bmatrix}
11.152 + 13.499 - 24.684 \\
13.499 + 12052 - 25.539 \\
11.152 + 13499 + 12052 - 36711
\end{bmatrix}
\]

\[
\hat{V} = \begin{bmatrix}
0.013 \\
-0.009 \\
-0.015 \\
0.008 \\
0.001
\end{bmatrix}
\]

\[
L^b = \begin{bmatrix}
11.152 \\
13.499 \\
12.052 \\
24.684 \\
25.539 \\
36.711
\end{bmatrix}
\]

Recalling \(L^b \) from equation 52 and \(\hat{V} \) from equation 59, therefore,

\[
L^a = L^b + \hat{V} = \begin{bmatrix}
11.165m \\
13.504m \\
12.043m \\
24.670m \\
25.547m \\
36.712m
\end{bmatrix}
\]

\[
Y = AX + Z
\]

\[
Z = R' + S'
\]
The assumption is that the following covariances exist, \(\sum_Y, \sum_S, \sum_R, \sum_Z \) and also that \(R' \) and \(S' \) are random. \(A \) is the design matrix, \(X \) is the estimated parameters and \(Y \) is the observation. The solution of \(\hat{X} \) is given as,

\[
\hat{X} = (A^T \sum_Y A)^{-1} A^T \sum Y \quad [5, 10]
\]

For KF, KF predicts or estimates the state of a dynamic system from a series of incomplete and/or noisy measurements. Suppose we have a noisy linear system that is defined by the following equations:

\[
X_k = AX_{k-1} + w_k
\]

\[
Z_k = HX_k + v_k
\]

Where \(X_k \) is estimated state at time \(k \), \(A \) is the state transition matrix, \(X_{k-1} \) is estimated state for preceding time \(k-1 \), \(w \) is process noise at time \(k-1 \), \(Z_k \) is the measurement, \(H \) is the measurement design matrix and \(v_k \) is the measurement noise [3].

For TLS, it assumes that all the elements of the data are erroneous. This situation can be stated mathematically as,

\[
b + \Delta b = (A + \Delta A)x, rank(A) = m < n
\]

where, \(\Delta b \) is error vector of observations and \(\Delta A \) is error matrix of data matrix \(A \). Both errors are assumed independently and identically distributed with zero mean and with same variance [9].

The data given in Table 1 and Figure 1 were applied to LSC, KF and TLS. From Table 2 all the results for \(X_1^a \), \(X_2^a \) and \(X_3^a \) from the four models yielded basically the same values apart from very slight difference in the results from KF and TLS.

<table>
<thead>
<tr>
<th>Table 2: Adjusted distances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(X_1^a)</td>
</tr>
<tr>
<td>11.165</td>
</tr>
<tr>
<td>(X_2^a)</td>
</tr>
<tr>
<td>(X_3^a)</td>
</tr>
</tbody>
</table>

The computed residuals for each observation were given in Figure 2. From Figure 2, similar residual values were yielded all the four models. When the sum of the absolute values of the residuals was computed for the four models (Figure 3), it was found that KF yield the least value, while the remaining three models yielded relatively the same values.

The solutions from the first principles, observation equations and condition equations for \(X_1^a \), \(X_2^a \) and \(X_3^a \) must be the same. From Figure 3, KF yielded the least value of the sum of the absolute values of the residuals, and therefore yielded relatively the most accurate result. In summary, recalling from section 2, some of the primary conditions for LS adjustment among others are that: (i) the number of field observations must exceed the number of parameters to be determined (ii) the number of observation equations formed must be equal to the number of field observations (iii) the number of condition equations formed must equal the difference between the number of observations and the number of unknown parameters to be determined.

4. Conclusion

The solutions from the first principles, observation equations and condition equations for \(X_1^a \), \(X_2^a \) and \(X_3^a \) must be the same. From Figure 3, KF yielded the least value of the sum of the absolute values of the residuals, and therefore yielded relatively the most accurate result. In summary, recalling from section 2, some of the primary conditions for LS adjustment among others are that: (i) the number of field observations must exceed the number of parameters to be determined (ii) the number of observation equations formed must be equal to the number of field observations (iii) the number of condition equations formed must equal the difference between the number of observations and the number of unknown parameters to be determined.
References

